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Abstract. We study those Banach spaces X for which SX does not admit

a finite ε-net consisting of elements of SX for any ε < 2. We give character-

isations of this class of spaces in terms of `1-type sequences and in terms of

the almost Daugavet property. The main result of the paper is: a separable

Banach space X is isomorphic to a space from this class if and only if X

contains an isomorphic copy of `1.

1. Introduction

For a Banach space X, R. Whitley [13] introduced the following parameter,
called thickness, which is essentially the inner measure of non-compactness of the
unit sphere SX :

T (X) = inf{ε > 0: there exists a finite ε-net for SX in SX},

or equivalently, T (X) is the infimum of those ε such that the unit sphere of X
can be covered by a finite number of balls with radius ε and centres in SX . He
showed in the infinite dimensional case that 1 ≤ T (X) ≤ 2, and in particular that
T (C(K)) = 1 if K has isolated points and T (C(K)) = 2 if not.

In this paper we concentrate on the spaces with T (X) = 2. Our main results
are the following; BX denotes the closed unit ball of X.

Theorem 1.1. For a separable Banach space X the following conditions are
equivalent:
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(a) T (X) = 2;
(b) there is a sequence (en) ⊂ BX such that for every x ∈ X

lim
n→∞

‖x+ en‖ = ‖x‖+ 1;

(c) there is a norming subspace Y ⊂ X∗ such that the equation

(1.1) ‖Id + T‖ = 1 + ‖T‖

holds true for every rank-one operator T : X → X of the form T = y∗⊗x,
where x ∈ X and y∗ ∈ Y .

Theorem 1.2. A separable Banach space X can be equivalently renormed to have
thickness T (X) = 2 if and only if X contains an isomorphic copy of `1.

We mention that it has been proved in [1] that a space with thickness T (X) = 2
contains a copy of `1.

Recall that a subspace Y ⊂ X∗ is said to be norming (or 1-norming) if for
every x ∈ X

sup
y∗∈SY

|y∗(x)| = ‖x‖.

Y is norming if and only if SY is weak∗ dense in BX∗ .
Condition (b) of Theorem 1.1 links our investigations to the theory of types

[10]. Recall that a type on a separable Banach space X is a function of the form

τ(x) = lim
n→∞

‖x+ en‖

for some bounded sequence (en). In [10] the notion of an `1-type is defined by
means of convolution of types; a special instance of this is a type generated by a
sequence (en) satisfying

(1.2) τ(x) = lim
n→∞

‖x+ en‖ = ‖x‖+ 1.

To simplify notation let us call a type like this a canonical `1-type and a sequence
(en) ⊂ BX satisfying (1.2) a canonical `1-type sequence.

Condition (c) links our investigations to the theory of Banach spaces with the
Daugavet property introduced in [8] and developed further for instance in the
papers [2] [5], [6], [9]; see also the survey [12]. We will say that a Banach space
X has the Daugavet property with respect to Y (X ∈ DPr(Y )) if the Daugavet
equation (1.1) holds true for every rank-one operator T : X → X of the form
T = y∗⊗x, where x ∈ X and y∗ ∈ Y , and it has the almost Daugavet property or
is an almost Daugavet space if it has DPr(Y ) for some norming subspace Y ⊂ X∗.
This definition is a generalization (introduced in [7]) of the by now well-known
Daugavet property of [8], which is DPr(Y ) with Y = X∗.
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In this language Theorem 1.2 says, by Theorem 1.1, that a separable Banach
space can be renormed to have the almost Daugavet property if and only if it
contains a copy of `1.

In Section 2 we present a characterisation of almost Daugavet spaces in terms
of `1-sequences of the dual. The proofs of Theorems 1.1 and 1.2 will be given in
Sections 3 and 4.

The following lemma is the main technical prerequisite that we use; it is the
analogue of [8, Lemma 2.2]. Up to part (v) it was proved in [7]; however, (v)
follows along the same lines. By a slice of BX we mean a set of the form

S(y∗, ε) = {x ∈ BX : Re y∗(x) ≥ 1− ε}

for some y∗ ∈ SX∗ and some ε > 0, and a weak∗ slice S(y, ε) of the dual ball BX∗

is a particular case of slice, generated by element y ∈ SX ⊂ X∗∗.

Lemma 1.3. If Y is a norming subspace of X∗, then the following assertions are
equivalent.

(i) X has the Daugavet property with respect to Y .

