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Abstract. We revisit some ideas of K.-M. Perfekt who has provided an
elegant framework to detect the biduality between function or sequence
spaces defined in terms of some o- resp. O-condition. We present new
proofs under somewhat weaker assumptions than before and apply the
result to Lipschitz spaces.

1. Introduction

It has long been known that a number of pairs (E0, E) of function or
sequence spaces defined in terms of a “little o”- resp. “big O”-condition
provide examples of spaces in biduality, i.e., E∗∗0 = E with the identical
inclusion E0 ↪→ E corresponding to the canonical embedding βE0 of E0 into
its bidual. In addition it turns out that often E0 is an M -ideal in E (the
definition will be recalled shortly); see for example [11]. The best known
and simplest example of this kind is the pair (c0, `∞); another example is
the pair (B0, B) consisting of the “little” Bloch space and the usual Bloch
space.

In [7] and [8], K.-M. Perfekt provided an elegant general framework to
accommodate many examples of this phenomenon including the pair (VMO,
BMO). Other examples and applications can be found in [6]. In this note we
shall revisit his construction, detailed in Section 3, and will give new proofs
under somewhat less restrictive assumptions. We then apply this framework
to Lipschitz spaces over general compact pointed metric spaces, which was
left out in [7] where only compact subsets of Rn were considered.

Let us finish this section by recalling the notion of an M -ideal introduced
by E.M. Alfsen and E.G. Effros in their seminal paper [1]. Let E be a
Banach space and E0 a closed subspace. Then E0 is called an M -ideal if
there is a projection P : E∗ → E∗ with kerP = E⊥0 , the annihilator of E0 in
E∗, such that

‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖ for all x∗ ∈ E∗. (1.1)
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Detailed information on M -ideals can be found in E. Behrends’s monograph
[2] and in [4].

A very important special situation is when E = E∗∗0 ; in this case E0 is
called M -embedded; see Chapter III in [4]. One can show that E0 is M -
embedded if and only if it is the restriction map P : x∗∗∗ 7→ x∗∗∗|E0

that
satisfies (1.1).

The key result of part I of the Alfsen-Effros paper is a characterisation of
the M -ideal property in purely geometric terms, by means of an intersection
property of balls. We shall employ the following version, originally due to
Å. Lima; cf. [4, Th. I.2.2]. The closed unit ball of a Banach space E is
denoted by BE .

Theorem 1.1. E0 is an M -ideal in E if and only if the following 3-ball
property holds: For all x ∈ BE, y1, y2, y3 ∈ BE0 and ε > 0 there is some
y ∈ E0 such that

‖x+ yi − y‖ ≤ 1 + ε (i = 1, 2, 3). (1.2)

This is a very versatile tool to prove the M -ideal property since no prior
information on the dual space is involved.

2. M-ideals in subspaces of Cb(L, Y ).

Perfekt’s approach naturally leads to subspaces of Cb(L, Y ), the space of
bounded continuous functions on a locally compact Hausdorff space L with
values in a Banach space Y .

We have the following result; C0(L, Y ) stands for the space of continuous
functions vanishing at infinity, i.e., a continuous function f is in C0(L, Y ) if
and only if {t ∈ L: ‖f(t)‖Y ≥ ε} is compact for each ε > 0.

Theorem 2.1. Let L be a locally compact Hausdorff space, Y be a Banach
space, let E ⊂ Cb(L, Y ) be a closed subspace and E0 = E∩C0(L, Y ). Assume
that BE0 is dense in BE for the topology of uniform convergence on compact
subsets of L. Then E0 is an M -ideal in E.

Proof. We shall verify the 3-ball property from Theorem 1.1. So let ε > 0,
f ∈ BE and g1, g2, g3 ∈ BE0 . In the following we shall use the notation
‖h‖S = supt∈S ‖h(t)‖Y for a function on L and Sc = L\S for the complement
of S.

In the first step take a compact subset K0 ⊂ L such that all ‖gi‖Kc
0
≤ ε.

By the density assumption there is some h1 ∈ BE0 such that ‖f−h1‖K0 ≤ ε.
Pick a compact set K1 ⊃ K0 such that ‖h1‖Kc

1
≤ ε; obviously ‖gi‖Kc

1
≤ ε as

well.
In the nest step pick some function h2 ∈ BE0 such that ‖f − h2‖K1 ≤ ε

and a compact set K2 ⊃ K1 such that ‖h2‖Kc
2
≤ ε; clearly, still ‖h1‖Kc

2
≤ ε.

