"Heute habe ich etwas niedergeschrieben, das ich vorläufig selbst
noch kaum verstehe."
Theodor W. Adorno
Preprints
Short notes
Book reviews
List of publications
Preprints:
Short notes:
Book reviews:
List of publications:
On Wolfgang Lusky's paper ``The Gurarij spaces are unique''.
Arch. Math. 121, No. 5-6, 615-624 (2023);
link
The Perfekt theory of $M$-ideals.
Math. Scand. 128, No. 2, 389-400 (2022).
Lineare Algebra.
Birkhäuser xi, 317 p. (2022).
Norm attaining operators of finite rank.
In: R.M. Aron et al. (eds.),
The Mathematical Legacy of Victor Lomonosov, pp. 157-187.
De Gruyter (2020).
Equivalent norms with an extremely nonlineable set of norm
attaining functionals.
J. Inst. Math. Jussieu 19, no. 1, 259-279 (2020).
Totally smooth renormings.
Arch. Math. 112, no. 3, 269-281 (2019).
Operations with slicely countably determined sets.
Functiones et Approximatio 59, no. 1, 77-98 (2018).
Funktionalanalysis
(Functional analysis). 8., überarbeitete Aufl. (German)
Springer-Lehrbuch. Berlin: Springer Spektrum. xiii, 585 S. (2018).
Approximation of integration maps of vector measures and limit
representations of Banach function spaces.
Ann. Pol. Math. 120, no. 1, 63-81 (2017).
The Daugavet equation for bounded vector valued functions.
Rocky Mount. J. Math. 47, no. 6, 1765-1801 (2017).
Lipschitz slices and the Daugavet equation for Lipschitz
operators.
Proc. Amer. Math. Soc. 143, no. 12, 5281-5292 (2015).
12
x 12 Schlüsselkonzepte zur Mathematik.
2. Auflage.
Springer-Spektrum, Heidelberg. xiii, 355 S. (2015)
Slice continuity for operators and the Daugavet property for
bilinear maps.
Functiones et Approximatio 50, no. 2, 251-269 (2014).
Lushness, numerical index 1 and the Daugavet property in
rearrangement invariant spaces.
Canadian Journal of Mathematics 65, no. 2, 331-348 (2013).
Nigel Kalton's work in isometrical Banach space theory.
Available from
the Nigel
Kalton Memorial web site.
80 Years of Zentralblatt MATH.
80 footprints of distinguished mathematicians in Zentralblatt.
With an essay by Silke Göbel.
Berlin: Springer. 194 p. (2011).
Funktionalanalysis
(Functional analysis). 7., korrigierte und erweiterte Aufl. (German)
Springer-Lehrbuch. Berlin: Springer. xiii, 552 S. (2011).
Thickness
of the unit sphere, $\ell_1$-types,
and the almost Daugavet property.
Houston J. Math. 37, No. 3, 867-878 (2011).
The $p$-Daugavet property for
function spaces (Preprint version).
Arch. Math. 96, No. 6, 565-575 (2011); final version available from
SpringerLink; click
here.
12 x 12 Schlüsselkonzepte zur Mathematik.
Spektrum-Verlag Heidelberg. x, 342 S. (2011)
The
geometry of $L^p$-spaces
over atomless measure spaces and the Daugavet property.
Banach J. Math. Anal. 5, No.1, 167-180 (2011).
Einführung in die höhere Analysis.
(2. Auflage)
Springer-Lehrbuch. Berlin: Springer. x, 388 S. (2009).
Quotients of Banach spaces with the Daugavet property.
Bull. Pol. Acad. Sci. 56, no.2, 131-147 (2008).
The Daugavet property for spaces of Lipschitz functions.
Math. Scand. 101, no.2, 261-279 (2007).
Corrigendum (added November 2008).
Funktionalanalysis
(Functional analysis). 6., korrigierte Aufl. (German)
Springer-Lehrbuch. Berlin: Springer. xiii, 532 S. (2007).
Numerical index of Banach spaces and duality.
Math. Proc. Cambridge Philos. Soc. 142, no.1, 93-102 (2007).
Einführung in die höhere Analysis.
Springer-Lehrbuch. Berlin: Springer. x, 388 S. (2006).
Narrow operators on Bochner $L_1$-spaces.
Journal of Mathematical Physics, Analysis, Geometry 2, no.4, 358-371 (2006).
Narrow operators and the Daugavet property for ultraproducts.
Positivity 9, no.1, 46-62 (2005).
Unconditionally convergent series of operators
and narrow operators on $L_1$.
Bull. London Math. Soc. 37, no.2, 265-274 (2005).
Funktionalanalysis.
(Functional analysis). 5., erweiterte Aufl. (German)
Springer-Lehrbuch. Berlin: Springer. xiii, 528 S. (2004).
A Banach space with the Schur and the Daugavet property.
Proc. Amer. Math. Soc. 132, no.6, 1765-1773 (2004).
Remarks on rich subspaces of Banach spaces.
Studia Math. 159, no.2, 195-206 (2003).
Lipschitz spaces and M-ideals.
Extracta Math. 18, no.1, 33-56 (2003).
Narrow operators on vector-valued sup-normed spaces.
Illinois J. Math. 46, no.2, 421-441 (2002).
Funktionalanalysis.
(Functional analysis). 4., überarbeitete Aufl. (German)
Springer-Lehrbuch. Berlin: Springer. xiii, 503 S. (2002).
