Corrigendum to our paper
 "Narrow operators and rich subspaces of Banach spaces
 with the Daugavet property"

(Studia Math. 147, No. 3 (2001), 269-298)
Vladimir Kadets, Roman Shyidkoy and Dirk Werner

There is a gap in the proof of Lemma 3.10(b). This lemma reads as follows; we denote by $B(X)$ the unit ball of a Banach space X and by $S(X)$ its unit sphere.

Lemma 3.10 Let T be a narrow operator on X.
(a) Let S_{1}, \ldots, S_{n} be a finite collection of slices and $U \subset B(X)$ be a convex combination of these slices, i.e., there are $\lambda_{k} \geq 0, k=1, \ldots, n$, $\sum_{k=1}^{n} \lambda_{k}=1$, such that $\lambda_{1} S_{1}+\cdots+\lambda_{n} S_{n}=U$. Then for every $\varepsilon>0$, every $x_{1} \in S(X)$ and every $w \in U$ there exists an element $u \in U$ such that $\left\|u+x_{1}\right\|>2-\varepsilon$ and $\|T(w-u)\|<\varepsilon$.
(b) The same conclusion is true if U is a relatively weakly open set.

The proof of part (b) in the paper simply says, "This follows from (a) since given $w \in U$ there is a convex combination V of slices such that $w \in V \subset U . "$ (We have taken the liberty to correct a typo in the quote, and of course U is tacitly assumed to be nonempty.) It is true - see the references $[8$, Lemma II.1] or [21] cited in the paper - that there is such a V inside U; it is not clear, however, that V can be chosen to contain w.

We now wish to give a complete proof of (b). Let \mathscr{W} be the family of all those convex combinations V of slices of $B(X)$ such that $V \subset U$ and let W be its union, i.e., $W=\bigcup \mathscr{W}$. We note that $\mathscr{W} \neq \emptyset$ by the references above and that $W \subset U$. Further, W is convex [if $0<\lambda<1$ and if x (resp. y) belongs to the convex combination of slices V_{x} (resp. V_{y}), then $\lambda x+(1-\lambda) y \in \lambda V_{x}+(1-\lambda) V_{y}$, which is a convex combination of slices], and it is weakly dense in U [as every nonvoid relatively weakly open subset of U encompasses a member of $\mathscr{W}]$. Since the norm closure \bar{W} and the weak closure of the convex set W coincide and thus $U \subset \bar{W}$, there is an element $w^{\prime} \in W$ such that $\left\|w-w^{\prime}\right\|<\varepsilon^{\prime}:=\varepsilon /(1+\|T\|)$. This w^{\prime} belongs to some convex combination $V_{w^{\prime}} \in \mathscr{W}$ of slices. Now apply part (a) to $V_{w^{\prime}}, w^{\prime}$ and ε^{\prime} to obtain some $u \in V_{w^{\prime}} \subset U$; this u will work.