Inductively, one can find functions hj ∈ BE0 and compact sets K0 ⊂ K1 ⊂
K2 ⊂ · · · ⊂ L such that

‖f − hj‖Ku ≤ ε for j > u (2.1)
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and
‖hj‖Kc

u
≤ ε for j ≤ u. (2.2)

Let r > 1/ε and

g =
1

r

r∑
j=1

hj ∈ BE0 .

We shall verify that

‖f + gi − g‖ ≤ 1 + 3ε (i = 1, 2, 3), (2.3)

which implies the 3-ball property.
Indeed, if t ∈ K0, then ‖f(t)− hj(t)‖Y ≤ ε for all j and ‖gi(t)‖Y ≤ 1 for

all i, hence

‖f(t) + gi(t)− g(t)‖Y ≤ ‖gi(t)‖Y + ‖f(t)− g(t)‖Y ≤ 1 + ε.

Next, suppose t ∈ Ku \ Ku−1 for some u ∈ {1, . . . , r − 1}. Then we have
‖f(t) − hj(t)‖Y ≤ 1 + ε for j < u by (2.2) and the triangle inequality and
‖f(t) − hj(t)‖Y ≤ ε for j > u by (2.1), and trivially ‖f(t) − hu(t)‖Y ≤ 2.
This shows for such t

‖f(t) + gi(t)− g(t)‖Y ≤ ‖f(t)− g(t)‖Y + ‖gi(t)‖Y

≤ 1

r

(
(u− 1)(1 + ε) + 2 + (r − u)ε

)
+ ε

=
u+ 1

r
+
(r − 1

r
+ 1
)
ε ≤ 1 + 2ε

Finally, if t /∈ Kr−1, then ‖hj(t)‖Y ≤ ε for j ≤ r−1 by (2.2) and ‖hr(t)‖Y ≤ 1
so that

‖f(t) + gi(t)− g(t)‖Y ≤ ‖f(t)‖Y + ‖gi(t)‖Y + ‖g(t)‖Y

≤ 1 + ε+
1

r

(
(r − 1)ε+ 1

)
≤ 1 + 3ε.

Altogether we have proved (2.3). �

3. The Perfekt construction

We now recall the setup of Perfekt’s approach; actually, we have removed
some unnecessary restrictions. Let X be a reflexive space and Y be any
Banach space. Consider a subset L ⊂ L(X,Y ) (the space of bounded linear
operators from X into Y ) and equip it with a locally compact Hausdorff
topology τ that is finer than the strong operator topology sot. Hence, for
each x ∈ X, the mapping x̂: L → Y , x̂(T ) = Tx, is continuous on (L , τ).
Now define the vector subspace

E =
{
x ∈ X: sup

T∈L
‖Tx‖Y <∞

}
of X. By definition, x̂ ∈ Cb(L , Y ) for x ∈ E. We further assume that
L is rich enough to make x 7→ x̂ injective and consequently x 7→ ‖x̂‖∞ =
supT∈L ‖Tx‖Y a norm on E. In this situation ‖x‖∞ := ‖x̂‖∞ is a norm on
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E which makes E isometric to a subspace of Cb(L , Y ); henceforth we shall
consider E ⊂ Cb(L , Y ) in a canonical way. We also assume that E is closed
in Cb(L , Y ) so that both E and E0 := E ∩ C0(L , Y ) are Banach spaces.
Then the canonical inclusion mapping x 7→ x from (E, ‖ . ‖∞) to (X, ‖ . ‖X)
is continuous by the closed graph theorem. These assumptions will be in
place throughout the whole section.

We finally consider the following crucial density assumption.

(A) BE0 is dense in BE for the topology generated by the norm ‖ . ‖X
of X.

Under these assumptions we will now give a new proof of Perfekt’s bid-
uality theorem [7, Th. 2.2]. At several points, the argument below is the
same as in [7], but it differs at a decisive juncture so that we can dispense
with some assumptions in [7]. Instead of using Singer’s theorem represent-
ing the dual of C0(L , Y ) by vector measures our argument relies on the
C0(L )-module structure of that space.

