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Abstract. We prove the norm identity ‖Id+T‖ = 1+‖T‖, which is
known as the Daugavet equation, for operators T on C(S) not fixing a
copy of C[0, 1], where S is a compact Hausdorff space without isolated
points.

1. Introduction

An operator T : X → X on a Banach space is said to satisfy the Daugavet
equation if

‖Id + T‖ = 1 + ‖T‖; (1.1)

this terminology is derived from Daugavet’s theorem that a compact oper-
ator on C[0, 1] satisfies (1.1). Many authors have established the Daugavet
equation for various classes of operators, e.g., the weakly compact ones, on
various spaces; we refer to [1], [2], [4], [8], [11], [12], [14] and the references
in these papers for more information.

The most far-reaching result for operators on L1[0, 1] is due to Plichko
and Popov [8, Th. 9.2 and Th. 9.8] who proved that an operator on L1[0, 1]
which does not fix a copy of L1[0, 1] satisfies the Daugavet equation. (As
usual, T : X → X fixes a copy of a Banach space E if there is a subspace
F ⊂ X isomorphic to E such that T |F is an (into-) isomorphism.) In this
paper we shall establish the corresponding result for operators on spaces of
continuous functions; that is, we shall prove for an operator T : C(S)→ C(S)
not fixing a copy of C[0, 1] that T satisfies the Daugavet equation provided
the compact space S fails to have isolated points.

In the next section we shall give a proof of this result which relies on a
deep result due to Rosenthal [9], and in Section 3 we develop another ap-
proach which is rather self-contained and measure theoretic in spirit. Since
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this proof appears to be more revealing than the one in Section 2, we found it
worthwhile to present both arguments. Very recently we learnt that Kadets
and Popov [5] found still another proof of this theorem.

Our results are valid for real and complex spaces; we denote the scalar
field by K.

Acknowledgement. We would like to thank Haskell Rosenthal for provid-
ing Lemma 2.4, thus extending our main result to non-metrizable spaces.

2. Operators not fixing a copy of C[0, 1]

Either of our approaches to the main result depends on the analysis of the
representing kernel of an operator T : C(S) → C(S); this is the family of
Borel measures on S defined by µs = T ∗δs, s ∈ S. In [11] (see also [12])
a necessary and sufficient condition on the kernel of T was established in
order that T satisfy the Daugavet equation. Here we record a special case
which suffices for our needs.

Lemma 2.1 If the representing kernel (µs)s∈S of a bounded linear operator
T : C(S)→ C(S) satisfies

inf
s∈U
|µs({s})| = 0 (2.1)

for all nonvoid open subsets U of S, then T satisfies the Daugavet equation.

For the convenience of the readers we shall present the (easy) proof of
this lemma. Let ε > 0 and consider the open set U = {s: ‖µs‖ > ‖T‖ − ε}.
By (2.1), there is some s ∈ U such that

|1 + µs({s})| ≥ 1 + |µs({s})| − ε.

Consequently,

‖Id + T‖ ≥ ‖(Id + T )∗(δs)‖
= ‖δs + µs‖
= |1 + µs({s})|+ |µs|(S\{s})
≥ 1 + |µs({s})|+ |µs|(S\{s})− ε
= 1 + ‖µs‖ − ε
≥ 1 + ‖T‖ − 2ε,

since s ∈ U , and the Daugavet equation follows. 2
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Proposition 2.2 Suppose S is a compact Hausdorff space without isolated
points. If T : C(S) → C(S) is a bounded linear operator such that ran(T ∗)
is separable, then T satisfies the Daugavet equation.

Proof. Let (µs)s∈S be the representing kernel of T , and let {µsn : n ∈ N} be
dense in {µs: s ∈ S}. We define µ =

∑
2−n|µsn |; then all the µs are abso-

lutely continuous with respect to µ. Hence µs({s}) 6= 0 only if |µ|({s}) 6= 0.
Therefore, {s ∈ S: µs({s}) 6= 0} is countable, and, since S is perfect, its
complement is dense by Baire’s theorem. This implies that the condition of
Lemma 2.1 is satisfied, and the proposition is proved. 2

Proposition 2.2 obviously covers the case of compact operators, operators
factoring through a space with a separable dual, and, in the case of metric S,
weakly compact operators; for the latter observe that T ∗∗(C(S)∗∗) ⊂ C(S)
so that T ∗∗ and, consequently, T ∗ have separable ranges. But even for non-
metrizable perfect S the Daugavet equation for weakly compact operators
on C(S) can be derived from the argument of Proposition 2.2; one only has
to recall that by a theorem of Bartle, Dunford and Schwartz [3, p. 306] also
in this case all the µs are absolutely continuous with respect to some finite
measure µ. This seems to yield the easiest proof of the Daugavet equation
for these classes of operators.

