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Abstract. We assign two parameters to an M -ideal J in a Ba-
nach space X, called the lower and upper grade, which are defined in
terms of the size of balls contained in the set of best approximants
from J . These quantities serve to measure how far J resembles an
M -summand, and they enter into geometric descriptions in various
ways. For instance they allow estimates of the interior of the metric
complement of J and of lower bounds for Lipschitz projections onto
M -ideals.

1. Introduction

In this paper we consider the notion of a grade of an M -ideal which serves
to distinguish between M -ideals and M -summands in a quantitative way.
Recall that a subspace J of a Banach space X is called an M -summand
if J is the range of an M -projection, i.e., a linear projection Q : X → X
satisfying

‖x‖ = max{‖Qx‖, ‖x−Qx‖} ∀x ∈ X.

J is an M -ideal if J⊥ := {x∗ ∈ X∗ | x∗|J = 0} is the range of an L-
projection, i.e., a linear projection P : X∗ → X∗ satisfying

‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖ ∀x∗ ∈ X∗.

The kernel of this projection can be identified with J∗ so that J∗ is isometric
with a subspace of X∗. More precisely, the ‘orthogonal’ complement of J⊥

is

kerP = J# := {x∗ ∈ X∗ | ‖x∗‖ = ‖x∗|J‖}. (1.1)

Clearly, M -summands are M -ideals, but the converse does not hold; M -
ideals which are not M -summands will be termed proper. For example, in
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X = C(K), K a compact Hausdorff space, the M -ideals are precisely the
subspaces

JD = {f ∈ C(K) | f |D = 0}

for some closed subset D ⊂ K, and JD is an M -summand if and only if D is
clopen (i.e., closed and open). A detailed exposition of M -ideal theory can
be found in [3].

In order to distinguish between M -ideals and M -summands, we attach a
number g ∈ [0, 1] to an M -ideal J ⊂ X. Actually, we propose a ‘lower grade’
g∗ and an ‘upper grade’ g∗ for that purpose, with g∗ = 0 characterising M -
summands. We present here, in a coherent form, results related to these
notions, some of which can also be found in [3]. (In fact, we take the chance
to correct an invalid statement from [3, p. 54], cf. (2.2) below.) In addition,
we discuss pertinent examples.

We use standard notation such as BX for the closed unit ball of X, exC
for the set of extreme points of C and L(X,Y ) (resp. K(X,Y )) for the space
of bounded (resp. compact) linear operators from X into Y . The symbol
BX(x, r) denotes the closed ball in X with centre x and radius r.

2. The lower grade

Let us first recall some notions from approximation theory. A subspace J
of a Banach space X is called proximinal if

∀x ∈ X ∃y ∈ J ‖x− y‖ = d(x, J) := inf{‖x− ξ‖ | ξ ∈ J}.

The set of all such y is called the set of best approximants and denoted by
PJ(x). Thus J is proximinal if and only if PJ(x) 6= ∅ for all x ∈ X. The
set-valued map PJ is called the metric projection. The metric complement
Jθ is defined as

Jθ = {x ∈ X | ‖x‖ = d(x, J)} = {x ∈ X | 0 ∈ PJ(x)}.

It is a basic fact in M -ideal theory that M -ideals are proximinal [3, Propo-
sition II.1.1].

The following definition comes from [2].

Definition 2.1 A closed convex bounded subset B of a Banach space Y is
called a pseudoball of radius r if its diameter is 2r > 0 and if for each finite
collection y1, . . . , yn of points with ‖yi‖ < r there is y ∈ B such that

y + yi ∈ B for i = 1, . . . , n.
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If ρ = sup{s ≥ 0 | B contains a ball of radius s}, then the grade of B is
defined to be

g(B) = 1− ρ

r
.

A pseudoball which is not a ball will be called proper. Singletons are con-
sidered as pseudoballs with radius 0 and grade 0.

Equivalently B is a pseudoball of radius r > 0 if and only if⋂
i

(yi +B) 6= ∅

for each finite family y1, . . . , yn satisfying ‖yi‖ < r.
Note that B is a closed ball of radius r > 0 if and only if⋂

‖y‖<r
(y +B) 6= ∅,

in which case the intersection consists of the centre of the ball. In a pseu-
doball there is only a ‘centre’ for any finite set of directions. Also, note that
g(B) = 0 if and only if B is a ball. Thus, the pseudoball B2 should be
considered as ‘more proper’ than B1 if g(B1) ≤ g(B2).

To see a simple example, let 0 ≤ s ≤ 1. It is easy to check that

Bs = {(sn) ∈ c0 | |sn − s| ≤ 1 ∀n ∈ N} (2.1)

is a pseudoball in c0 with radius 1 and g(Bs) = s.
The next two results explain our interest in pseudoballs here.

Proposition 2.2

(a) Let J be an M -ideal in X, and let x ∈ X. Then PJ(x) is a pseu-
doball in J with radius d(x, J).

(b) If PJ(x) is a pseudoball of radius d(x, J) for all x ∈ X, then J is
an M -ideal.

