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Abstract. It is proved that a positive kernel on a Polish space X has
a reference measure if and only if the associated fine topology is not
discrete on any compact perfect subset of X.

In [2] and [5], remarkable results concerning the existence of a reference
measure for a positive kernel on a Polish space were established. In this note
we intend to refine these results using tools from functional analysis, more
precisely from the geometry of Banach spaces.

As in [2] we consider a positive kernel V on B(X), the space of Borel
functions on a Polish space X; i.e., V is a mapping of the form

(V f)(y) =
∫

X
f(x) dµy(x)(1)

with (µy)y∈X a family of positive measures such that y �→ µy(A) is Borel for
every Borel set A. Also (µy) is referred to as a positive kernel. We further
assume that V is proper, that is, there exists a Borel function h > 0 such
that (V h)(y) < ∞ for all y, and we suppose that the dominance principle
holds: If f, g ∈ B(X) are nonnegative and (V f)(y) ≥ (V g)(y) on {g > 0},
then (V f)(y) ≥ (V g)(y) everywhere.

Let

S =
{
sup

n
V fn: fn ∈ B(X), fn ≥ 0, (V fn) increases

}

be the cone of excessive functions associated to V . We suppose that u∧ v ∈
S whenever u, v ∈ S and that S contains the positive constant functions.
The fine topology on X is the initial topology for the family S , hence the
coarsest topology that makes each u ∈ S continuous.

We now have the following theorem.

Theorem 1. Under the above assumptions, the following statements are
equivalent:
(a) There is a reference measure for V ; i.e., a measure m such that all the

µy from (1) are absolutely continuous with respect to m.
(b) The fine topology satisfies the countable chain condition, meaning that

each family of nonvoid pairwise disjoint open sets is at most countable.
(c) There is no compact perfect (for the original topology) subset K ⊂ X

on which the fine topology is discrete.
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The implication (a) ⇒ (b) was proved in [2] as was the converse implica-
tion (b) ⇒ (a). The new contribution here is the stronger implication (c)
⇒ (a); note that (b) ⇒ (c) is obvious since a compact perfect set must be
uncountable.

Our main tool in proving that (c) implies (a) is a refinement of a theorem
of Rosenthal [4] which states that a bounded linear operator T : C (X) →
C (X) on the Banach space of continuous functions on a compact metric
space X either fixes a copy of C (X), or its adjoint has a separable range.
That T fixes a copy of C (X) means that there is some closed subspace
E ⊂ C (X) which is isomorphic to C (X) such that T , considered as an
operator from E to T (E), is an isomorphism. Should this fail to hold,
then, by Rosenthal’s theorem, the adjoint operator T ∗: C (X)∗ → C (X)∗
has a separable range. By the Riesz representation theorem C (X)∗ can be
identified with the space of all finite measures M (X). Suppose ν1, ν2, . . .
is a sequence of measures dense in the unit ball of T ∗(M (X)). Then m :=∑∞

n=1 2
−n|νn| is a positive measure for which T ∗µ � m for each µ. Writing

d(T ∗δy)/dm = k( . , y) we obtain that

(Tf)(y) = (T ∗δy)(f) =
∫

X
f(x)k(x, y) dm(x);

hence T is an integral operator and m is a reference measure for T . This
explains the relevance of Rosenthal’s theorem in the present context.

Actually, we need the following variant of a refinement of this theorem
[6]. Denote by Bb(X) the sup-normed Banach space of all bounded Borel
functions on X. χK stands for the indicator of a set K as well as for the
multiplication operator with that function.

Proposition 2. Let X and Y be Polish spaces and T be a bounded linear
operator from Bb(X) to Bb(Y ) given by the formula

(Tf)(y) =
∫

X
f dµy

for some positive kernel (µy). Then either there exists a compact perfect set
K ⊂ Y such that χKT : Bb(X) → Bb(K) is surjective, or T has a reference
measure.

