Daugavet's proof of Daugavet's theorem

Dirk Werner

The theorem in question, described by Daugavet as "almost obvious, but at the same time unexpected", is this.

Theorem. If $A: C[a, b] \rightarrow C[a, b]$ is a compact linear operator, then

$$
\begin{equation*}
\|\operatorname{Id}+A\|=1+\|A\| . \tag{1}
\end{equation*}
$$

Here is an account of Daugavet's argument from [1], using his notation.

One first observes that it is enough to consider a finite-rank operator A since these operators are dense in the space of compact operators on $C[a, b]$. Such an operator has the form

$$
\begin{equation*}
A x=\sum_{k=1}^{n} \varphi_{k}(x) z_{k} \tag{2}
\end{equation*}
$$

with $z_{k} \in C[a, b]$ and continuous linear functionals $\varphi_{k} \in C[a, b]^{*}$ that can be represented by Riemann-Stieltjes integrals

$$
\varphi_{k}(x)=\int_{a}^{b} x(t) d \sigma_{k}(t)
$$

where σ_{k} is a function of bounded variation. Denote

$$
\begin{equation*}
\max _{k}\left\|z_{k}\right\|=M \tag{3}
\end{equation*}
$$

Now let $\varepsilon>0$. Pick $x_{0} \in C[a, b]$ such that $\left\|x_{0}\right\|=1$ and $\left\|A x_{0}\right\|>\|A\|-\varepsilon / 2$. Put $y_{0}=A x_{0}$ and let $\Delta \subset[a, b]$ be a subinterval on which $\left|y_{0}(t)\right|>\|A\|-\varepsilon / 2$. Replacing x_{0} with $-x_{0}$ if necessary we can even assume that $y_{0}(t)>\|A\|-\varepsilon / 2$ on Δ. Further pick a subinterval $I=\left[t_{0}-\delta, t_{0}+\delta\right] \subset \Delta$ such that for $k=1, \ldots, n$

$$
\begin{equation*}
\operatorname{Var}\left(\left.\sigma_{k}\right|_{I}\right) \leq \frac{\varepsilon}{4 n M} \tag{4}
\end{equation*}
$$

Indeed, if Δ is written as a union of m non-overlapping closed intervals I_{1}, \ldots, I_{m}, then one of the I_{l} will work provided $m \geq(8 n M / \varepsilon) \max _{k} \operatorname{Var}\left(\left.\sigma_{k}\right|_{\Delta}\right)$.
Now let $x_{1} \in C[a, b]$ be the function that coincides with x_{0} off $I, x_{1}\left(t_{0}\right)=1$, and x_{1} is linear on $\left[t_{0}-\delta, t_{0}\right]$ and on $\left[t_{0}, t_{0}+\delta\right]$; put $y_{1}=A x_{1}$. Obviously $\left\|x_{1}\right\|=1$, and it follows from (2), (3) and (4) that

$$
\begin{equation*}
\left\|y_{1}-y_{0}\right\| \leq \frac{\varepsilon}{2} \tag{5}
\end{equation*}
$$

Indeed, by (2)

$$
y_{1}-y_{0}=A x_{1}-A x_{0}=\sum_{k=1}^{n}\left(\varphi_{k}\left(x_{1}\right)-\varphi_{k}\left(x_{0}\right)\right) z_{k}
$$

and, since $\left\|x_{1}-x_{0}\right\| \leq 2$,

$$
\left|\varphi_{k}\left(x_{1}\right)-\varphi_{k}\left(x_{0}\right)\right|=\left|\int_{t_{0}-\delta}^{t_{0}+\delta}\left(x_{1}(t)-x_{0}(t)\right) d \sigma_{k}(t)\right| \leq 2 \operatorname{Var}\left(\left.\sigma_{k}\right|_{I}\right) \leq \frac{\varepsilon}{2 n M}
$$

by (4), which implies (5) by (3).
One now has

$$
\|\operatorname{Id}+A\| \geq\left\|x_{1}+A x_{1}\right\| \geq x_{1}\left(t_{0}\right)+y_{1}\left(t_{0}\right)=1+y_{0}\left(t_{0}\right)-\left[y_{0}\left(t_{0}\right)-y_{1}\left(t_{0}\right)\right]
$$

But $y_{0}\left(t_{0}\right) \geq\|A\|-\varepsilon / 2$ and $y_{0}\left(t_{0}\right)-y_{1}\left(t_{0}\right) \leq\left\|y_{0}-y_{1}\right\| \leq \varepsilon / 2$ by (5). Hence

$$
\|\operatorname{Id}+A\| \geq 1+\|A\|-\varepsilon
$$

and the theorem is proved.
[1] I. K. Davgavet. On a property of completely continuous operators in the space C. Uspekhi Mat. Nauk 18.5 (1963), 157-158 (Russian).