Proof. See [5] or [3, Prop. II.1.3]. 2

Conversely, every pseudoball arises as in Proposition 2.2(a).

Theorem 2.3 Let B be a pseudoball of radius 1 in Y . Then there are a
Banach space X containing Y with dimX/Y = 1 and x ∈ X with d(x, Y ) =
1 such that Y is an M -ideal in X and PY (x) = B.
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Proof. See [2] or [3, Th. II.3.10]. 2

The following result has first appeared in [2].

Theorem 2.4 For a closed convex bounded subset B ⊂ Y and r ≥ 0, equiv-
alence between (i) and (ii) holds:

(i) B is a pseudoball of radius r.

(ii) The weak ∗ closure of B in Y ∗∗ is a ball with radius r (and centre
y∗∗B , say).

In this case
r · g(B) = d(y∗∗B , Y ).

Proof. See [2] or [3, Th. II.1.6]. 2

We shall now identify the centre y∗∗B .

Corollary 2.5 Let J be an M -ideal in X, and let P be the associated M -
projection from X∗∗ onto J⊥⊥. Consider the pseudoball B = PJ(x) for

some x ∈ X. Then Px = y∗∗B , the centre of B
w∗

. More precisely: the
canonical isometry i∗∗X from J∗∗ onto J⊥⊥ maps y∗∗B onto Px. Moreover (if
d(x, J) = 1)

g(PJ(x)) = d(Px, J) = inf
y∈J

sup
y∗∈BJ∗

|〈y∗, x− y〉|. (2.2)

Proof. We consider J∗ via unique Hahn-Banach extensions as a subspace of
X∗, cf. (1.1). We have for y∗ ∈ J∗

y∗(BJ∗∗(y
∗∗
B , 1)) = BK(〈y∗∗B , y∗〉, ‖y∗‖).

On the other hand we know from Theorem 2.4 (assuming without loss of
generality d(x, J) = 1)

BK(〈y∗∗B , y∗〉, ‖y∗‖) = y∗(B) ⊂ y∗(BX(x, 1)) = BK(〈y∗, x〉, ‖y∗‖).

Hence 〈y∗∗B , y∗〉 = 〈x, y∗〉 for all y∗ ∈ J∗, which gives y∗∗B = Px.
That g(PJ(x)) = d(Px, J) now follows from Theorem 2.4. Also, the

M -projection P is the adjoint of the L-projection P∗ on X∗ with range J∗.
Therefore

sup
y∗∈BJ∗

|〈y∗, x〉| = sup
x∗∈BX∗

|〈P∗x∗, x〉| = sup
x∗∈BX∗

|〈x∗, Px〉| = ‖Px‖ (2.3)
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and

d(Px, J) = inf
y∈J
‖Px− y‖ = inf

y∈J
‖P (x− y)‖ = inf

y∈J
sup

y∗∈BJ∗
|〈y∗, x− y〉|. 2

The grade of the pseudoballs PJ(x) is the appropriate tool for inves-
tigating the (possibly empty) interior of the metric complement Jθ of an
M -ideal J . The following proposition answers a question raised in [4] where
it is conjectured that an M -ideal is an M -summand as soon as its met-
ric complement has an interior point. Although this conjecture could have
been refuted on the basis of the familiar M -ideals JD in C(K) (cf. also
Example 2.9), we now have a precise estimate of the interior of Jθ by this
proposition.

Proposition 2.6 Let J be an M -ideal in X, and let D = {x ∈ X | ‖x‖ =
d(x, J) = 1}.

(a) If BJ(y0, 2r) ⊂ PJ(x0) for some x0 ∈ D, then BX(x0− y0, r) ⊂ Jθ.
(b) If BX(x0, r) ⊂ Jθ for some x0 ∈ D, then PJ(x0) contains a ball of

radius 2r − ε for whatever ε > 0.

Therefore, Jθ has empty interior if and only if

g∗(J,X) := inf{g(PJ(x)) | d(x, J) = 1} = 1.

Proof. (a) We may assume that y0 = 0. Define

|x| = sup{|〈x, y∗〉| | y∗ ∈ BJ∗}. (2.4)

This is a seminorm, and we have

‖x‖ = max{|x|, d(x, J)}. (2.5)

In fact, we may write X∗ = J⊥ ⊕1 J
∗ from which we easily conclude that

exBX∗ = exBJ⊥∪exBJ∗ . It is left to observe that ‖x‖ = sup{|〈x, x∗〉| | x∗ ∈
exBX∗}, |x| = sup{|〈x, y∗〉| | y∗ ∈ exBJ∗}, and d(x, J) = sup{|〈x, x∗〉| |
x∗ ∈ exBJ⊥}.

Now let z ∈ X, ‖z − x0‖ < r. We wish to show that |z| < d(z, J) (so
that z ∈ Jθ), then (a) will follow from the closedness of Jθ. First note that
|z − x0| < r and d(z − x0, J) < r by (2.5). Secondly, we have

|x0| ≤ 1− 2r. (2.6)
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To see this, choose, given ε > 0, y∗ ∈ SY ∗ such that

|x0| ≤ 〈y∗, x0〉+ ε.

