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Abstract. We introduce and analyse the notion of slice continuity be-
tween operators on Banach spaces in the setting of the Daugavet prop-
erty. It is shown that under the slice continuity assumption the Dau-
gavet equation holds for weakly compact operators. As an application
we define and characterise the Daugavet property for bilinear maps, and
we prove that this allows us to describe some p-convexifications of the
Daugavet equation for operators on Banach function spaces that have
recently been introduced.

Dedicated to Professor Lech Drewnowski
on the occasion of his 70th birthday

1. Introduction

A Banach space X is said to satisfy the Daugavet property if the so-called
Daugavet equation

‖Id +R‖ = 1 + ‖R‖
is satisfied for every rank one operator R: X → X. In recent years, the
Daugavet property for Banach spaces has been studied by several authors,
and various applications have been found (see for instance [11, 12, 13, 23,
24]).

The aim of this paper is to introduce and analyse the notion of slice
continuity between operators on Banach spaces. We will show that under
this assumption one can easily characterise when the Daugavet equation
holds for a couple of operators T and R between Banach spaces, i.e., when

‖T +R‖ = ‖T‖+ ‖R‖.

Recently, some new ideas have been introduced in this direction. The
notion of Daugavet centre has been studied in [4, 5, 6]. According to Def-
inition 1.2 in [6], a nonzero operator T between (maybe different) Banach
spaces is a Daugavet centre if the above Daugavet equation holds for every
rank one operator R. In this paper we develop a notion that is in a sense
connected to this one but provides a direct tool for analysing when a par-
ticular couple of operators satisfies the Daugavet equation. Our idea is to
relate the set of slices defined by each of the two operators. Recall that the
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slice S(x′, ε) of the unit ball of a real Banach space X determined by a norm
one element x′ ∈ X ′ and an ε > 0 is the set

S(x′, ε) = {x ∈ BX : 〈x, x′〉 ≥ 1− ε}.

Let Y be a Banach space. Let T : X → Y be an operator. We will define
the set of slices associated to T by

ST := {S(T ′(y′)/‖T ′(y′)‖, ε): 0 < ε < 1, y′ ∈ Y ′, T ′(y′) 6= 0},

and we will say that an operator R: X → Y is slice continuous with re-
spect to T – we will write SR ≤ ST – if for every S ∈ SR there is a slice
S1 ∈ ST such that S1 ⊂ S. This notion will be used for characterising when
the Daugavet equation holds by adapting some of the known results on the
geometric description of the Daugavet property to our setting. From the
technical point of view, we use some arguments on the Daugavet property
defined by subspaces of X ′ that can be found in [11]. This is done in Sec-
tion 2. In Section 3 we develop the framework for using our results in the
setting of the bilinear maps in order to obtain the main results of the paper
regarding applications. Finally in Section 4 we provide examples and appli-
cations, mainly related to a unified general point of view to understand the
p-convexification of the Daugavet equation for Banach function spaces that
have recently been studied in [20, 21].

Our notation is standard. Let X,Y and Z be real Banach spaces. BX and
SX are the unit ball and the unit sphere of X, respectively. We write UX
for the open unit ball and X ′ for the dual space. We denote by L(X,Y ) the
space of continuous operators and by B(X × Y, Z) the space of continuous
bilinear maps from X × Y to Z. If T is an operator, we write T ′ for its
adjoint operator. If x′ ∈ X ′ and y ∈ Y , we identify the tensor x′ ⊗ y
with the operator x′ ⊗ y: X → Y mapping x to x′(x)y. Throughout the
paper all the bilinear maps are assumed to be continuous. In general, we
consider the norm ‖(x, y)‖ = max{‖x‖X , ‖y‖Y } for the direct product X×Y .
We will say that a bilinear map B is convex or has convex range (resp. is
weakly compact) if the norm closure of B(BX , BY ) is convex (resp. weakly
compact).

Regarding Banach function spaces we also use standard notation. If 1 ≤
p ≤ ∞ we write p′ for the extended real number satisfying 1/p+1/p′ = 1. Let
us fix some definitions and basic results. Let (Ω,Σ, µ) be a σ-finite measure
space. A Banach function space X(µ) over the measure µ is an order ideal of
L0(µ) (the space of µ-a.e. equivalence classes of integrable functions) that is
a Banach space with a lattice norm ‖ . ‖ such that for every A ∈ Σ of finite
measure, χA ∈ X(µ) (see [14, Def. 1.b.17]). We will write X instead of
X(µ) if the measure µ is clear from the context. Of course, Banach function
spaces are Banach lattices, so the following definition makes sense for these
spaces. Let 0 < p <∞. A Banach lattice E is p-convex if there is a constant
K such that for each finite sequence (xi)

n
i=1 in E,

∥∥∥( n∑
i=1

|xi|p
)1/p∥∥∥

E
≤ K

( n∑
i=1

‖xi‖pE
)1/p

.
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It is said that it is p-concave if there is a constant k such that for every finite
sequence (xi)

n
i=1 in X,( n∑

i=1

‖xi‖pE
)1/p

≤ k
∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

E
.

M (p)(E) and M(p)(E) are the best constants in these inequalities, respec-
tively.

Let 0 ≤ p <∞. Consider a Banach function space X(µ). Then the set

X(µ)[p] := {h ∈ L0(µ): |h|1/p ∈ X(µ)}

is called the p-th power of X(µ), which is a quasi-Banach function space

when endowed with the quasinorm ‖h‖X[p]
:= ‖|h|1/p‖pX , h ∈ Xp (see [8],

[15, 7] or [16, Ch. 2]; the symbols that are used there for this concept are Xp,

X1/p and X[p], respectively); if X is p-convex and M (p)(X(µ)) = 1 – we will
say that X is constant 1 p-convex –, then X(µ)[p] is a Banach function space,
since in this case ‖ . ‖X[p]

is a norm; if 0 < p < 1, the p-th power of a Banach
function space is always a Banach function space. Every p-convex Banach
lattice can be renormed in such a way that the new norm is a lattice norm
with p-convexity constant 1 ([14, Prop. 1.d.8]). Let f ∈ X. Throughout
the paper we use the notation fp for the sign preserving p-th power of the
function f , i.e., fp := sign{f}|f |p.

Remark 1.1. The following basic facts regarding p-th powers of Banach func-
tion spaces will be used several times. Their proofs are immediate using the
results in [16, Ch. 2]. Let X(µ) be a Banach function space and 0 < p <∞.