The most important application of Proposition 2.2, however, is to prove
the following theorem which is the main result of this paper.

Theorem 2.3 Let S be a compact Hausdorff space without isolated points.
If T : C(S)→ C(S) does not fix a copy of C[0, 1], then T satisfies the Dau-
gavet equation.

Proof. If S is metrizable, we can invoke a result due to Rosenthal [9] (see also
[10]) who has shown in the metrizable setting that an operator T : C(S)→
C(S) fixes a copy of C[0, 1] if and only if ran(T ∗) is nonseparable. So, in
this case Theorem 2.3 follows from Proposition 2.2.

The general case will be reduced to the metrizable one by means of a
lemma that was kindly pointed out to us by H. P. Rosenthal.

Lemma 2.4 Let S be a compact Hausdorff space without isolated points,
let X be a separable subspace of C(S), and let T : C(S) → C(S) be an
operator. Then there exists a closed subspace A of C(S) containing X which
is algebraically and isometrically isomorphic to some C(K), where K is a
compact metric space without isolated points, such that T (A) ⊂ A.



4 Lutz Weis and Dirk Werner

Taking this lemma for granted we may complete the proof of Theorem 2.3
as follows. Assume ‖Id+T‖ < 1+‖T‖. Pick a sequence of functions f1, f2, . . .
in the unit ball of C(S) with ‖T‖ = supn ‖Tfn‖. Let X be the closed linear
span of the fn and choose A according to Lemma 2.4. Clearly we have

‖(Id + T )|A‖ ≤ ‖Id + T‖ < 1 + ‖T‖ = 1 + ‖T |A‖;

hence, by the first part of the proof T |A and thus T fixes a copy of C[0, 1].
(By the results of [9] we can even deduce that T actually fixes an isometric
copy of C[0, 1].) 2

We now give the proof of Lemma 2.4. Let us agree to call a closed
self-adjoint subalgebra of a complex C(S)-space containing the constants or
a closed subalgebra of a real C(S)-space containing the constants simply
a C∗-subalgebra. For a C∗-subalgebra A of C(S), an atom is a non-zero
{0, 1}-valued function f ∈ A such that whenever g ∈ A, 0 ≤ g ≤ f , we have
g = 0 or g = f . Note that C(S) has atoms if and only if S has isolated
points.

Let B1 ⊂ B2 ⊂ . . . be C∗-subalgebras of C(S) and put B = lin
⋃
nBn.

We claim for an atom f ∈ B that f belongs to some Bn and hence is an
atom of Bn. In fact, there is some n and some g ∈ Bn such that ‖f−g‖ < 1

2 .
If S0 = {s: f(s) = 0} and S1 = {s: f(s) = 1}, then |g(s)| < 1

2 on S0 and
|1− g(s)| < 1

2 on S1. Hence there is a continuous function ϕ on K satisfying
ϕ ◦ g = χS1 = f ; consequently, f ∈ Bn.

Turning to the lemma, we denote by B1 the C∗-subalgebra generated
by X, which is separable. Therefore, B1 contains at most countably many
atoms. For each atom a of B1 there exists a function fa ∈ C(S), different
from both 0 and a, such that 0 ≤ fa ≤ a, by the perfectness of S. Let B2

denote the (separable) C∗-subalgebra generated by B1 and those fa; note
that by construction a is no longer an atom of B2. We continue defining
separable C∗-subalgebras B1 ⊂ B2 ⊂ . . . of C(S) inductively in such a way
that Bn+1 is generated by Bn and functions fa as above, a an atom of Bn.
If B = lin

⋃
nBn, then B is a separable C∗-subalgebra of C(S) without any

atoms, by the previous paragraph.
Let A1 = B and X1 = lin

⋃
n T

n(A); we clearly have T (X1) ⊂ X1. We
repeat the above construction to obtain an atomless separable C∗-subalgebra
A2 ⊃ X1. Next we let X2 = lin

⋃
n T

n(A2), find A3 ⊃ X2 and keep going,
thus obtaining atomless C∗-subalgebras A1 ⊂ A2 ⊂ . . . . Now A = lin

⋃
nAn

satisfies the conclusion of Lemma 2.4; being a separable unital C∗-algebra,
A is algebraically and isometrically isomorphic to a C(K)-space where K
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is metrizable, and since A does not have atoms by the argument above, K
does not have isolated points. 2

We remark that the converse of Theorem 2.3 is clearly false as is most
easily demonstrated by the operator T = −Id on C[0, 1]. We also note that
in our setting T does not fix a copy of C[0, 1] if and only if T does not fix a
copy of `1 if and only if T is weakly sequentially precompact, i.e., if (fn) is a
bounded sequence in C(S), then (Tfn) admits a weak Cauchy subsequence.