Next choose y ∈ BJ such that

〈y∗, y〉 ≤ −1 + ε.

Note 2ry ∈ PJ(x0), i.e., ‖x0 − 2ry‖ = 1. The estimate

|x0| ≤ 〈y∗, x0〉+ ε = 〈y∗, x0 − 2ry〉+ 2r〈y∗, y〉+ ε ≤ 1 + 2r(−1 + ε) + ε

now proves (2.6).

Altogether one obtains

|z| < |x0|+ r ≤ 1− r = d(x0, J)− r < d(z, J),

as desired.

(b) Let P be the M -projection from X∗∗ onto J⊥⊥ ∼= J∗∗. In view of
Theorem 2.4 and Corollary 2.5 we have to show that d(Px0, J) ≤ 1 − 2r.
This is implied by (cf. (2.2))

|〈y∗, x0〉| ≤ 1− 2r ∀y∗ ∈ BJ∗ .

To prove this for some given y∗ ∈ BJ∗ , fix ε > 0 and choose y ∈ intBJ such
that 〈y∗, y〉 is real and so close to 1 that

|〈y∗, y〉 ± α| ≤ 1 only if |α| ≤ ε.

In particular 〈y∗, y〉 ≥ 1− ε.
Since PJ(x0) is a pseudoball (Proposition 2.2), we may find y ∈ PJ(x0)

with y ± y ∈ PJ(x0). Let us first observe

|〈y∗, y〉 − 〈y∗, x0〉| ≤ ε. (2.7)

In fact,

〈y∗, y〉 ± 〈y∗, y〉 ∈ y∗(PJ(x0)) ⊂ BK(〈y∗, x0〉, 1)

(cf. Theorem 2.4) so that (2.7) follows. On the other hand, for z = (1 −
r)x0 + ry we have

y∗(z) = y∗(z + ry)− ry∗(y) ≤ (1− r)− r(1− ε) (2.8)
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where we used ‖x0 − (z + ry)‖ ≤ r since y + y ∈ PJ(x0)), consequently

‖z + ry‖ = d(z + ry, J) = d((1− r)x0, J) = 1− r.

(2.7) and (2.8) together give our claim. 2

The previous result suggests the following definition.

Definition 2.7 If J is an M -ideal in X, we call the number

g∗(J,X) = inf{g(PJ(x)) | d(x, J) = 1}

the lower grade of J in X.

We shall see in Example 3.2 that the infimum in the above definition
need not be attained.

In order to compute g∗(J,X) the following lemma is useful. Recall that
the Dixmier characteristic of a subspace V ⊂ X∗ is defined to be

r(V,X∗) = sup{ρ | ρBX∗ ⊂ BV
w∗
}.

Lemma 2.8 Let J be an M -ideal in X with codimension 1. Then

g∗(J,X) = r(J∗, X∗).

Proof. We introduce the canonical operator

IX,J∗ : X → J∗∗, 〈IX,J∗(x), y∗〉 = 〈y∗, x〉.

The definition of the characteristic implies that IX,J∗ is an (into-) isomor-
phism with ‖I−1X,J∗‖ = r(J∗, X∗)−1 if the characteristic is positive. Therefore,

r(J∗, X∗) = inf
x∈X
‖x‖=1

sup
y∗∈J∗
‖y∗‖≤1

|〈y∗, x〉|, (2.9)

and this formula also holds in case r(J∗, X∗) = 0. In the notation of (2.4)
we thus have r(J∗, X∗) = inf‖x‖=1 |x|, and (2.5) and (2.3) imply that in fact

r(J∗, X∗) = inf
‖x‖=1
d(x,J)=1

|x| = inf
‖x‖=1
d(x,J)=1

‖Px‖.
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On the other hand, g(PJ(x)) is independent of x ∈ X\J , provided
d(x, J) = 1, since dimX\J = 1. Therefore, if ‖x‖ = d(x, J) = 1, then

g∗(J,X) = g(PJ(x)) = d(Px, J) ≤ ‖Px‖

by (2.3) and so g∗(J,X) ≤ r(J∗, X∗). To prove the converse inequality, let
x as above and y ∈ J . Then ‖x − y‖ ≥ 1 and for ξ = (x − y)/‖x − y‖ we
have

‖Pξ‖ =
‖Px− y‖
‖x− y‖

≤ ‖Px− y‖,

which proves that r(J∗, X∗) ≤ g∗(J,X). 2

Example 2.9 For the M -ideals JD ⊂ C(K) we have

g∗(JD, C(K)) = 0 if D has nonempty interior,

g∗(JD, C(K)) = 1 otherwise.

If D has nonempty interior, we may pick a continuous function f 6= 0 with
supp f ⊂ D. Hence JD is an M -summand in Y := JD ⊕ K{f} so that
r(J∗D, Y

∗) = 0. On the other hand, if intD = ∅, then K\D is dense, and for
every f ∈ C(K)\JD, with Y as above, the canonical operator IY,J∗D is an
isometry which implies that r(J∗D, Y

∗) = 1. An appeal to Lemma 2.8 yields
the desired result.