(a) For every couple of functions f ∈ X and g ∈ X[p/p′] one has ‖fg‖X[p]

≤ ‖f‖X‖g‖X[p/p′] , and

‖h‖X[p]
= inf{‖f‖X‖g‖X[p/p′] : fg = h, f ∈ X, g ∈ X[p/p′]}.

(b) For every h ∈ X[p] one has h = |h|1/ph1/p′ , h1/p ∈ X, h1/p′ ∈ X[p/p′],
and

‖h‖X[p]
= ‖h1/p‖pX = ‖h1/p‖X‖h1/p‖p/p

′

X

= ‖h1/p‖X‖(h1/p′)p
′/p‖p/p

′

X = ‖h1/p‖X‖h1/p′‖X[p/p′] .

2. Slice continuity for couples of linear maps

Let us start by adapting some facts that are already essentially well known
(see [12]).

Proposition 2.1. Let X and Y be Banach spaces. Let T : X → Y be a
norm one linear map, and consider a norm one linear form x′ ∈ X ′. Let
y ∈ Y \ {0}. The following assertions are equivalent.

(1) ‖T + x′ ⊗ y‖ = 1 + ‖x′ ⊗ y‖ = 1 + ‖y‖.
(2) For every ε > 0 there is an element x ∈ S(x′, ε) such that∥∥∥T (x) +

y

‖y‖

∥∥∥ ≥ 2− 2ε.
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Proof. (1)⇒(2). By Lemma 11.4 in [1] (or [24, p. 78]) we can assume that
y ∈ SY . By hypothesis, ‖T + x′ ⊗ y‖ = 1 + ‖y‖ = 2, and then there is an
element x ∈ BX such that

2− ε ≤ ‖T (x) + 〈x, x′〉y)‖ ≤ ‖T (x)‖+ |〈x, x′〉| ≤ 1 + |〈x, x′〉|.
Note that we can assume that 〈x, x′〉 > 0; otherwise take −x instead of x.
Since for every ε > 0

2− ε ≤ ‖T (x) + 〈x, x′〉y‖ ≤ ‖T (x) + y‖+ ‖〈x, x′〉y − y‖
≤ ‖T (x) + y‖+ (1− 〈x, x′〉)‖y‖ ≤ ‖T (x) + y‖+ ε,

we obtain (2).
(2)⇒(1). Let x′ ∈ SX′ and y ∈ Y and consider the rank one map x′ ⊗ y.

Again by Lemma 11.4 in [1] we need consider only the case ‖y‖ = 1. Let
ε > 0. Then there is an x ∈ S(x′, ε) such that ‖y + T (x)‖ ≥ 2− 2ε. Thus,

2− 2ε ≤ ‖y + T (x)‖ ≤ ‖y − 〈x, x′〉y‖+ ‖〈x, x′〉y + T (x)‖
≤ (1− 〈x, x′〉)‖y‖+ ‖〈x, x′〉y + T (x)‖ ≤ ε+ ‖x′ ⊗ y + T‖.

Consequently, ‖x′ ⊗ y‖+ ‖T‖ = 2 = ‖x′ ⊗ y + T‖. �

When a subset of linear maps V ⊂ L(X,Y ) is considered, the following
generalisation of the Daugavet property makes sense.

Definition 2.2. Let X,Y be Banach spaces and let T : X → Y be a norm
one operator. The Banach space Y has the T -Daugavet property with re-
spect to V ⊂ L(X,Y ) if for every R ∈ V ,

‖T +R‖ = 1 + ‖R‖.

This definition encompasses the notion of Daugavet centre given in Defi-
nition 1.2 of [6].

Corollary 2.3. Let X and Y be Banach spaces. Let T : X → Y be an
operator, and consider a set of norm one linear forms W ⊂ X ′. Let W ·Y =
{x′ ⊗ y: x′ ∈W, y ∈ Y }. The following statements are equivalent.

(1) Y has the T -Daugavet property with respect to W · Y .
(2) For every y ∈ SY , for every x′ ∈ W and for every ε > 0 there is an

element x ∈ S(x′, ε) such that

‖T (x) + y‖ ≥ 2− 2ε.

Definition 2.4. Let T : X → Y be a continuous linear map. Let y′ ∈ Y ′. We

denote by Ty′ : X → R the linear form given by Ty′(x) := 〈x,T ′(y′)〉
‖T ′(y′)‖ whenever

T ′(y′) 6= 0. The natural set of slices defined by T is then

ST = {S(Ty′ , ε): 0 < ε < 1, y′ ∈ Y ′, T ′(y′) 6= 0}.
If R: X → Y is another operator, we use the symbol SR ≤ ST to denote
that for every slice S in SR there is a slice S1 ∈ ST such that S1 ⊂ S. We
will say in this case that R is slice continuous with respect to T .

For operators T having particular properties, slice continuity allows easy
geometric descriptions. Let T : X → Y be an operator between Banach
spaces such that T ′ is an isometry onto its range, i.e., T is a quotient map,
and let R: X → Y be an operator. The following assertions are equivalent.



THE DAUGAVET PROPERTY FOR BILINEAR MAPS 5

(1) SR ≤ ST .
(2) For every y ∈ SY , y′ ∈ SY ′ such that R′(y′) 6= 0, and every ε > 0

there is an element y′0 ∈ SY ′ such that (Ry′ ⊗ y)(S(T ′(y′0), ε)) ⊂
Bε(y).

To see this just notice that for every y′ ∈ SY ′ such that R′(y′) 6= 0 and
y ∈ SY
S(Ry′ , ε) = {x ∈ BX : 1− ε ≤ Ry′(x) ≤ 1} = {x ∈ BX : ‖Ry′(x)y − y‖ ≤ ε}.

For a general operator T the canonical example of when the relation SR ≤
ST holds is given by the case R = P ◦T , where T : X → Y and P : Y → Y are
operators. In this case, 〈R(x), y′〉 = 〈x, T ′(P ′(y′))〉, and so clearly SR ≤ ST .
So the reason is that we have the inclusion R′(Y ′) ⊂ T ′(Y ′). However, there
are examples of couples of operators T,R such that R is slice continuous
with respect to T but R 6= P ◦ T for any operator P . Let us show one of
them.