We finally extend Proposition 2.2 to the class of nicely embedded Banach
spaces introduced in [12] so that we obtain a unified approach to several
results of that paper.

Let S be a Hausdorff topological space, and let Cb(S) be the sup-normed
Banach space of all bounded continuous scalar-valued functions. The func-
tional f 7→ f(s) on Cb(S) is denoted by δs. We say that a linear map J :
X → Cb(S) on a Banach space X is a nice embedding and that X is nicely
embedded into Cb(S) if J is an isometry such that for all s ∈ S the following
properties hold:

(N1) For ps := J∗(δs) ∈ X∗ we have ‖ps‖ = 1.

(N2) lin{ps} is an L-summand in X∗.

The latter condition means that there are projections Πs from X∗ onto
lin{ps} such that

‖x∗‖ = ‖Πs(x
∗)‖+ ‖x∗ −Πs(x

∗)‖ ∀x∗ ∈ X∗.

We will also need the equivalence relation

s ∼ t if and only if Πs = Πt

on S. Then s and t are equivalent if and only if ps and pt are linearly
dependent, which implies by (N1) that pt = λps for some scalar of modulus 1.
The equivalence classes of this relation are obviously closed.

We will consider the following nondiscreteness condition.

(N3) None of the equivalence classes Qs = {t ∈ S: s ∼ t} contains an
interior point.

If the set {ps: s ∈ S} is linearly independent, this simply means:

(N3′) S does not contain an isolated point.

By (N2), the ps are linearly independent as soon as they are pairwise linearly
independent.
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Proposition 2.5 Let S be a Baire topological Hausdorff space and suppose
that X is nicely embedded into Cb(S) so that additionally (N3) holds. If T :
X → X is a bounded linear operator with ran(T ∗) separable, then T satisfies
the Daugavet equation.

Proof. We stick to the above notation and put qs = T ∗(ps). By [12,
Prop. 2.1] it is sufficient to prove that

S′ = {t ∈ S: Πt(qs) = 0 ∀s}

is dense in S. If {qsn : n ∈ N} denotes a dense subset of {qs: s ∈ S}, then
t /∈ S′ if and only if Πt(qsn) 6= 0 for some n. This implies that S \S′ consists
of at most countably many equivalence classes for the equivalence relation ∼
(cf. [12, Lemma 2.3]), and by (N3) and Baire’s theorem S′ must be dense.

2

It is proved in [12] that the following classes of Banach spaces satisfy the
assumptions of Proposition 2.5:

• X is a function algebra whose Choquet boundary does not contain
isolated points,

• X is a real L1-predual space so that the set exBX∗ of extreme func-
tionals does not contain isolated points (for the weak∗ topology),

• X is a complex L1-predual space for which the quotient space
exBX∗/∼ does not contain isolated points, where ∼ means linear
dependence,

• X is a space of type CΛ for certain subsets Λ of abelian discrete
groups.

3. A different approach

In this section we present a direct measure theoretic approach to Theo-
rem 2.3. As above we only have to take care of metrizable spaces S since
the general case reduces to this one (see Section 2).

So we suppose that (S, d) is a compact metric space without isolated
points, and we fix a diffuse probability measure λ on S whose support is S.
To show the existence of such a measure, consider a countable basis of open
sets On ⊂ S. Since each On is perfect, we know from a theorem of Bessaga
and Pe lczyński (see [7, p. 52]) that there are diffuse probability measures λn
with suppλn ⊂ On; it remains to define λ =

∑
2−nλn.
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Now let T : C(S) → C(S) be a bounded linear operator and (µs)s∈S its
representing kernel. It is enough to show that T fixes a copy of C[0, 1] if
(2.1) of Lemma 2.1 fails for some open set U . Thus we assume, for some
open U ⊂ S and α > 0, that

|µs({s})| ≥ α ∀s ∈ U. (3.1)

We shall also assume without loss of generality that ‖T‖ = 1.