Theorem 3.1. The space E is canonically isometric to E∗∗0 provided as-
sumption (A) is valid.

Before proceeding to the proof let us explain which isomorphism is meant
in the theorem and what makes it canonical. Let us introduce, as in [7], the
operators i0: E0 → X, i0(x) = x; J : X∗ → E∗0 , J = i∗0 (i.e., Jx∗ = x∗|E0

);
I: E∗∗0 → X, I = J∗. Then the claim is that ran I = E and I is an isometry
for ‖ . ‖∞. Note that IβE0 = IdE0→E (with βE0 the canonical map from E0

into its bidual), which makes I canonical.

Proof. In the first step we prove that ran J is norm dense in E∗0 . Let `0 ∈ E∗0
and consider a Hahn-Banach extension ` ∈ C0(L , Y )∗. Let ϕ ∈ C0(L ) with
compact support K and 0 ≤ ϕ ≤ 1; then the functional

`ϕ ∈ C0(L , Y )∗, `ϕ(f) = `(ϕf)

is well defined. If x ∈ E0 we have

|`ϕ(x)| = |`(ϕx)| ≤ ‖`‖ · ‖ϕx‖∞
and

sup
T∈L

‖ϕ(T )Tx‖Y = sup
T∈K

‖ϕ(T )Tx‖Y ≤ sup
T∈K

‖T‖ · ‖x‖X .

Now K is τ -compact and hence sot-compact; as a result it is pointwise
bounded and so supT∈K ‖T‖ < ∞ by the uniform boundedness principle.
This shows that `ϕ is continuous on E0 for the norm of X and therefore the
restriction of some x∗ ∈ X∗ to E0; consequently `ϕ|E0

∈ ran J .
Let us now prove:

• For every ε > 0 there exists ϕ ∈ C0(L ) with compact support,
0 ≤ ϕ ≤ 1, such that ‖`− `ϕ‖C0(L ,Y )∗ ≤ ε.

Indeed, assume that for some ε0 > 0 there is no such ϕ. Then for all such ϕ

‖`1−ϕ‖C0(L ,Y )∗ = ‖`− `ϕ‖C0(L ,Y )∗ > ε0.
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Let us start with ϕ1 = 0; so there is some f1 ∈ C0(L , Y ), ‖f1‖∞ = 1, with
|`((1− ϕ1)f1)| > ε0; upon replacing f1 with −f1 if necessary we even have

`((1− ϕ1)f1) > ε0.

Since the functions of compact support are dense in C0(L , Y ) we may as
well assume that supp f1 is compact. Next consider a function ϕ2 ∈ C0(L )
with compact support, 0 ≤ ϕ2 ≤ 1, such that ϕ2(T ) = 1 on supp f1. By our
assumption there is some f2 ∈ C0(L , Y ) of compact support, ‖f2‖∞ = 1,
such that

`((1− ϕ2)f2) > ε0.

Inductively we find ϕj ∈ C0(L ) between 0 and 1 and fj ∈ C0(L , Y ) of
norm 1, both with compact support, such that ϕj(T ) = 1 on supp f1 ∪ · · · ∪
supp fj−1 and

`((1− ϕj)fj) > ε0.

By construction, if (1− ϕj)(T )fj(T ) 6= 0, then (1− ϕi)(T )fi(T ) = 0 for all
i < j; consequently for all r ∈ N∥∥∥ r∑

j=1

(1− ϕj)fj
∥∥∥
∞
≤ 1,

but

`
( r∑
j=1

(1− ϕj)fj
)
> rε0;

this is a contradiction if r ≥ ‖`‖/ε0. Thus, the above claim is proved.
Since the estimate in the above claim is a fortiori true for the restrictions

of the functionals to E0, we get that, given ε > 0,

‖`0 − `ϕ|E0
‖ ≤ ε.

Together with the first part of the proof this implies that the range of J is
dense in E∗0 .

Now that we know that J has dense range, it is clear that I is injective.
Let us show that ran I ⊂ E. Let e∗∗0 ∈ E∗∗0 ; we wish to prove that the
element Ie∗∗0 ∈ X satisfies

sup
T∈L

‖T (Ie∗∗0 )‖Y <∞.