Unzerlegbare Banachräume.
Acta et Comm. Univ. Tartuensis Math. 5, 89-105 (2001).
Narrow operators and rich subspaces
of Banach spaces with the Daugavet property.
Studia Math. 147, No.3, 269-298 (2001).
Corrigendum (added October 2016).
Recent progress on the Daugavet property.
Irish Math. Soc. Bulletin 46, 77-97 (2001).
Slices in the unit ball of a uniform algebra.
Archiv Math. 76, No.6, 441-444 (2001).
Banach spaces with the Daugavet property.
Trans. Am. Math. Soc. 352, No.2, 855-873 (2000).
Funktionalanalysis.
(Functional analysis). 3., neu bearb. und erweiterte Aufl. (German)
Springer-Lehrbuch. Berlin: Springer. xi, 501 S. (2000).
M-ideals of compact operators into $\ell_p$.
Czechoslovak J. Math. 50, 51-57 (2000).
The Daugavet equation for operators not fixing a copy of $C[0,1]$.
J. Operator Theory 39, 89-98 (1998).
Espaces de Banach ayant la propriété de Daugavet.
(Banach spaces with the Daugavet property). (French)
C. R. Acad. Sci., Paris, Ser. I, Math. 325, No.12, 1291-1294 (1997).
The Daugavet equation for operators on function spaces.
J. Funct. Anal. 143, No.1, 117-128 (1997).
[Note the funny typo in eq. (1.1)!]
Funktionalanalysis. (Functional analysis).
2., überarb. Aufl. (German)
Springer-Lehrbuch. Berlin: Springer. xi, 456 S. (1997).
The grade of an $M$-ideal.
Dierolf, Susanne (ed.) et al., Functional analysis. Proceedings of the first international workshop held at Trier University,
Germany, September 26-October 1, 1994. Berlin: de Gruyter. 211-225 (1996).
Une remarque sur la propriété de Dunford-Pettis.
(A remark on the Dunford-Pettis property). (French)
Choquet, G. (ed.) et al., Séminaire d'initiation a
l'analyse.
35eme année: 1995/1996. Exposés 1 a 24, communication C 1.
Paris: Univ. Pierre et Marie Curie, Publ. Math. Univ. Pierre Marie
Curie. 118, Exp. No.4. (1996).
An elementary approach to the Daugavet equation.
Kalton, Nigel (ed.) et al., Interaction between functional analysis, harmonic analysis, and probability. Proceedings of a
conference held at the University of Missouri, Columbia, MO, USA, May 29-June 3, 1994. New York, NY: Marcel
Dekker. Lect. Notes Pure Appl. Math. 175, 449-454 (1996).
The $M$-ideal structure of some algebras of bounded linear operators.
Proc. R. Soc. Edinb., Sect. A 125, No.3, 493-500 (1995).
Berlin: Springer-Verlag. ix, 446 p. (1995).
Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces.
J. Reine Angew. Math. 461, 137-178 (1995).
Some lifting theorems for bounded linear operators.
Bierstedt, Klaus D. (ed.) et al., Functional analysis. Proceedings of the Essen conference, held in Essen, Germany,
November 24-30, 1991. New York, NY: Dekker. Lect. Notes Pure
Appl. Math. 150, 279-291 (1994).
Geometry of operator spaces.
Mich. Math. J. 41, No.3, 473-490 (1994).
$M$-ideals and the ``basic inequality''.
J. Approximation Theory 76, No.1, 21-30 (1994).
$M$-Ideals in Banach Spaces and Banach Algebras.
Lecture Notes in Mathematics. 1547. Berlin: Springer-Verlag. viii, 387 p. (1993).
A proof of the Markov-Kakutani fixed point theorem via the Hahn-Banach
theorem.
Extracta Math. 8, no.1, 37-38 (1993)
Contributions to the theory of M-ideals in Banach
spaces.
Habilitationsschrift, FU Berlin (1992).
New classes of Banach spaces which are $M$-ideals in their biduals.
Math. Proc. Cambridge Philos. Soc. 111, No.2, 337-354 (1992).
Remarks on $M$-ideals of compact operators on $X \oplus_p X$.
Math. Nachr. 152, 101-111 (1991).
Remarks on M-ideals of compact operators.
Q. J. Math., Oxf. II. Ser. 41, No.164, 501-507 (1990).
De nouveau: $M$-idéaux des espaces d'opérateurs
compacts.
(Once again: $M$-ideals of spaces of compact
operators.) (French)
Publ. Math. Univ. Pierre Marie Curie 94, No.17, 12 p. (1989).
Structural properties of operator spaces.
Acta Univ. Carol., Math. Phys. 28, No.2, 127-136 (1987).
Denting points in tensor products of Banach spaces.
Proc. Am. Math. Soc. 101, 122-126 (1987).
On the M-structure of the operator space $L(CK)$.
Stud. Math. 87, 133-138 (1987).
M-structure in tensor products of Banach spaces.
Math. Scand. 61, No.1, 149-164 (1987).
L- und M-Struktur in Tensorprodukten von Banachräumen. (German)
Fachbereich Mathematik der Freien Universität Berlin. 71 S. (1985).
Extreme points in spaces of operators and vector-valued measures.
Rend. Circ. Mat. Palermo, II. Ser. 5, 135-143 (1984).
Extreme points in function spaces.
Proc. Am. Math. Soc. 89, 598-600 (1983).