Corrigendum to our paper "Narrow operators and rich subspaces of Banach spaces with the Daugavet property" (Studia Math. 147, No. 3 (2001), 269–298)

VLADIMIR KADETS, ROMAN SHVIDKOY AND DIRK WERNER

There is a gap in the proof of Lemma 3.10(b). This lemma reads as follows; we denote by B(X) the unit ball of a Banach space X and by S(X) its unit sphere.

Lemma 3.10 Let T be a narrow operator on X.

- (a) Let S_1, \ldots, S_n be a finite collection of slices and $U \subset B(X)$ be a convex combination of these slices, i.e., there are $\lambda_k \ge 0$, $k = 1, \ldots, n$, $\sum_{k=1}^n \lambda_k = 1$, such that $\lambda_1 S_1 + \cdots + \lambda_n S_n = U$. Then for every $\varepsilon > 0$, every $x_1 \in S(X)$ and every $w \in U$ there exists an element $u \in U$ such that $||u + x_1|| > 2 - \varepsilon$ and $||T(w - u)|| < \varepsilon$.
- (b) The same conclusion is true if U is a relatively weakly open set.

The proof of part (b) in the paper simply says, "This follows from (a) since given $w \in U$ there is a convex combination V of slices such that $w \in V \subset U$." (We have taken the liberty to correct a typo in the quote, and of course U is tacitly assumed to be nonempty.) It is true – see the references [8, Lemma II.1] or [21] cited in the paper – that there is such a V inside U; it is not clear, however, that V can be chosen to contain w.

We now wish to give a complete proof of (b). Let \mathscr{W} be the family of all those convex combinations V of slices of B(X) such that $V \subset U$ and let W be its union, i.e., $W = \bigcup \mathscr{W}$. We note that $\mathscr{W} \neq \emptyset$ by the references above and that $W \subset U$. Further, W is convex [if $0 < \lambda < 1$ and if x(resp. y) belongs to the convex combination of slices V_x (resp. V_y), then $\lambda x + (1 - \lambda)y \in \lambda V_x + (1 - \lambda)V_y$, which is a convex combination of slices], and it is weakly dense in U [as every nonvoid relatively weakly open subset of U encompasses a member of \mathscr{W}]. Since the norm closure \overline{W} and the weak closure of the convex set W coincide and thus $U \subset \overline{W}$, there is an element $w' \in W$ such that $||w - w'|| < \varepsilon' := \varepsilon/(1 + ||T||)$. This w' belongs to some convex combination $V_{w'} \in \mathscr{W}$ of slices. Now apply part (a) to $V_{w'}$, w' and ε' to obtain some $u \in V_{w'} \subset U$; this u will work.