Example 2.10 We will show next that for function algebras the same di-
chotomy as for C(K)-spaces arises, namely the lower grade of an M -ideal
in a function algebra A ⊂ C(K) is either 0 or 1. Let us recall that precisely
the subspaces JD ∩A = {f ∈ A | f |D = 0}, with D a p-set, are the M -ideals
of A; see [3, p. 15 and Th. V.4.2]. We may and shall assume that K is the
Shilov boundary of A so that the set of p-points is dense in K. Then we
have

g∗(JD ∩A,A) = 0 if D has nonempty interior,

g∗(JD ∩A,A) = 1 otherwise.

Let J = JD∩A. Suppose first that D has nonempty interior. Let U ⊂ D
be open and t ∈ U be a p-point. Then there are functions fn ∈ A such that
fn(t) = 1, ‖fn‖ ≤ 2 and |fn| ≤ 1/n off U , in particular off D (see [3, p. 15]).
If µ ∈ J∗, ‖µ‖ = 1, then µ can be represented by a measure of norm 1 that
is supported on K\D. Therefore

‖IA,J∗(fn)‖ = sup
µ∈BJ∗

|〈µ, fn〉| → 0,
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and the canonical operator IA,J∗ has no bounded inverse. Lemma 2.8 and
(2.9) imply that g∗(J,A) = 0.

If intD = ∅, then by the same token g∗(J,A) = 1, since the functionals
µk = δk|A, k ∈ K\D, are in J∗ and have norm 1 and since K\D is dense:

‖f‖ = sup
k/∈D
|f(k)| = sup

k/∈D
|〈µk, f〉| ≤ sup

µ∈BJ∗
|〈µ, f〉| = ‖IA,J∗(f)‖.

Example 2.11 If J is an M -ideal in its bidual (see Chapter III in [3] for
examples), then g∗(J, J

∗∗) = 1; this follows from Lemma 2.8 and Goldstine’s
theorem.

Example 2.12 If K(X,Y ) is an M -ideal in L(X,Y ) (see Chapter VI in
[3]) and K(X,Y ) 6= L(X,Y ), then g∗(K(X,Y ), L(X,Y )) = 1. To show this
it is enough to prove that the unit ball of K(X,Y )∗ is weak∗ dense in the
unit ball of L(X,Y )∗, by Lemma 2.8. If this were not the case, then there
would be some operator T ∈ L(X,Y ), ψ ∈ BL(X,Y )∗ and α ≥ 0 such that

〈ψ, T 〉 = 1 > α ≥ 〈ϕ, T 〉 ∀ϕ ∈ BK(X,Y )∗ .

In particular, we have ‖T‖ ≥ 1. But checking the above inequality for all
functionals ϕ : S 7→ 〈Sx, y∗〉, x ∈ BX , y∗ ∈ BY ∗ , yields ‖T‖ ≤ α < 1: a
contradiction.

We now turn to geometric descriptions of M -ideals, especially of those
of codimension 1. If J is an M -ideal in X and dimX/J = 1, then from
what was observed in the proof of Proposition 2.6 it follows that J = ker p
with p ∈ exBX∗ and d(x, J) = |p(x)|. Moreover p attains its norm since J
is proximinal.

The first result extends the idea of a cylindrically shaped unit ball from
M -summands to M -ideals: the lid L of the cylinder is the translate of a
pseudoball in J .

Proposition 2.13 Let J be an M -ideal in X, dimX/J = 1, and

L := {x ∈ X | ‖x‖ = 1 = p(x)}

with X∗ = J∗ ⊕1 Kp. Then

intBX ⊂ co
⋃
|θ|=1

θL ⊂ BX . (2.10)
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Proof. The second inclusion is obvious. To prove the first for real scalars take
x with ‖x‖ < 1 and put α := p(x). Then |α| < 1 and α = λ ·1+(1−λ) ·(−1)
for a suitable λ ∈ (0, 1). We will get x as a convex combination of elements
from L and −L by an application of the strict 2-ball property of M -ideals;
see [3, Th. I.2.2]. To use this argument we have to translate x into J .

Choose x0 ∈ X with ‖x0‖ = 1 and p(x0) = −1. Then y := x + αx0 ∈
J = ker p. Since d(λx0, J) = |p(λx0)| = λ and d(y + (1 − λ)x0, J) =
|p(y + (1− λ)x0)| = 1− λ each of the two balls

BX(λx0, λ) and BX(y + (1− λ)x0, 1− λ) (2.11)

meets J . The inequality

‖λx0 − [y + (1− λ)x0]‖ = ‖αx0 − y‖ < 1

shows that the interiors of the two balls have nonempty intersection. Hence,
by the strict 2-ball property

BX(λx0, λ) ∩BX(y + (1− λ)x0, 1− λ) ∩ J 6= ∅. (2.12)

Putting P := PJ(x0) = BX(x0, 1) ∩ J we see that

λP ∩ (y + (1− λ)P ) 6= ∅.