Example 2.5. Let T : C[0, 1]⊕1 R→ C[0, 1], T (f, α) = f , and R: C[0, 1]⊕1

R→ C[0, 1], R(f, α) = f +α1, where 1 stands for the constant one function
and ⊕1 denotes the direct sum with the 1-norm. Then R and T have norm
one. Since the kernel of T is not contained in the kernel of R, we do not
have R = P ◦T for any operator P . But the slice condition holds. A simple
calculation gives that for every µ in the unit sphere of C[0, 1]∗, ‖T ′(µ)‖ =
‖R′(µ)‖ = 1. Let Sr ∈ SR be the slice generated by any µ ∈ C[0, 1]∗ of
norm one and ε > 0. We claim that the slice St generated by the same µ
and ε/2 is contained in Sr. Indeed, if (f, α) is in the unit ball and 〈µ, f〉 ≥
1− ε/2, then ‖f‖ ≥ 1− ε/2 and hence |α| ≤ ε/2. Therefore, for such (f, α),
〈µ, f + α1〉 ≥ 〈µ, f〉 − |α| ≥ 1− ε, and so the inclusion St ⊂ Sr holds.

Remark 2.6. Let T,R: X → Y be a couple of operators, ‖T‖ = 1. Notice
that Proposition 2.1 gives that for every y ∈ SY and y′ ∈ Y ′ such that
R′(y′) 6= 0, the following are equivalent.

(1) ‖T +Ry′ ⊗ y‖ = 2.
(2) For every ε > 0 there is an element x ∈ S(Ry′ , ε) such that

‖T (x) + y‖ ≥ 2− 2ε.

Thus for the case R = T and assuming that T ′ is an isometry onto its
range we obtain that Y has the Daugavet property if and only if Y has the
T -Daugavet property with respect to the set {Ty′ : y′ ∈ Y ′ \ {0}} · Y . This
is a direct consequence of the well-known characterisation of the Daugavet
property (see Lemma 2.1 in [12]) and Corollary 2.3. Consequently, for any
other R, if Y has the Daugavet property and SR ≤ ST , we obtain that for
every y ∈ SY and every y′ ∈ Y ′ such that R′(y′) 6= 0,

‖T +Ry′ ⊗ y‖ = 2.

Note that something like the slice continuity requirement SR ≤ ST is
necessary for this to be true; indeed, a quotient map T : X → Y is not
necessarily a Daugavet centre, even if the spaces involved have the Daugavet
property. Take the operators T,R: L1[0, 1] ⊕1 L

1[1, 2] → L1[0, 1] given by

T ((f, g)) := f and R((f, g)) := (
∫ 2

1 g dx) · h0, (f, g) ∈ L1[0, 1] ⊕1 L
1[1, 2],
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where h0 is a norm one function in L1[0, 1]. Clearly, ‖T‖ = ‖R‖ = 1, but
‖T +R‖ ≤ 1.

Theorem 2.7. Let Y be a Banach space with the Daugavet property. Let
T : X → Y be an operator such that T ′ is an isometry onto its range and R:
X → Y a norm one operator. Then:

(1) If for every ε > 0 there is a slice S0 ∈ ST and an element y ∈ SY
such that R(S0) ⊂ Bε(y), then

‖T +R‖ = 2.

(2) If SR ≤ ST and R is weakly compact, then

‖T +R‖ = 2.

Proof. (1) Take ε > 0. Then there are S0 = S(Ty′0 , δ) ∈ ST and y ∈ SY such

that for every x ∈ S0, ‖R(x) − y‖ ≤ ε. We can assume that δ ≤ ε. Since
Y has the Daugavet property, Y has the T -Daugavet property with respect
to the set {Ty′ : y′ ∈ Y ′ \ {0}} · Y (see Remark 2.6 above). Therefore, by
Corollary 2.3 we find an element x ∈ S0 such that

‖T +R‖ ≥ ‖T (x) + y‖ − ‖y −R(x)‖ ≥ 2− ε− 2δ ≥ 2− 3ε.

Since this holds for every ε > 0, the proof of (1) is complete.
The proof of (2) follows the same argument as the one for operators in

spaces with the Daugavet property (see [12, Th. 2.3]), so we only sketch it.

Assume that ‖R‖ = 1. Since by hypothesis K = R(BX) is a convex weakly
compact set, it is the closed convex hull of its strongly exposed points. Since
this set is convex and ‖R‖ = 1, there is a strongly exposed point y0 ∈ K
such that ‖y0‖ ≤ 1 and ‖y0‖ > 1 − ε. Take a functional y′0 that strongly
exposes y0 and satisfies 〈y0, y

′
0〉 = maxy∈K〈y, y′0〉 = 1. It can be proved by

contradiction that there is a slice S ∈ SR such that R(S) is contained in the
ball Bε(y0) (see the proof of [12, Th. 2.3]). Since SR ≤ ST , there is also a
slice S0 ∈ ST such that R(S0) ⊂ R(S) ⊂ Bε(y0). Then part (1) gives the
result. �

The example in Remark 2.6 makes it clear that some condition like slice
continuity is necessary for (2) in Theorem 2.7 to be true. The following
variation of this example gives a genuine weakly compact operator that is
not of finite rank which does not satisfy the Daugavet equation. Take T
defined as in Remark 2.6 and R: L1[0, 1] ⊕1 L

2[1, 2] → L1[0, 1] given by
R((f, g)) := g(x− 1). This operator is weakly compact and ‖R‖ = ‖T‖ = 1,
but again the norm of the sum of both operators is less than 2.

Remark 2.8. Notice that the condition in (1) on the existence of a slice
S ∈ ST such that R(S) ⊂ Bε(y) can be substituted by the existence of a
slice S ∈ ST and a δ > 0 such that R(S + δBX) ⊂ Bε(y). The argument
given in the proof based on this fact makes it also clear that the relation
ST ≤ SR can be substituted by the following weaker one and the result is
still true: For every slice S ∈ SR and δ > 0 there is a slice S1 ∈ ST such
that

S1 ⊂ S + δBX .
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3. Bilinear maps and the Daugavet property

In this section we analyse the Daugavet property for bilinear maps de-
fined on Banach spaces. Our main idea is to provide a framework for the
understanding of several new Daugavet type properties and prove some gen-
eral versions of the main theorems that hold for the case of the Daugavet
property. We centre our attention on the extension of the Daugavet equa-
tion for weakly compact bilinear maps. Let X,Y and Z be Banach spaces.
Consider a norm one continuous bilinear map B: X ×Y → Z. Then we can
consider the linearisation TB: X⊗̂πY → Z, where X⊗̂πY is the projective
tensor product with the projective norm π (see for instance [9, Sec. 3.2] or
[19, Th. 2.9]). This linear operator will provide meaningful results for bilin-
ear maps by applying the ones of Section 2. However, a genuinely geometric
setting for bilinear operators – slices, isometric equations, . . . – will also
be defined in this section in order to provide the specific links between the
(bilinear) slice continuity and the Daugavet equation.

