Daugavet's proof of Daugavet's theorem

DIRK WERNER

The theorem in question, described by Daugavet as "almost obvious, but at the same time unexpected", is this.

Theorem. If A: $C[a,b] \rightarrow C[a,b]$ is a compact linear operator, then

$$\|\mathrm{Id} + A\| = 1 + \|A\|.$$
(1)

Here is an account of Daugavet's argument from [1], using his notation.

One first observes that it is enough to consider a finite-rank operator A since these operators are dense in the space of compact operators on C[a, b]. Such an operator has the form

$$Ax = \sum_{k=1}^{n} \varphi_k(x) z_k \tag{2}$$

with $z_k \in C[a, b]$ and continuous linear functionals $\varphi_k \in C[a, b]^*$ that can be represented by Riemann-Stieltjes integrals

$$\varphi_k(x) = \int_a^b x(t) \, d\sigma_k(t),$$

where σ_k is a function of bounded variation. Denote

$$\max_{k} \|z_k\| = M. \tag{3}$$

Now let $\varepsilon > 0$. Pick $x_0 \in C[a, b]$ such that $||x_0|| = 1$ and $||Ax_0|| > ||A|| - \varepsilon/2$. Put $y_0 = Ax_0$ and let $\Delta \subset [a, b]$ be a subinterval on which $|y_0(t)| > ||A|| - \varepsilon/2$. Replacing x_0 with $-x_0$ if necessary we can even assume that $y_0(t) > ||A|| - \varepsilon/2$ on Δ . Further pick a subinterval $I = [t_0 - \delta, t_0 + \delta] \subset \Delta$ such that for $k = 1, \ldots, n$

$$\operatorname{Var}(\sigma_k|_I) \le \frac{\varepsilon}{4nM}.\tag{4}$$

Indeed, if Δ is written as a union of m non-overlapping closed intervals I_1, \ldots, I_m , then one of the I_l will work provided $m \geq (8nM/\varepsilon) \max_k \operatorname{Var}(\sigma_k|_{\Delta})$.

Now let $x_1 \in C[a, b]$ be the function that coincides with x_0 off I, $x_1(t_0) = 1$, and x_1 is linear on $[t_0 - \delta, t_0]$ and on $[t_0, t_0 + \delta]$; put $y_1 = Ax_1$. Obviously $||x_1|| = 1$, and it follows from (2), (3) and (4) that

$$\|y_1 - y_0\| \le \frac{\varepsilon}{2}.\tag{5}$$

Indeed, by (2)

$$y_1 - y_0 = Ax_1 - Ax_0 = \sum_{k=1}^n (\varphi_k(x_1) - \varphi_k(x_0))z_k$$

and, since $||x_1 - x_0|| \le 2$,

$$|\varphi_k(x_1) - \varphi_k(x_0)| = \left| \int_{t_0 - \delta}^{t_0 + \delta} (x_1(t) - x_0(t)) \, d\sigma_k(t) \right| \le 2 \operatorname{Var}(\sigma_k|_I) \le \frac{\varepsilon}{2nM}$$

by (4), which implies (5) by (3). One now has

 $\|\mathrm{Id} + A\| \ge \|x_1 + Ax_1\| \ge x_1(t_0) + y_1(t_0) = 1 + y_0(t_0) - [y_0(t_0) - y_1(t_0)].$

But $y_0(t_0) \ge ||A|| - \varepsilon/2$ and $y_0(t_0) - y_1(t_0) \le ||y_0 - y_1|| \le \varepsilon/2$ by (5). Hence

$$\|\mathrm{Id} + A\| \ge 1 + \|A\| - \varepsilon,$$

and the theorem is proved.

 I. K. DAUGAVET. On a property of completely continuous operators in the space C. Uspekhi Mat. Nauk 18.5 (1963), 157–158 (Russian).