So there are x1, x2 ∈ P with λx1 = y+(1−λ)x2, i.e., y = λx1+(1−λ)(−x2).
With the definition of y and λ this yields the desired representation

x = λ(x1 − x0) + (1− λ)(−x2 + x0) ∈ λL+ (1− λ)(−L).

For K = C choose |θ| = 1 such that p(θx) is real. The argument for real
scalars then shows that θx ∈ co(L ∪ −L). 2

It is clear from the above proof that we get equality in the right-hand
inclusion of (2.10) if J even has the so-called strong 2-ball property, which
means that to conclude (2.12) it is enough to assume that the two balls
in (2.11) meet instead of requiring that the interiors of these balls have
nonempty intersection.

Let us record two consequences of Proposition 2.13. We get a statement
analogous to (2.10) for M -ideals of arbitrary codimensions if we replace L
by the set D from Proposition 2.6.
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Corollary 2.14 Let J be an M -ideal in X, and D = {x ∈ X | ‖x‖ = 1 =
d(x, J)}. Then

intBX ⊂ coD ⊂ BX .

Proof. This follows from Proposition 2.13 by observing that every point in
intBX is in a space Y = J ⊕ K{x0}, J is an M -ideal in Y , and θL ⊂ D. 2

The sets θL serve as substitutes for BJ also in another way.

Corollary 2.15 With the assumption and notation from Proposition 2.13
we have for f ∈ J∗ and |θ| = 1

‖f‖ = sup{Re f(x) | x ∈ θL}.

Proof. From Proposition 2.13 we obtain for g ∈ X∗

‖g‖ = sup{Re g(x) | x ∈ γL, |γ| = 1}.

Using this and ‖f + θ−1p‖ = ‖f‖+ 1, we find, given ε > 0, an x = γy ∈ γL
such that

Re(f + θ−1p)(x) = Re[f(x) + θ−1γ] > ‖f‖+ 1− ε.

Since Re f(x) ≤ ‖f‖, this yields Re θ−1γ ≥ 1− ε, hence |θ − γ| <
√

2ε. So

Re f(θy) = Re f((θ − γ)y) + Re f(x) > −
√

2ε‖f‖+ ‖f‖ − ε. 2

The next result shows the limitations of the idea of a cylindrical unit ball:
for M -ideals with lower grade 1 there is nothing above the lid and nothing
below the bottom. The reader is advised to draw a two-dimensional picture
to understand the reformulation of this claim in the second statement of the
following proposition.

Proposition 2.16 Let J be an M -ideal in X. Then g∗(J,X) = 1 if and
only if for all x ∈ X, ‖x‖ > 1, there is y ∈ co(BX ∪ {x}) ∩ J with ‖y‖ > 1.

Proof. “⇒”: By the definition of g∗ and Lemma 2.8, J is an M -ideal in Y =
Yx = J⊕K{x} and BJ∗ is σ(Y ∗, Y )-dense in BY ∗ . Writing Y ∗ = J∗⊕1K{p},
we may assume that p(x) =: α > 0; the claim is trivial for x ∈ J (= ker p).
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Choose g ∈ SY ∗ with g(x) = ‖x‖ > 1. Because of BJ∗
w∗

= BY ∗ and the
w∗-lower semicontinuity of the norm, there is

f ∈ SJ∗ with f(x) =: 1 + η > 1.

Applying Corollary 2.15 with θ = −1 to f we find

x0 ∈ SY with p(x0) = −1 and Re f(x0) > 1− η

α
.

For y =
1

α+ 1
x+

α

α+ 1
x0 ∈ co(BY ∪ {x}) ⊂ co(BX ∪ {x}) we obtain

p(y) =
1

α+ 1
α+

α

α+ 1
(−1) = 0, i.e., y ∈ J

and

Re f(y) >
1

α+ 1
(1 + η) +

α

α+ 1

(
1− η

α

)
= 1, i.e., ‖y‖ > 1.

“⇐”: If g∗(J,X) < 1, then, again by the definition of g∗ and Lemma 2.8,
there is a z ∈ X such that, with Y = J ⊕ K{z}, BJ∗ is not σ(Y ∗, Y )-dense

in BY ∗ . Separating BJ∗
w∗

from p we find for a suitable x ∈ Y (⊂ X)

sup
f∈BJ∗

|f(x)| = 1 < p(x) ≤ ‖x‖.

For x0 ∈ BX and f ∈ BJ∗ this yields

|f(λx+ (1− λ)x0)| ≤ 1,

therefore, if λx+ (1− λ)x0 ∈ J , then ‖λx+ (1− λ)x0‖ ≤ 1. 2

3. The upper grade

We will now attach another number to an M -ideal J in X.

Definition 3.1 If J is an M -ideal in X, we call the number

g∗(J,X) = sup{g(PJ(x)) | d(x, J) = 1}

the upper grade of J in X.
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As a result of Theorem 2.4 and Corollary 2.5, the condition g∗(J,X) = 0
characterises M -summands among M -ideals.