We will consider bilinear operators B0: X × Y → Z satisfying that
B0(UX × UY ) = UZ . Obviously, such a map has always convex range,
i.e., B0(UX × UY ) is a convex set. We will say that a map satisfying these
conditions is a norming bilinear map. If B0 is such a bilinear operator, we
will say that a Banach space Z has the B0-Daugavet property with respect
to the class of bilinear maps V ⊂ B(X × Y,Z) if

‖B0 +B‖ = 1 + ‖B‖
for all B ∈ V . Notice that Z has the B0-Daugavet property with respect to
V if and only if it has the TB0-Daugavet property with respect to the set
{TB: X⊗̂πY → Z: B ∈ V }. Let us consider some examples.

Example 3.1. (1) Take a Banach space X and consider the bilinear form
B0: X ×X ′ → R given by B0(x, x′) = 〈x, x′〉, x ∈ X, x′ ∈ X ′. Consider the
set

V = {BT : X ×X ′ → R: BT (x, x′) = 〈T (x), x′〉,
T : X → X is weakly compact}.

Then notice that

sup
x∈BX ,x′∈BX′

|B0(x, x′) +BT (x, x′)| = sup
x∈BX ,x′∈BX′

|〈x+ T (x), x′〉| = ‖Id + T‖

and ‖B0‖+‖BT ‖ = 1+‖T‖. Therefore R has the B0-Daugavet property with
respect to V if and only if X has the Daugavet property (see Theorem 2.3
in [12]).

(2) Take a measure space (Ω,Σ, µ) and a couple of Banach function spaces
X(µ) = X and Z(µ) = Z over µ satisfying that the space of multiplication
operators XZ is a saturated Banach function space over µ and X is Z-
perfect, i.e., (XZ)Z = X, and UX ·UXZ = UZ (here · represents the pointwise
product of functions). Consider the bilinear map B0: X×XZ → Z given by
B0(f, g) = f · g, f ∈ X, g ∈ XZ (see [7] for definitions and results regarding
multiplication operators on Banach function spaces). Consider the set

V = {BS : X ×XZ → Z: BS(f, g) = S(f · g),

S: Z → Z is weakly compact}.
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Then

sup
f∈BX , g∈BXZ

‖B0(f, g)+BS(f, g)‖Z = sup
f∈BX , g∈BXZ

‖f ·g+S(f ·g)‖Z = ‖Id+S‖

and ‖B0‖ + ‖BS‖ = 1 + ‖S‖. Therefore Z has the B0-Daugavet property
with respect to V if and only if Z has the Daugavet property (see again
Theorem 2.3 in [12]).

(3) Take 1 < p < ∞, its conjugate index p′, a measurable space (Ω,Σ),
a Banach space Z and a countably additive vector measure m: Σ → Z.
Consider the corresponding spaces of m-integrable functions Lp(m) and

Lp
′
(m), and the bilinear map B0: Lp(m) × Lp′(m) → Z given by the com-

position of the multiplication and the integration map Im: L1(m)→ Z, i.e.,
B0(f, g) =

∫
fg dm. This map is well defined and continuous (see [16, Chap-

ter 3] for the main definitions and results on the spaces Lp(m)). Assume
also that B0(ULp(m) × ULp′ (m)) = Im(ULp(m) · ULp′ (m)) coincides with the

open unit ball of Z. Take the set

U =
{
BR: Lp(m)× Lp′(m)→ Z:

BR(f, g) := R(Im(f · g)), R: Z → Z rank one
}
.

Since

‖B0 +BR‖ = sup
f∈BLp(m), g∈BLp′ (m)

∥∥∥∫
Ω
fg dm+R

(∫
Ω
fg dm

)∥∥∥
Z

= ‖Id +R‖

and ‖B0‖+ ‖BR‖ = 1 + ‖R‖, we obtain again that Z has the B0-Daugavet
property with respect to U if and only if Z has the Daugavet property.

Remark 3.2. More examples can be given by considering the following bi-
linear maps:

(i) BC(K): C(K)× C(K)→ C(K), BC(K)(f, g) = f · g.

(ii) B∗: L
1(R) × L1(R) → L1(R), B∗(f, g) = f ∗ g, where ∗ is the con-

volution product. In this case we have B∗(UL1(R), UL1(R)) = UL1(R) as a
consequence of Cohen’s Factorisation Theorem (see Corollary 32.30 in [10]).

(iii) For a σ-finite µ, BL∞ : L∞(µ) × L1(µ) → R given by BL∞(f, g) =∫
fg dµ.

Bilinear operators for which the Daugavet equation will be shown to hold
– together with norming bilinear maps – are weakly compact operators with
convex range. Although the usual way of finding such a map is to compose
a bilinear map with convex range and a weakly compact linear one, other
examples can be given. Let us show one of them that is in fact not norming.

Example 3.3. Consider a constant 1 p-convex reflexive Banach function
space X. In particular, X must be order continuous. Take f ′0 ∈ SX′ and
f0 ∈ SX and define the bilinear map B: X×X[p/p′] → X[p] given by B(f, g) =
〈f, f ′0〉f0 · g. Note that ‖B‖ = 1. Let us show that the (norm) closure

K = B(BX ×BX[p/p′]) is a convex weakly compact set.

Let z1, z2 ∈ B(BX×BX[p/p′]). Let f1, g1, f2 and g2 be such thatB(f1, g1) =

z1 and B(f2, g2) = z2. Take 0 < α < 1 and consider the element αz1 + (1−
α)z2. Let us prove that it belongs to B(BX × BX[p/p′]). Notice that since

−1 ≤ 〈f, f ′0〉 ≤ 1 for every f ∈ BX , g3 = α〈f1, f
′
0〉g1 + (1 − α)〈f2, f

′
0〉g2
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belongs to BX[p/p′] . Take now an element f3 ∈ BX such that 〈f3, f
′
0〉 = 1 (it

exists since X is reflexive), and note that

B(f3, g3) = αz1 + (1− α)z2.