Proof. First of all, we may assume that X is a compact metric space, since a
Polish space is homeomorphic to a dense Gδ-subset of some compact metric
space [3, Sect. 4C], say X̃ , and we regard the µy as measures on this larger
space by simply setting µ(A) = 0 for A ⊂ X̃ \X. As in [6] we consider the
oscillation

ω(y, Y ′) = inf
δ>0

sup
z1,z2

‖µz1 − µz2‖M (X)

on a subset Y ′ ⊂ Y , where the supremum is taken over all z1 and z2 in
a relative δ-neighbourhood of y in Y ′. As opposed to the situation in [6],
here y �→ µy need not be continuous for the weak∗ topology ofM (X). Now
the following lemma, whose proof can be found for instance in [3, Sect. 13],
helps.

Lemma 3. Let P be a Polish space.
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(a) If f : P → Z is a Borel mapping into a second countable topological
space Z, then there is a finer topology on P making P a Polish space
and having the same Borel sets as the original topology such that f is
continuous for the new topology.

(b) If A ⊂ P is a Borel set, then there is a finer topology on P making P
a Polish space and having the same Borel sets as the original topology
such that A is clopen; hence A is a Polish space itself for the new
topology.

Lemma 3 allows us to assume that, after modifying the topology of Y
without spoiling its Borel structure, y �→ µy is weak∗ continuous. Now the
arguments of [6, Th. 1] apply to show that there is a diffuse positive measure
λ on Y such that

ω(y, Y ) = 2‖µs
y‖ λ-a.e.,

where µs
y is the singular part of µy with respect to the measure ν: A �→∫

Y µy(A) dλ(y).
If T does not have a reference measure, then (see p. 175 of [6]) for some

open set Y ′ ⊂ Y we have

α := inf
y∈Y ′ ω(y, Y ) > 0.

Also, (ibid., Lemma 2 and p. 175) there exists an uncountable set D ⊂ Y ′
such that µs

y and µs
z are pairwise singular for all y, z ∈ D. A theorem of

Burgess and Mauldin ([1, Th. 4], see also [6, p. 176]) then provides us with
a perfect compact set K ⊂ Y ′, a closed set C ⊂ X with ν(C) = 0 and a
Borel mapping ρ: X → K such that

µs
y

(
X \ (C ∩ ρ−1(y))

)
= 0 ∀y ∈ K;

i.e., µs
y is supported by {x ∈ C: ρ(x) = y}. (Note that the old and the new

topology coincide on the compact set K.)
Let us now consider the operator J : Bb(K) → Bb(X) given by Jg =

χC · (g ◦ ρ). We then have for y ∈ K

(
(TJ)(g)

)
(y) =

∫
C
g(ρ(x)) dµy(x) =

∫
C
g(ρ(x)) dµs

y(x)

=
∫

C
g(y) dµy(x) = g(y)µs

y(C ∩ {ρ = y}) = g(y)‖µs
y‖.

Since ‖µs
y‖ ≥ α/2 > 0 on Y ′, this proves that χKT maps Bb(X) onto

Bb(K).

Proof of Theorem 1, (c) ⇒ (a): Assume that V has no reference measure.
Then there exist Borel sets A and B such that h · χA, χB · V h, 1/(h · χA)
and 1/(χB · V h) are bounded and V̄ := χBV χA has no reference measure,
either. Indeed, A = {1/n ≤ h ≤ n} and B = {1/n ≤ V h ≤ n} will do for
large enough n. By Lemma 3, we may pretend that A and B are actually
Polish spaces.

Now V̄ is a bounded linear operator from Bb(A) to Bb(B). From Propo-
sition 2 we infer that for some perfect compact K ⊂ B, the operator χK V̄
maps Bb(A) onto Bb(K). On the other hand, if f ∈ Bb(A), then V f ∈ S
and χK · V̄ f = V f on K, hence every bounded Borel function on K is of
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the form u|K for some u ∈ S and thus continuous for the fine topology. In
particular, the indicator functions χ{x0}, x0 ∈ K, are finely continuous, and
K is discrete in the fine topology.
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