Without loss of generality we can assume ‖e∗∗0 ‖ = 1. Then there is a net
(eα) in BE0 such that eα → e∗∗0 for the topology σ(E∗∗0 , E∗0). Since I = J∗

is weak∗ continuous, it follows Ieα → Ie∗∗0 for the topology σ(X,X∗). Since
Iβe0eα = eα, we can conclude for each T ∈ L and y∗ ∈ Y ∗

(T ∗y∗)eα → (T ∗y∗)(Ie∗∗0 ),

that is
y∗(Teα)→ y∗(TIe∗∗0 ).

Now
|y∗(Teα)| ≤ ‖y∗‖ ‖Teα‖Y ≤ ‖y∗‖ ‖eα‖∞ ≤ ‖y∗‖
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and therefore

|y∗(TIe∗∗0 )| ≤ ‖y∗‖

which shows

‖T (Ie∗∗0 )‖Y = sup
‖y∗‖≤1

|y∗(TIe∗∗0 )| ≤ 1

and thus ‖Ie∗∗0 ‖∞ ≤ 1. This proves that Ie∗∗0 ∈ E and that I is a contraction
as an operator from E∗∗0 to (E, ‖ . ‖∞).

Finally consider the linear mapping Λ: E → E∗∗0 , (Λe)(x∗|E0
) = x∗(e),

which is well defined since ran J is dense in E∗0 . One has, given e ∈ E,

x∗(e) = (Λe)(Jx∗) = (IΛe)(x∗) for all x∗ ∈ X∗,

hence e = IΛe; therefore I is surjective and

‖e‖ = ‖IΛe‖ ≤ ‖Λe‖.

To complete the proof of the theorem it remains to show that Λ is con-
tractive, that is

x∗ ∈ X∗, |x∗(e0)| ≤ 1 for all e0 ∈ BE0 ⇒ |x∗(e)| ≤ 1 for all e ∈ BE .

It is here that the assumption (A) enters. Let x∗ ∈ X∗ as above and ‖e‖∞ =
1; pick a sequence (en) in BE0 satisfying ‖en − e‖X → 0, in particular
x∗(en)→ x∗(e). Consequently |x∗(e)| ≤ 1, as requested. �

Corollary 3.2. Under the assumptions of Theorem 3.1, E0 is an M -ideal
in E and hence an M -embedded space.

Proof. We just have to verify the density condition of Theorem 2.1, that
is, BE0 is dense in BE for the topology of uniform convergence on compact
subsets of L .

Let e ∈ E, ‖e‖∞ = 1. By assumption (A) there are (en) in BE0 such that
‖en − e‖X → 0; as a result ‖Ten − Te‖Y ≤ ‖T‖ ‖en − e‖X → 0 for each
T ∈ L . This says that the associated functions ên on L converge pointwise
on L . But we have already observed in the previous proof that a compact
subset of L is bounded for the norm of L(X,Y ) by the uniform boundedness
principle. Hence the convergence is uniform on compact subsets of L . �

There is a limit to this method of detecting M -embedded spaces since the
simplest nonseparable M -embedded space, c0(Γ) for some uncountable Γ,
cannot be injected into a reflexive space. (This is a known result; here is a
sketch of the proof: Suppose j0: c0(Γ) → X is a continuous injection into
a reflexive space. Then j∗0 is weakly compact with pointwise dense range
in `1(Γ), which has the Schur property; thus j∗0 is compact and hence has
norm-separable range. This means that ran j∗0 ⊂ `1(Γ0) for some countable
Γ0 ⊂ Γ, a contradiction.)
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4. Lipschitz spaces

Let (M,d) be a metric space with a distinguished point p ∈M (a “pointed”
metric space). We denote by Lip0(M) the Banach space of all real-valued
Lipschitz functions on M vanishing at p with the Lipschitz constant as its
norm:

‖F‖Lip = sup
s6=t

|F (s)− F (t)|
d(s, t)

.

We also consider the “little” Lipschitz space

lip0(M) =
{
f ∈ Lip0(M): lim

d(s,t)→0

|f(s)− f(t)|
d(s, t)

= 0
}
.