So, K is convex. Notice that B(BX ×BX[p/p′]) is also relatively weakly

compact; it is enough to observe that the set is uniformly µ-absolutely con-
tinuous (see for instance Remark 2.38 in [16] and the references therein),
i.e., that

lim
µ(A)→0

sup
z∈K
‖zχA‖ = 0.

But this is a direct consequence of the fact that X is order continuous (see
for instance [14, Th. 1.c.5 and Prop. 1.a.8]) and the Hölder inequality for the
norms of p-th power spaces (adapt [16, Lemma 2.21] or [14, Prop. 1.d.2(i)]).
For every z = 〈f, f ′0〉f0 · g ∈ B(BX , BX[p/p′]) and A ∈ Σ,

‖zχA‖X[p]
= ‖〈f, f ′0〉f0 · g‖X[p]

≤ |〈f, f ′0〉|‖f0χA‖X · ‖g‖X[p/p′] .

Since X is order continuous, ‖f0χA‖X → 0 when µ(A)→ 0, which gives the
result.

Let us now start to adapt the results of the previous section. In order to
do so, let us define the natural set of slices associated to a norm one bilinear
form b ∈ B(X × Y,R). Let 0 < ε < 1. Following the notation given for the
linear case, we define S(b, ε) by

S(b, ε) := {(x, y): x ∈ BX , y ∈ BY , b(x, y) ≥ 1− ε}.
The following result shows the relation between slices defined by a bilinear
form and the ones defined by the linearisation of this map.

Lemma 3.4. Let b ∈ B(X × Y,R) be a norm one bilinear form (i.e., Tb ∈
(X⊗̂πY )′ with norm one) and ε > 0. Then:

(1) There is an elementary tensor x ⊗ y such that ‖x‖ = ‖y‖ = 1 and
x⊗ y ∈ S(Tb, ε).

(2) co{x⊗ y: (x, y) ∈ S(b, ε)} ⊂ S(Tb, ε).

(3) S(Tb, ε
2) ⊂ co{x⊗ y: (x, y) ∈ S(b, ε)}+ 4εBX⊗̂πY .

Proof. (1) Take a norm one element t ∈ S(Tb, ε/2). Then there is an element
t0 =

∑n
i=1 αixi ⊗ yi ∈ X ⊗ Y such that ‖xi‖ = ‖yi‖ = 1, αi > 0 for all

i = 1, . . . , n,
∑n

i=1 αi = 1 and π(t− t0) < ε/2. Then

〈t0, Tb〉 = 〈t− t0, Tb〉+ 〈t, Tb〉 ≥ 〈t, Tb〉 − |〈t− t0, Tb〉| > 1− ε

2
− ε

2
,

and so t0 ∈ S(Tb, ε). Assume (by changing the signs of some of the xi if
necessary) that b(xi, yi) > 0 for all i. Then

n∑
i=1

αib(xi, yi) ≥
n∑
i=1

αi(1− ε),

and so there is at least one index i0 such that b(xi0 , yi0) ≥ 1 − ε. Conse-
quently, xi0 ⊗ yi0 ∈ S(Tb, ε).

(2) is a direct consequence of the fact that S(Tb, ε) is norm closed in the
projective tensor product.
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(3) Let us show now that S(Tb, ε
2) ⊂ co{x⊗ y: (x, y) ∈ S(b, ε)}+4εBX⊗̂πY .

Let u ∈ S(Tb, ε
2). Find v such that ‖v‖ < 1, Tb(v) ≥ 1−ε2, and ‖v−u‖ ≤ ε.

Write v =
∑∞

i=1 αixi ⊗ yi with all ‖xi‖ = ‖yi‖ = 1, αi ≥ 0 and α :=∑∞
i=1 αi < 1. Note that α ≥ 1− ε2. Now consider

I := {i ∈ N: b(xi, yi) ≥ 1− ε} = {i ∈ N: (xi, yi) ∈ S(b, ε)},
J := {i ∈ N: b(xi, yi) < 1− ε}.

Let αI :=
∑

i∈I αi and αJ :=
∑

i∈J αi. We have

1− ε2 ≤
∞∑
i=1

αib(xi, yi) ≤ αI + αJ(1− ε) < 1− εαJ

and hence αJ < ε. Let w =
∑

I
αi
αI
xi ⊗ yi ∈ co{x⊗ y: (x, y) ∈ S(b, ε)}; we

then have (note that v = αIw +
∑

J αixi ⊗ yi)
‖v − w‖ ≤ |αI − 1|‖w‖+ αJ .

Furthermore 0 ≤ 1− αI = αJ + 1− α ≤ ε+ ε2; hence

‖u− w‖ ≤ ‖u− v‖+ ‖v − w‖ ≤ ε+ ((ε+ ε2) + ε2) ≤ 4ε,

as claimed. �

If z ∈ Z, we define bz: X × Y → Z as the (rank one) bilinear map
given by bz(x, y) = b(x, y)z, x ∈ X, y ∈ Y . Let B: X × Y → Z be a
continuous bilinear map. In what follows we need to introduce some elements
related to duality and adjoint bilinear operators. Following Ramanujan and
Schock in [17], we consider the adjoint operator B×: Z ′ → B(X,Y ) given by
B×(z′)(x, y) = 〈B(x, y), z′〉 (this definition does not coincide with the one
given originally by Arens in [2], although the setting is of course the same).
B× is a linear and continuous operator, and ‖B‖ = ‖B×‖.

Definition 3.5. Let B: X × Y → Z be a continuous bilinear map. Let
z′ ∈ SZ′ and consider the adjoint bilinear form 〈B, z′〉: X × Y → R given
by 〈B, z′〉(x, y) = B×(z′)(x, y). We denote by Bz′ : X × Y → R the bilinear

form given by Bz′(x, y) = 〈B(x,y),z′〉
‖〈B,z′〉‖ whenever ‖〈B, z′〉‖ 6= 0 and by 〈B,Z ′〉

the set of all these bilinear forms. The natural set of slices defined by B is
then

SB = {S(Bz′ , ε): 0 < ε < 1, ‖Bz′‖ 6= 0}.
If B1 is another (continuous) bilinear map, B1: X × Y → Z, we use the
symbol SB ≤ SB1 to denote that for every slice S in SB there is a slice
S1 ∈ SB1 such that S1 ⊂ S. We can also consider the relation STB ≤ SB1

to be defined in the same way: for every S ∈ STB there is a slice S1 ∈ SB1

such that the set {x⊗ y: (x, y) ∈ S1} is included in S. Lemma 3.4 gives an
idea of how this relation works.