We also note in the case dimX/J = 1 that g∗(J,X) = g∗(J,X) =
g(PJ(x)) whenever d(x, J) = 1 and that g∗(Y,X) = g∗(Y,X) = g(B) in the
context of Theorem 2.3.

If J is an M -ideal in X, then a fortiori it is an M -ideal in Yx = J⊕K{x}
for each x ∈ X\J . If g(PJ(x)) = 0, then J is an M -summand in Yx,
and if g(PJ(x)) = 1, then J is far from being an M -summand. Thus, if
g∗(J,X) = 1, this indicates that J behaves like a ‘very’ proper M -ideal in
every direction x, whereas g∗(J,X) = 1 only yields the existence of one such
direction.

Note that g∗(J,X) ≤ g∗(J,X) ≤ 1 so that g∗(J, J∗∗) = 1 if J is an M -
ideal in J∗∗, by Example 2.11, and g∗(K(X,Y ), L(X,Y )) = 1 in the setting
of Example 2.12. We also have

g∗(JD, C(K)) = 0 if D is clopen,

g∗(JD, C(K)) = 1 otherwise.

If D is clopen, then JD is an M -summand, and the upper grade is 0. If
D is not clopen, we will argue that the canonical operator IY,J∗D , for Y =
JD ⊕ K{1}, is an isometry. In fact, for f = g + λ1 ∈ Y we have, since
K\D ∩ D 6= ∅, that supt∈K\D |f(t)| ≥ |λ| so that ‖f‖∞ = supt∈K\D |f(t)|
which is enough to prove our claim.

The following example shows that neither the infimum in the definition
of the lower grade nor the supremum in the definition of the upper grade
need be attained.

Example 3.2 If 0 < s ≤ 1 let

Xs = (c, ‖ ‖s) where ‖(ξn)‖s = max{‖(ξn)‖∞, (1/s)|ξ∞|}

and ξ∞ = lim ξn. Define for a sequence (sn) in (0, 1)

X =
(
⊕
∑

Xsn

)
c0

and J =
(
⊕
∑

c0
)
c0
.

Then J is an M -ideal in X and

(a) if inf sn = 0 then g∗(J,X) = 0, but g∗(J, Y ) > 0 for all Y with
J ⊂ Y ⊂ X and dimY/J = 1,

(b) if sup sn = 1 then g∗(J,X) = 1, but g∗(J, Y ) < 1 for all Y with
J ⊂ Y ⊂ X and dimY/J = 1.
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Proof. Note first that X∗s
∼= `1⊕1K{ps} with ps((ξn)) = (1/s)ξ∞. Hence c0 is

an M -ideal in Xs, and one deduces easily using the restricted 3-ball property
[3, Th. I.2.2] that J is an M -ideal in X. Moreover, we have g∗(c0, Xs) =
g∗(c0, Xs) = s.

(a) Using sequences supported only in the n-th coordinate space one can
check that g∗(J,X) = 0, since inf sn = 0. Assume that there is an x ∈ X \J
such that J is an M -summand in Y = J ⊕ K{x}, i.e., x is M -orthogonal
to J . The projection Pn from X onto the n-th coordinate space Xsn is an
M -projection, so by [1, Cor. 3] xn = Pnx is M -orthogonal to J , hence in
particular M -orthogonal to Jn = c0. This gives xn = 0, since c0 is not an
M -summand in Xsn , and thus x = 0: a contradiction.

(b) As in (a) it is easy to see that g∗(J,X) = 1. We will show that for
all x = (xn) ∈ X with d(x, J) = 1 the pseudoball PJ(x) = BX(x, 1) ∩ J has
non-empty interior. Without restriction we may additionally assume that
‖x‖ = 1. By the definition of the space X there are a finite set E ⊂ N and
some ε0 > 0 such that ‖xn‖sn = 1 for n ∈ E and ‖xn‖sn ≤ 1− ε0 for n 6∈ E.
This gives, for n 6∈ E, the inclusion ε0BJn ⊂ BXsn

(xn, 1) ∩ Jn where again
Jn is the c0-space in the n-th coordinate. For n ∈ E we have d(xn, Jn) ≤ 1.
Using g∗(Jn, Xsn) = sn one obtains from this for some suitable εn > 0 and
some j0n ∈ Jn that BJn(j0n, εn) ⊂ BXsn

(xn, 1)∩J ; note that d(xn, Jn) < 1 or
even d(xn, Jn) = 0 does not spoil this. Defining j0 = (j0n) ∈ J with j0n = 0
for n 6∈ E and ε = min{εn | n ∈ E or n = 0} one finds that BJ(j0, ε) is
contained in BX(x, 1) ∩ J . 2

The upper grade of an M -ideal tells us something about the existence of
M -orthogonal directions for finite dimensional subspaces.

Proposition 3.3 Let J be an M -ideal in X and put α := g∗(J,X). Then,
given ε > 0 and a finite dimensional subspace E ⊂ J , one may find y0 ∈ J
satisfying

α

1 + ε
max{‖e‖, |λ|} ≤ ‖e+ λy0‖ ≤ (1 + ε) max{‖e‖, |λ|} (3.1)

for all e ∈ E, λ ∈ K.