This is a closed subspace of Lip0(M) which might however reduce to {0},
e.g., for M = [0, 1] with the Euclidean metric. For a Hölder metric on [0, 1],
dα(s, t) = |s− t|α where 0 < α < 1, the subspace lip0([0, 1], dα) is nontrivial,
indeed Lip0([0, 1], dβ) ⊂ lip0([0, 1], dα) for α < β ≤ 1. The authoritative
source about Lipschitz spaces is N. Weaver’s monograph [10].

We shall now consider compact (pointed) metric spaces with a countable
dense subset P having the following property:

(B) Blip0(M) is dense in BLip0(M) for the topology of pointwise conver-
gence on P .

Since BLip0(M) is equicontinuous this is the same as saying:

(B′) Blip0(M) is dense in BLip0(M) for the topology of uniform convergence
on M .

Proposition 4.1. If M is a compact pointed metric space with (B), then
lip0(M) is an M -ideal in Lip0(M).

Proof. Let ∆M = {(t, t): t ∈ M} be the diagonal in M × M and L =
(M ×M) \∆M ; this is a locally compact space. We further associate to a
function F on M a new function ΦF on L defined by

(ΦF )(s, t) =
|F (s)− F (t)|

d(s, t)
;

this is the approach of K. de Leeuw’s classical paper [3]. Note that Φ is
a linear isometry from Lip0(M) into Cb(L) that takes lip0(M) into C0(L).
Let Λ = Φ(Lip0(M)) and λ = Φ(lip0(M)); then λ = Λ ∩ C0(L).

To prove that λ is an M -ideal in Λ (and thus lip0(M) is an M -ideal in
Lip0(M)) it is enough, by Theorem 2.1, to show that Bλ is dense in BΛ for
the topology of uniform convergence on compact subsets of L. If K ⊂ L is
compact, then inf{d(s, t): (s, t) ∈ K} =: δ > 0. Let F ∈ BLip0(M); by (B)

(or rather (B′)) there are fn ∈ Blip0(M) such that ‖fn−F‖∞ → 0; hence for
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(s, t) ∈ K

|(Φfn)(s, t)− (ΦF )(s, t)| ≤ 1

δ
|(fn(s)− fn(t))− (F (s)− F (t))|

≤ 1

δ
(|fn(s)− F (s)|+ |fn(t)− F (t)|)

≤ 2

δ
‖fn − F‖∞ → 0

so that Φfn → ΦF uniformly on K.
This completes the proof of the proposition. �

We now come to the biduality theorem, originally due to N. Weaver in
[9] who was the first to handle lip0-spaces and even covered certain non-
compact spaces. In [7] Perfekt considered the case of a Hölder metric on a
compact subset M ⊂ Rn and showed that lip0(M)∗∗ ∼= Lip0(M) by means
of his method using a Besov space as the reflexive space X. He asked for
a proof along these lines for a general compact metric space; this will be
accomplished in the proof of the next theorem.

Theorem 4.2. Let M be a compact pointed metric space satisfying (B)
above. Then lip0(M)∗∗ ∼= Lip0(M).

Proof. We shall set up the Perfekt scenario as follows. Let X be the weighted
`2-space

X =
{

(xn):
∞∑
k=1

|xk|22−k <∞
}

with its canonical norm. Pick a dense sequence (pn) in M and consider the
functionals `n,m ∈ X∗ (so Y = R) defined by

`n,m(x) =
xn − xm
d(pn, pm)

(n 6= m)

and equip L = {`n,m: n,m ∈ N, n 6= m} with the discrete topology. For
F ∈ Lip0(M) let xF = (F (pn)), then xF ∈ X since F is bounded. Further
define E = {xF : F ∈ Lip0(M)}. Note that

sup
n6=m
|`n,m(xF )| = sup

n6=m

∣∣∣F (pn)− F (pm)

d(pn, pm)

∣∣∣ = ‖F‖Lip;

therefore (E, ‖ . ‖∞) is isometric to Lip0(M), and E is a closed subspace of

Cb(L ).
Let E0 = E ∩ C0(L ). We shall argue that xF ∈ E0 if and only if F ∈

lip0(M). Indeed, write αL = L ∪{∞} for the Alexandrov compactification
of L . Suppose lim`n,m→∞ `n,m(xF ) = 0. Then, given ε > 0, there is a finite
set K ⊂ (N × N) \ ∆N such that |`n,m(xF )| < ε for (n,m) /∈ K. Let
δ = inf{d(pn, pm): (n,m) ∈ K} > 0. Therefore, if d(pn, pm) < δ, then
(n,m) /∈ K and as a result ∣∣∣F (pn)− F (pm)

d(pn, pm)