As in the linear case, the canonical example of the relation SB ≤ SB1

between sets of slices associated to two bilinear maps is given by bilinear
maps B that are defined as a composition T ◦ B1, where B1: X × Y → Z
is a continuous bilinear map and T : Z → Z is a continuous operator. In
this case, 〈B(x, y), z′〉 = 〈B1(x, y), T ′(z′)〉, and so clearly SB ≤ SB1 . Let us
show some examples.
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Example 3.6. Let (Ω,Σ, µ) be a finite measure space and consider a re-
arrangement invariant (r.i.) constant 1 p-convex Banach function space X(µ)
(see [14, p. 28 and Sections 1.d, 2.e] or [16, Ch. 2 and p. 202]). In this case,
(X(µ)[p])

′ is also r.i. Take a measurable bijection Φ: Ω → Ω such that
µ(Φ(A)) = µ(A) for every A ∈ Σ. Then it is possible to define the isometry
Tr: X[r] → X[r], 0 ≤ r ≤ p, by Tr(f) = f ◦ Φ.

Define the bilinear map B: X ×X[p/p′] → X[p] given by B(f, g) = T1(f) ·
Tp/p′(g). Let us show the relation between the slices defined by B0: X ×
X[p/p′] → X[p], B0(f, g) = fg, and the slices defined by B. Assume also that
X is order continuous. Then X[p] is also order continuous and the dual of the
space can be identified with the Köthe dual, which is also r.i., and so every
continuous linear form is an integral. Note that in this case the property
SB ≤ SB0 holds, since for every couple of functions f ∈ X and g ∈ X[p/p′],
B(f, g) = T1(f) · Tp/p′(g) = (f ◦ Φ) · (g ◦ Φ) = (f · g) ◦ Φ. Consequently,
every element z′ ∈ S(X[p])

′ satisfies that for every pair of functions f and g

as above,

〈B0(f, g), z′〉 =

∫
Ω
fgz′ dµ =

∫
Ω

((fg) ◦ Φ) · (z′ ◦ Φ) dµ

=

∫
Ω
B(f, g) · (z′ ◦ Φ) dµ = 〈B(f, g), z′ ◦ Φ〉.

Therefore, there is a one-to-one correspondence between SB0 and SB given
by identifying S((B0)z′ , ε) and S(Bz′◦Φ, ε), which implies that SB0 = SB.

Fix a norming bilinear map B0: X × Y → Z and consider a norm one
bilinear map B: X × Y → Z. Let us provide now geometric and topological
properties for B that imply that the Daugavet equation is satisfied for B0

and B, i.e., ‖B0 + B‖ = 2. These properties will be proved as applications
of the result of the previous section.

Corollary 3.7. Let Z be a Banach space with the Daugavet property. Let
B0: X×Y → Z be a norming bilinear map and B: X×Y → Z a continuous
bilinear map. Then:

(1) If for every ε > 0 there is a slice S0 ∈ SB0 and an element z ∈ SZ
such that B(S0) ⊂ Bε(z), then

‖B0 +B‖ = 1 + ‖B‖.

(2) If STB ≤ SB0 and TB is weakly compact (equivalently, B(BX ×BY )
is a relatively weakly compact set), then

‖B0 +B‖ = 1 + ‖B‖.

Proof. (1) is just a consequence of Theorem 2.7(1): let us take ε/5 and apply
this theorem to TB0 and TB. By hypothesis there is a slice S0 = S(b, δ) ∈ SB0

such that B(S0) ⊂ Bε/5(z). We can assume without loss of generality that
δ ≤ ε and ‖B‖ ≤ 1. Then by Lemma 3.4(3),

TB(S(Tb, δ
2)) ⊂ TB(co(S0)) + 4

5εTB(BX⊗̂πY )

⊂ co(B(S0)) + 4
5ε‖TB‖BZ ⊂ Bε/5(z) + 4

5εBZ

⊂ Bε(z),
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and (1) is proved. For (2), apply Theorem 2.7(2) and Remark 2.8.
�

Example 3.8. It is well known that for a purely non-atomic measure µ and
a Banach space E the space of Bochner integrable functions L1(µ,E) has the
Daugavet property (see [12]). The next simple application of Corollary 3.7
provides a similar result for the Pettis norm ‖ . ‖P , i.e., for operators T from
(L1(µ,E), ‖ . ‖L1(µ,E)) to the normed space (L1(µ,E), ‖ . ‖P ). Consider the

bilinear map B0: L1(µ,E)× E′ → L1(µ) given by

B0(f, x′)(w) = 〈f(w), x′〉, w ∈ Ω.

Take an operator T : L1(µ,E) → L1(µ,E) and define the bilinear map BT :
L1(µ,E)× E′ → L1(µ) given by

BT (f, x′)(w) = 〈(T (f))(w), x′〉, w ∈ Ω.

Assume that BT is weakly compact and has convex range and suppose that
SBT ≤ SB0 (or that TBT is weakly compact and STBT ≤ STB0

). Then by

Corollary 3.7(3) (or (4)),

sup
f∈BL1(µ,E)

‖f + T (f)‖P = sup
f∈BL1(µ,E), x

′∈BE′
‖B0(f, x′) +BT (f, x′)‖L1(µ)

= sup
f∈BL1(µ,E), x

′∈BE′
‖B0(f, x′)‖

+ sup
f∈BL1(µ,E), x

′∈BE′
‖BT (f, x′)‖L1(µ)

= sup
f∈BL1(µ,E)

‖f‖P + sup
f∈BL1(µ,E)

‖T (f)‖P .

Corollary 3.7 suggests that the natural examples of bilinear maps that
satisfy the Daugavet equation with respect to B0 are the ones defined as
B = T ◦B0, where T : Z → Z is a weakly compact operator. Corollary 3.10
generalises in a sense the idea of (2) and (3) in Example 3.1. Notice, however,
that there are other simple bilinear maps that fit into the Daugavet setting,
as the following example shows.