Proof. If α = 0 then the statement is trivially satisfied with y0 = 0. For
α > 0 we may assume, because we have an ε > 0 at our disposal in (3.1),
that there is an x ∈ X such that d(x, J) = 1 and α = g(PJ(x)). Then J is
an M -ideal in Y = Yx = J ⊕ K{x} and α = g∗(J, Y ) = g∗(J, Y ).
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As in the proof of Lemma 2.8 the canonical operator

IY,J∗ : Y → J∗∗, 〈IY,J∗(y), x∗〉 = 〈x∗, y〉

is an (into-) isomorphism whose inverse has norm α−1. To get started,
consider the decomposition

Y ∗∗ = J⊥⊥ ⊕∞ lin{x∗∗0 }

in which we assume ‖x∗∗0 ‖ = 1. Let δ > 0 and choose with the help of the
principle of local reflexivity an injective operator

T : lin(E ∪ {x∗∗0 })→ Y

such that ‖T‖ · ‖T−1‖ ≤ 1 + δ and Te = e for all e ∈ E. For x0 := Tx∗∗0 we
obtain

1

1 + δ
max{‖e‖, |λ|} ≤ ‖e+ λx0‖ ≤ (1 + δ) max{‖e‖, |λ|}

for all e ∈ E, λ ∈ K.

We have to ‘push’ x0 into J . As a first step, we map it into J∗∗ by means
of y∗∗0 := IY,J∗(x0). It follows easily that

α

1 + δ
max{‖e‖, |λ|} ≤ ‖e+ λy∗∗0 ‖ ≤ (1 + δ) max{‖e‖, |λ|}

for all e ∈ E, λ ∈ K. As a second step, we again apply the principle of local
reflexivity to obtain an injection

S : lin(E ∪ {y∗∗0 })→ J

with ‖S‖ · ‖S−1‖ ≤ 1 + δ which extends the identity on E.

With an appropriate choice of δ and y0 := S(y∗∗0 ) we finally achieve the
desired result. 2

If the upper grade of an M -ideal J in X equals 1, then it follows from
the above proposition and an obvious induction process that J contains a
sequence equivalent to the standard basis of c0. The same conclusion holds if
only g∗(J,X) > 0. This can be deduced from Proposition 3.3 and the classi-
cal Bessaga-Pe lczyński theorem, which characterises spaces containing c0 in
terms of weakly unconditionally Cauchy series. However, in M -ideal theory
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the containment of c0 in proper M -ideals is usually – and more naturally –
proved using the so-called intersection property; see [3, Th. II.4.7].

We have seen in (3.1) that the grade of an M -ideal J in X says something
about the space J itself, irrespective of its position in X. Conversely, the
geometry of the space J – more precisely, the set of pseudoballs in J –
determines which grades are possible if J is an M -ideal in some superspace
X. If J contains no proper pseudoball (e.g., if J is reflexive or, by what
was remarked above, if J fails to contain a copy of c0), then J is already an
M -summand if it is an M -ideal; i.e., only g∗(J,X) = 0 is possible.

If a space J has a proper pseudoball, one asks if it contains even pseu-
doballs B with empty interior, i.e., with g(B) = 1. This is the case for
J = c0, which is the only space so far, where we have exhibited in (2.1) a
pseudoball of grade different from 0 and 1. The following result will help to
decide this question.

Proposition 3.4 If a Banach space Y contains a pseudoball with empty
interior, then

0 ∈ ex
w∗
BY ∗ .

Proof. If B is a pseudoball with radius 1 and grade 1, then by Theorem 2.3
there is a Banach space X containing Y such that Y is an M -ideal in X and
g∗(Y,X) = 1.

Let y1, . . . , yn ∈ Y , ‖yi‖ = 1, and δ > 0. We have to produce some
p ∈ exBY ∗ such that

|p(yi)| ≤ δ ∀i = 1, . . . , n.

To this end consider E := lin{y1, . . . , yn} and ε = δ/3 > 0. Choose y0
according to Proposition 3.3. In particular (since α = 1 here) ‖y0‖ ≥ 1/(1+
ε) so that there exists p ∈ exBY ∗ with p(y0) ∈ R and p(y0) > 1/(1 + ε)− ε.
Hence for i = 1, . . . , n and suitable scalars θi with modulus 1

|p(yi)| = p(θiyi + y0)− p(y0) ≤ ‖θiyi + y0‖− p(y0) ≤ 1 + ε−
( 1

1 + ε
− ε
)
≤ δ.

2

Example 3.5 The real `1-predual space Y = {y ∈ c | y1+2y∞ = 0} (where
y∞ := lim yn) contains proper pseudoballs, but no pseudoballs with empty
interior.
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Proof. All the claims will follow once we identify the dual of

X = (c, ‖ ‖) where ‖x‖ = max{‖x‖∞, |x1 + 2x∞|}.