∣∣∣ < ε
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for these (n,m), which implies F ∈ lip0(M) by density of {p1, p2, . . . }.
Conversely, if F ∈ lip0(M), then, if ε > 0 and `(n,m)(F ) ≥ ε, we have
d(pn, pm) ≥ δ for some δ > 0. In a compact space there can only be finitely
many δ-separated points; this proves that lim`n,m→∞ `n,m(xF ) = 0.

To conclude the proof of the theorem it is only left to verify condition (A)
from Section 3 and to apply Theorem 3.1. By (B′) there are, given F ∈
Lip0(M) with ‖F‖Lip = 1, functions fn ∈ Blip0(M) such that ‖fn−F‖∞ → 0.
Then

‖xfn − xF ‖2X =
∞∑
k=1

|fn(pk)− F (pk)|22−k

≤
∞∑
k=1

‖fn − F‖2∞2−k = ‖fn − F‖2∞ → 0,

as required. �

Let (M,d) be a metric space. For 0 < α < 1, dα is a metric as well; we
write Mα to indicate that M is equipped with the metric dα. (Sometimes
Mα is called a snow-flaked version of M .) The corresponding Lipschitz
spaces are also called Lipschitz-Hölder spaces, in accordance with the clas-
sical notation in Rn. We shall prove that the compact metric spaces Mα

satisfy the condition (B).

Proposition 4.3. Let (M,d) be a compact pointed metric space and 0 <
α < 1. Then Mα satisfies condition (B).

Proof. Let P = {p1, p2, . . . } be a countable dense subset of M with p1 = p,
the base point of M , and let Pn = {p1, . . . , pn}. Let F ∈ Lip0(Mα) with
‖F‖Lip0(Mα) = 1. Define a function gn on Pn by gn(pj) = F (pj). Clearly

‖gn‖Lip0(Pαn ) ≤ 1. Choose βn ∈ (α, 1) such that ‖gn‖Lip0(Pβnn )
≤ 1 + 1

n and

(diamM)βn−α ≤ 1 + 1
n ; the former is possible since Pn is finite. Now apply

the McShane extension theorem [10, Th. 1.33] and extend gn to a function
Gn: M → R having the same Lipschitz constant as gn for the metric dβn .
Finally let fn = Gn/(1+ 1

n)2. Then fn ∈ Lip0(Mβn) and thus fn ∈ lip0(Mα).
Moreover, fn → F pointwise on P by construction and

‖fn‖Lip0(Mα) ≤ ‖fn‖Lip0(Mβn )(diamM)βn−α

≤
‖Gn‖Lip0(Mβn )

(1 + 1
n)2

(
1 +

1

n

)
≤ 1.

This proves condition (B) for dα. �

Corollary 4.4. Let (M,d) be a compact pointed metric space and 0 < α < 1.
Then (lip0(Mα))∗∗ is canonically isometric to Lip0(Mα), and lip0(Mα) is
an M -ideal in its bidual Lip0(Mα).

Proof. This follows from Proposition 4.1, Theorem 4.2 and Proposition 4.3.
�
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It is a remarkable fact, proved by N. Kalton [5, Th. 6.6], that, for a com-
pact metric space, lip0(M) is always M -embedded since it embeds almost
isometrically into c0. I do not know whether lip0(M) is always an M -ideal
in Lip0(M); this trivially holds if lip0(M) is trivial.

The biduality theorem of Corollary 4.4 is originally due to N. Weaver [9];
in fact he gave a number of conditions that are equivalent to the validity of
the biduality theorem on a compact metric space. Let us add that condition
(B) is actually equivalent to Lip0(M) being the bidual of lip0(M) under
the canonical duality. Indeed, if lip0(M) and Lip0(M) are in canonical
biduality, then by Goldstine’s theorem Blip0(M) is weak∗ dense in BLip0(M),
and checking this on point evaluations F 7→ F (t), which span the predual
F (M) of Lip0(M) (known as the Lipschitz free space, Arens-Eells space or
transportation cost space), shows that (B) holds.
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