Example 3.9. Let us show an example of a bilinear map B: X × Y → Z
such that B0 and B satisfy the Daugavet equation but there is no operator T :
Z → Z such that B = T ◦B0. Let (Ω,Σ, µ), X(µ) and Φ be as in Example 3.6
and consider the isometry T1: X → X defined there. Assume also that
µ(Ω) < ∞ and the constant 1 function satisfies ‖χΩ‖X = 1. Consider the
bilinear map B: X×X[p/p′] → X[p] given by B(f, g) = T1(f) · g. Then, since
T1(χΩ) = χΩ,

2 ≥ ‖B0 +B‖ = sup
f∈BX , g∈BX[p/p′]

‖fg + T1(f)g‖X[p]

= sup
f∈BX , g∈BX[p/p′]

‖(f + T1(f))g‖X[p]
= sup

f∈BX
‖f + T1(f)‖X

≥ ‖χΩ + χΩ‖ = 2.

Notice that in general a bilinear map defined in this way cannot be written
as T ◦B0 for any operator T . For instance, suppose that there is a set B ∈ Σ
such that 0 < µ(B) and B ∩ Φ(B) = ∅ and consider a couple of non-trivial
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functions f1 and f2 in X with support in Φ(B) and B, respectively, and
such that ‖(f1 ◦ Φ) · f2‖ > 0. Then B0(f1, f2) = 0, but B(f1, f2) 6= 0, so
there is no operator T : X[p] → X[p] such that B = T ◦B0.

Corollary 3.10. Let B0: X ×Y → Z be a norming bilinear map. Consider
the subsets R, C and WC of L(Z,Z) of rank one, compact and weakly
compact operators, respectively, and the sets R ◦ B0 = {B = T ◦ B0: X ×
Y → Z: T ∈ R}, C ◦ B0 = {B = T ◦ B0: X × Y → Z: T ∈ C} and
WC ◦ B0 = {B = T ◦ B0: X × Y → Z: T ∈ WC}. Then the following are
equivalent.

(1) Z has the Daugavet property.
(2) Z has the B0-Daugavet property with respect to R ◦B0.
(3) Z has the B0-Daugavet property with respect to C ◦B0.
(4) Z has the B0-Daugavet property with respect to WC ◦B0.
(5) For every norm one operator T ∈ R, every z ∈ Z and every ε > 0

there is an element (x, y) ∈ S(T ◦B0, ε) such that

‖z +B0(x, y)‖ ≥ 2− ε.

Proof. The equivalence between (1) and (2) is a direct consequence of the
following equalities. For every rank one operator T : Z → Z,

‖Id + T‖ = sup
z∈BZ

‖z + T (z)‖ = sup
x∈BX ,y∈BY

‖B0(x, y) + T (B0(x, y))‖.

Since the norm closure of the convex hull B(BX × BY ) is a weakly com-
pact set, (2) implies (4) as a consequence of Corollary 3.7(2). Obviously (4)
implies (2), and so the equivalence of (2) and (3) is also clear. The equiva-
lence of (2) and (5) holds as a direct consequence of Corollary 2.3 and the
arguments used above. �

Remark 3.11. Conditions under which a bilinear map B: X × Y → Z is
compact or weakly compact (i.e., the norm closure B(BX ×BY ) is compact
or weakly compact, respectively) have been studied in several papers; see
[17, 18] for compactness and [3, 22] for weak compactness. The reader can
find in these papers some factorisation theorems and other characterisations
of these properties, also related with the notion of Arens regularity of a
bilinear map.

4. Applications. p-convexifications of the Daugavet property
and bilinear maps

Different p-convexifications of the Daugavet property have been intro-
duced in [20, 21]. In this section we show that in a sense they can be
considered as particular cases of a Daugavet property for bilinear maps. We
centre our attention on the case of Banach function spaces such that their p-
th powers have the Daugavet property that have been characterised in [20].
However, more examples of applications will be given as well. Throughout
this section µ is supposed to be finite.

We explain now two suitable examples of p-convexification of the Dau-
gavet property. Let us start with one regarding p-concavity in Banach func-
tion spaces.
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Example 4.1. Let 1 ≤ p < ∞. Consider a constant 1 p-convex Banach
function space X, Y = X[p/p′]⊕∞X[p/p′] (the direct product with the maxi-
mum norm), Z = X[p], and the bilinear map B0: X × (X[p/p′]×∞X[p/p′])→
X[p] given by B0(f, (g, h)) = f · P1(g, h) = fg. Take an operator T : X → X
and consider the bilinear map B: X × (X[p/p′] ⊕∞ X[p/p′]) → X[p] given by
B(f, (g, h)) = T (f) · P2(g, h) = fh (here P1 and P2 denote the two natural
projections in the product space X[p/p′] ⊕∞ X[p/p′]). A direct calculation
shows that in this case the Daugavet equation for the pair given by B0 and
B is

‖B0 +B‖ = 1 + ‖T‖,
since ‖B‖ = ‖T‖. Assume that ‖T‖ = 1. Then ‖T (f)‖ ≤ 1 for every

f ∈ BX , and so, taking g = fp/p
′ ∈ BX[p/p′] and h = T (f)p/p

′ ∈ BX[p/p′] for

each f ∈ BX , we obtain

2 ≥ ‖B0 +B‖ = sup
f∈BX , g∈BX[p/p′]

, h∈BX[p/p′]

‖fg + T (f) · h‖X[p]

≥ sup
f∈BX

‖|f |p + |T (f)|p‖X[p]

≥ sup
f∈BX

‖(|f |p + |T (f)|p)1/p‖pX .

Thus, if X is also a constant 1 p-concave space (i.e., X is an Lp-space) we
get

sup
f∈BX

‖(|f |p + |T (f)|p)1/p‖pX ≥ sup
f∈BX

(‖f‖pX + ‖T (f)‖pX) = 2.

Therefore, in this case the Daugavet equation holds for B0 and for every
bilinear map B defined by an operator T : X → X in the way explained
above.

The following construction shows another example of a Daugavet type
property for a bilinear map that is in fact a p-convex version of the Daugavet
property, in the sense that is studied in [21].

Example 4.2. Let (Ω,Σ, µ) be a measure space and consider an r.i. con-
stant 1 p-convex Banach function space X(µ). Consider as in Example 3.6
the bilinear map B0 given by the product and a measurable bijection Φ:
Ω → Ω satisfying that µ(Φ(A)) = µ(A) for every A ∈ Σ and the isometries
Tr: X[r] → X[r], 0 < r ≤ p.