To this end put e∗k(x) = xk and f∗∞(x) = x1 + 2x∞. Then for n ∈ N and
ak ∈ R, k = 1, . . . , n or k =∞,∥∥∥∥∥

n∑
k=1

ake
∗
k + a∞f

∗
∞

∥∥∥∥∥
X∗

=
n∑
k=1

|ak|+ |a∞|. (3.2)

The inequality ≤ in (3.2) is clear by the definition of the norm ‖ ‖. For the
converse and sgn a1 = sgn a∞ consider x = (sgn a1, . . . , sgn an, 0, . . .). Then
‖x‖ = 1 and ( n∑

k=1

ake
∗
k + a∞f

∗
∞

)
(x) =

n∑
k=1

|ak|+ |a∞|. (3.3)

If sgn a1 6= sgn a∞ and a1, a∞ 6= 0 use x = (sgn a1, . . . , sgn an, sgn a∞, . . .).
Note that in this case sgn a1+2 sgn a∞ = sgn a∞, so that ‖x‖ = 1, and again
(3.3) holds. Also the remaining case, a1 = 0 or a∞ = 0, is easily handled in
a similar way. By (3.2) X∗ is isometrically isomorphic to `1; note that ‖ ‖
is an equivalent norm on c. Also exBX∗ = {±e∗k | k ∈ N} ∪ {±f∗∞}.

Now, Y = ker f∗∞ is an M -ideal in X, Y ∗ ∼= lin{e∗k | k ∈ N} ∼= `1,
and exBY ∗ = {±e∗k | k ∈ N}. Since Y ∗ is σ(X∗, X)-dense in X∗, Y is
a proper M -ideal in X, hence Y contains a proper pseudoball. However,
the σ(Y ∗, Y )-closure of exBY ∗ equals exBY ∗ ∪ {±1/2e∗1}, so that Y can’t
contain a pseudoball with empty interior by Proposition 3.4. 2

With the notation of the above proof define x ∈ X by x1 = −1 and
xk = 1 for k ≥ 2. Then ‖x‖ = 1 and d(x, Y ) = |f∗∞(x)| = 1. The pseudoball

B = PY (x) = {y ∈ Y | |y1 − (−1)| ≤ 1 and |yk − 1| ≤ 1 for k ≥ 2}

has grade 1/3: BY (y, 2/3) ⊂ B for y with y1 = −4/3 and yk = 2/3 for
k ≥ 2; and, as one easily shows, B contains no ball of Y with radius larger
than 2/3. Hence g∗(Y,X) = g∗(Y,X) = 1/3.

We don’t know if Y contains pseudoballs with grades larger than 1/3. We
also don’t know if there is a quantitative version of Proposition 3.4 relating
the supremum of the grades of pseudoballs in Y with the minimum of the
norms of elements in exw∗BY (which is 1/2 in the above example).

With the help of the notion of an upper grade we will now prove:
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Proposition 3.6 Suppose J is an M -ideal in X. If there exists a Lip-
schitz projection π from X onto J , then its Lipschitz constant L is at least
2 · g∗(J,X).

Proof. Let x ∈ X, d(x, J) = 1, and consider B = PJ(x) = BX(x, 1) ∩ J .
Then

B = π(B) ⊂ π(BX(x, 1)) ⊂ BJ(π(x), L).

Now we take σ(J∗∗, J∗)-closures and use Proposition 2.2, Theorem 2.4, and
Corollary 2.5 to obtain

BJ∗∗(Px, 1) ⊂ BJ∗∗(π(x), L)

where P is the M -projection from X∗∗ onto J⊥⊥ ∼= J∗∗. Hence

2Px− y ∈ BJ∗∗(π(x), L) ∀y ∈ B

so that by Theorem 2.4 and Corollary 2.5

L ≥ 2 · ‖Px− (y + π(x))/2‖ ≥ 2 · d(Px, J) = 2 · g(B). 2

Proposition 3.6 in particular yields lower bounds for projection con-
stants. For example, it is clear that c0 is the range of a norm-2 linear
projection on c, but since g∗(c0, c) = 1 there is no projection onto c0 with
smaller norm. (This is no doubt a well-known fact.) More interesting is the
case of c0 ⊂ `∞. Here, no linear continuous projections exist, but Linden-
strauss [6] has produced a nonlinear 2-Lipschitz projection from `∞R onto c0.
Again we conclude that the Lipschitz constant 2 is optimal.

References

[1] E. Behrends: M -complements of M -ideals, Rev. Roum. Math. Pures Appl. 29,
537–541, 1984.

[2] E. Behrends and P. Harmand: Banach spaces which are proper M -ideals, Studia
Math. 81, 159–169, 1985.

[3] P. Harmand, D. Werner, and W. Werner: M -Ideals in Banach Spaces and Ba-
nach Algebras, Lecture Notes in Mathematics 1547, Springer, Berlin-Heidelberg-
New York, 1993.

[4] R. B. Holmes, B. Scranton, and J. Ward: Approximation from the space of
compact operators and other M -ideals, Duke Math. J. 42, 259–269, 1975.



The grade of an M-ideal 19
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