We shall decompose the µs into their atomic and diffuse parts. It is
instrumental for our argument that this can be accomplished in a measurable
fashion, as was proved by Kalton [6, Th. 2.10]. More precisely we can write

µs =
∞∑
n=1

an(s)δσn(s) + νs

where

• each an: S → K is measurable for the completion Σλ of the Borel
sets of S with respect to λ,

• each σn: S → S is Σλ-Borel-measurable,

• each νs is diffuse, and s 7→ |νs| is Σλ-Borel-measurable (we are
considering the weak∗ Borel sets of the unit ball of C(S)∗),

• |a1(s)| ≥ |a2(s)| ≥ . . . for all s ∈ S,

• σn(s) 6= σm(s) for all s ∈ S whenever n 6= m,

•
∑∞
n=1 |an(s)| ≤ 1 for all s ∈ S.

Put β = λ(U) > 0. Applying the Egorov and Lusin theorems, we may
find a compact subset S1 ⊂ S with λ(S1) ≥ 1− β/2 such that

• each an|S1
is continuous on S1,

• each σn|S1
is continuous on S1,

•
∑
|an(s)| converges uniformly on S1,

• lim
n→∞

sup
s∈S1

|νs|(B(t, 1/n))→ 0 for all t ∈ S; (2.2)

here B(t, r) denotes the closed ball with centre t and radius r. To prove
(2.2) fix a countable dense subset Q of S. Let Un be the countable set of
all finite covers of S by means of open balls of radius 1/n with centres in Q.
Then

ϕn(s) = inf
C∈Un

sup
B∈C
|νs|(B)
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defines a sequence of Σλ-measurable functions, and we have ϕn → 0 point-
wise, since the νs are diffuse and S is compact. By Egorov’s theorem (ϕn)
tends to 0 uniformly on a large subset of S. This easily implies our claim.

After discarding relatively isolated points of S1, if necessary, we come
up with a perfect subset S1 with the above properties; note that U ∩S1 6= ∅
since this intersection has positive λ-measure. Next we pick N ∈ N such
that ∑

n>N

|an(s)| ≤ α/3 ∀s ∈ S1. (3.3)

Let s ∈ U ∩ S1. Then

α ≤ |µs({s})| =
∣∣∣∣∣
∞∑
n=1

an(s)δσn(s)({s})
∣∣∣∣∣ .

Consequently σk(s) = s for some k; in addition, we must have

|ak(s)| ≥ α (3.4)

for this k so that k ≤ N . This shows that

U ∩ S1 =
N⋃
l=1

{s ∈ U ∩ S1: σl(s) = s}.

Each of these N sets is relatively closed in U ∩ S1, so one of them, with
index k say, contains a relatively interior point s0. Therefore, there exists
some δ > 0 with the following properties:

For Bl = σl(S1 ∩B(s0, δ)), l = 1, . . . , N , we have

(a) Bk = S1 ∩B(s0, δ) ⊂ S1 ∩ U , and σk(s) = s for all s ∈ Bk,
(b) Bl ∩ B(s0, δ) = ∅ for l 6= k (since s0 = σk(s0) 6= σl(s0) and these

functions are continuous on S1),

(c) |νs|(B(s0, δ)) ≤ α/3 for all s ∈ S1 (see (2.2)).

Now let V = S1 ∩B(s0, δ/2). This is a compact perfect subset of S and
thus C(V ) is isomorphic to C[0, 1] by Milutin’s theorem [13, Th. III.D.19].
Also let W = {s ∈ S: d(s, s0) ≥ δ}. Again, this is a compact subset of S,
V ∩W = ∅, and we have from (a) and (b) above

(a′) σk(s) = s for all s ∈ V ,

(b′) Bl ⊂W for all l = 1, . . . , N , l 6= k.
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By the Borsuk-Dugundji theorem (see e.g. [13, Cor. III.D.17]) there exists
an isometric linear extension operator L: C(V ∪ W ) → C(S). Let E =
{f ∈ C(V ∪W ): f |W = 0} and F = L(E); thus F ∼= E ∼= C(V ), and F is
isomorphic to C[0, 1].

We finally prove that T |F is an isomorphism. In fact, let us show that

‖Tf‖ ≥ α

3
‖f‖ ∀f ∈ F.

Suppose f ∈ F with ‖f‖ = 1. Then ‖f |V ‖ = 1 and f |W = 0. Pick s ∈ V
with |f(s)| = 1. Then we have (recall that V ⊂ S1 ∩ U)

‖Tf‖ ≥ |Tf(s)|

=

∣∣∣∣∣
∞∑
n=1

an(s)f(σn(s)) +

∫
S
f dνs

∣∣∣∣∣
≥ |ak(s)| −

∑
n>N

|an(s)| −
∫
S
|f | d|νs|

(by (a′) and (b′))

≥ α− α

3
− |νs|(B(s0, δ))

(by (3.4), (3.3) and since f |W = 0)

≥ α

3
(by (c)).

This completes the second proof of our theorem. 2
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