Take the bilinear map B: X ×X[p/p′] → X[p] given by B(f, g) = T1(f) ·
Tp/p′(g). Notice that ‖B‖ = 1. Then

2 ≥ ‖B0 +B‖ ≥ sup
f∈BX , g∈BX[p/p′]

‖B0(f, g) +B(f, g)‖X[p]

≥ sup
f∈BX

‖f · fp/p′ + T1(f) · Tp/p′(fp/p
′
)‖X[p]

= sup
x∈BX

‖fp + T1(f)p‖X[p]

= sup
f∈BX

‖|fp + T1(f)p|1/p‖pX .

Now, if Φ satisfies that there is a set A ∈ Σ such that µ(A ∩Φ(A)) < µ(A),
there is a norm one function f0 such that f0 and T1(f0) are disjoint and
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‖T1(f0)‖ = 1. Assume that X is also p-concave (constant 1), i.e., X is an
Lp-space. Then

sup
f∈BX

‖|fp + T1(f)p|1/p‖pX ≥ ‖f0‖pX + ‖T1(f0)‖pX = 2,

and thus the so called p-Daugavet equation is satisfied for T1 (see Defini-
tion 1.1 in [21]), and B and B0 satisfy the Daugavet equation.

Let 1 ≤ p <∞. In what follows we study the p-convex spaces whose p-th
powers satisfy the Daugavet property by giving some general results in the
setting of the examples presented above. We analyse the case of X = X(µ),
a constant 1 p-convex Banach function space, Y = X(µ)[p/p′], Z = X(µ)[p],
and B0: X ×X[p/p′] → X[p] given by B0(f, g) = f · g. We assume that X[p]

has the Daugavet property. The main example we have in mind is given by
X = Lp[0, 1], Y = X[p/p′] = Lp

′
[0, 1] and Z = X[p] = L1[0, 1]. Recall that µ

is assumed to be finite.

Definition 4.3. Let X(µ), Y (µ) and Z(µ) be three Banach function spaces
over µ. We say that a continuous bilinear map B: X(µ)×Y (µ)→ Z(µ) satis-
fying that for every A,C ∈ Σ, B(χA, χC) = B(χA∩C , χA∪C), is a symmetric
bilinear map.

Proposition 4.4. Let X(µ) be an order continuous p-convex Banach func-
tion space with p-convexity constant equal to 1. Then the following assertions
are equivalent.

(1) For every rank one operator T : X(µ)[p] → X(µ)[p],

sup
f∈BX

‖|fp + T (fp)|1/p‖pX = 1 + ‖T‖.

(2) For every rank one operator T : X(µ)[p] → X(µ)[p],

‖B0 + T ◦B0‖ = 1 + ‖T‖.
(3) For every z ∈ SX[p]

, for every x′ ∈ S(X[p])
′ and for every ε > 0 there

is an element (f, g) ∈ S((B0)x′ , ε) such that

‖z +B0(f, g)‖X[p]
≥ 2− 2ε.

(4) Each weakly compact symmetric bilinear map B: X(µ) × X[p/p′] →
X[p] satisfies the equation

‖B0 +B‖ = 1 + ‖B‖.
(5) X[p] has the Daugavet property.

Proof. For the equivalence of (1) and (2), note that the constant 1 p-convexity
of X implies that BX ·BX[p/p′] = BX[p]

is the unit ball of the Banach function

space X[p]; so, using also Remark 1.1 the following inequalities are obtained:

sup
f∈BX

‖|fp + T (fp)|1/p‖pX ≤ sup
f∈BX , g∈BX[p/p′]

‖fg + T (fg)‖X

≤ sup
h∈BX[p]

‖h+ T (h)‖X[p]

≤ sup
f∈BX

‖|fp + T (fp)|1/p‖pX ,
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and then both assertions are seen to be equivalent. The equivalence of (2)
and (3) is obtained by applying Corollary 2.3 to the setting of bilinear maps.

Taking into account that the map i[p]: X → X[p] given by i[p](f) = fp is a

bijection satisfying ‖i[p](f)‖X[p]
= ‖f‖pX for every f ∈ X, and the definition

of the norm ‖ . ‖X[p]
, the equivalence of (1) and (5) is also clear using the

well-known geometric characterisation of the Daugavet property in terms of
slices (see for instance Lemma 2.2 in [12]).

Thus, it only remains to prove the equivalence of (2) and (4). Let us show
first the following Claim: Let X be a p-convex (constant 1) Banach function
space such that the simple functions are dense and let B: X(µ)×X(µ)[p/p′] →
X(µ)[p] be a continuous bilinear map. Then B is symmetric if and only if
there is an operator T : X[p] → X[p] such that B = T ◦B0.

In order to prove this, note that by hypothesis the set S(µ) of simple
functions is dense in X(µ) and so for every 0 ≤ r ≤ p it is also dense
in X(µ)[r]; this can be shown by a direct computation just considering the
definition of the norm in ‖ . ‖X[r]

and the fact that if X is constant 1 p-convex

then it is constant 1 r-convex for all such r, see for instance [14, Prop. 1.b.5]
or [16, Prop. 2.54]. So this holds for r = p/p′. If B is symmetric, then
for every couple of simple functions f =

∑n
i=1 αiχAi and g =

∑m
j=1 βjχBj ,

where {Ai}ni=1 and {Bi}mj=1 are sequences of pairwise disjoint measurable
sets,

B(f, g) =

n∑
i=1

m∑
j=1

αiβjB(χAi , χBj )

=

m∑
j=1

n∑
i=1

αiβjB(χAi∩Bj , χAi∪Bj )

=
m∑
j=1

n∑
i=1

βjαiB(χBj , χAi) = B(g, f).

Therefore, because of the continuity of B and the order continuity of the
spaces, B(f, g) = B(g, f) for every couple of simple functions f, g ∈ X ∩
X[p/p′]. Define now the map T : X[p] → X[p] by T (h) = B(f, g) for every
function h = fg, first for products of simple functions and then by density
for the rest of the elements of X[p] (note that the norm closure of the set
(S(µ)∩BX) · (S(µ)∩BX[p/p′]) coincides with BX[p]

). It can easily be proved

that T is well defined since B is symmetric. For if f1, g1, f2, g2 are simple
functions with f1g1 = f2g2, then B(f1, g1) = B(f2, g2), and by continuity
of B, B(f, g) = B(g, f) for every couple f ∈ X and g ∈ X[p/p′]. Further,
T is continuous also by the continuity of B and Remark 1.1. Consequently,
B = T ◦B0 and the claim is proved.

Thus, (2) is equivalent to (4) as a consequence of Corollary 3.10, since
the operator T constructed in the Claim is weakly compact if and only if B
is weakly compact. �
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