(ii) For every x ∈ SX , for every ε > 0, and for every y∗ ∈ SY there is some
y ∈ S(y∗, ε) such that

(1.3) ‖x+ y‖ ≥ 2− ε.

(iii) For every x ∈ SX , for every ε > 0, and for every y∗ ∈ SY there is a
slice S(y∗1 , ε1) ⊂ S(y∗, ε) with y∗1 ∈ SY such that (1.3) holds for every
y ∈ S(y∗, ε1).

(iv) For every x∗ ∈ SY , for every ε > 0, and for every weak∗ slice S(x, ε) of
the dual ball BX∗ there is some y∗ ∈ S(x, ε) such that ‖x∗+ y∗‖ ≥ 2− ε.

(v) For every x∗ ∈ SY , for every ε > 0, and for every weak∗ slice S(x, ε) of
the dual ball BX∗ there is another weak∗ slice S(x1, ε1) ⊂ S(x, ε) such
that ‖x∗ + y∗‖ ≥ 2− ε for every y∗ ∈ S(x1, ε1).

We would like to thank P. Papini for providing us with useful references and
W.B. Johnson, E. Odell and Th. Schlumprecht for helpful comments.

2. A characterisation of almost Daugavet spaces by means of

`1-sequences in the dual

For the sake of easy notation we introduce two definitions.
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Definition 2.1. Let E be subspace of a Banach space F and ε > 0. An element
e ∈ BF is said to be (ε, 1)-orthogonal to E if for every x ∈ E and t ∈ R

(2.1) ‖x+ te‖ ≥ (1− ε)(‖x‖+ |t|).

Definition 2.2. Let E be a Banach space. A sequence {en}n∈N ⊂ BE \ {0} is
said to be an asymptotic `1-sequence if there is a sequence of numbers εn > 0 with∏
n∈N(1 − εn) > 0 such that en+1 is (εn, 1)-orthogonal to Yn := lin{e1, . . . , en}

for every n ∈ N.

Evidently every asymptotic `1-sequence is 1/
∏
n∈N(1 − εn)-equivalent to the

unit vector basis in `1, and moreover every element of the unit sphere of Em :=
lin{ek}∞k=m+1 is

(
1−

∏
n≥m(1− εn), 1

)
-orthogonal to Ym for every m ∈ N.

The following lemma is completely analogous to [8, Lemma 2.8]; instead of [8,
Lemma 2.1] it uses (v) of Lemma 1.3. So we state it without proof.

Lemma 2.3. Let Y be a norming subspace of X∗, X ∈ DPr(Y ), and let Y0 ⊂ Y
be a finite-dimensional subspace. Then for every ε0 > 0 and every weak∗ slice
S(x0, ε0) of BX∗ there is another weak∗ slice S(x1, ε1) ⊂ S(x0, ε0) of BX∗ such
that every element e∗ ∈ S(x1, ε1) is (ε0, 1)-orthogonal to Y0. In particular there
is an element e∗1 ∈ S(x0, ε0) ∩ SY which is (ε0, 1)-orthogonal to Y0.

We need one more definition.

Definition 2.4. A sequence {e∗n}n∈N ⊂ BX∗ is said to be double-norming if
lin{e∗k}∞k=n is norming for every n ∈ N.

Here is the main result of this section.

Theorem 2.5. A separable Banach space X is an almost Daugavet space if and
only if X∗ contains a double-norming asymptotic `1-sequence.

Proof. First we prove the “if” part. Let {e∗n}n∈N ⊂ BX∗ be a double-norming
asymptotic `1-sequence, and let εn > 0 with

∏
n∈N(1− εn) > 0 be such that e∗n+1

is (εn, 1)-orthogonal to Yn := lin{e∗1, . . . , e∗n} for every n ∈ N. Let us prove that
X has the Daugavet property with respect to Y = lin{e∗n}n∈N where the closure
is meant in the norm topology. To do this let us apply (iv) of Lemma 1.3.

Fix an x∗ ∈ SY , an ε > 0 and a weak∗ slice S(x, ε) of the dual ball BX∗ .
Denote in addition to Ym = lin{e∗1, . . . , e∗m}, Em := lin{e∗k}∞k=m+1. Using the
definition of Y select an m ∈ N and an x∗m ∈ Ym such that ‖x∗ − x∗m‖ < ε/2 and∏
n≥m(1 − εn) > 1 − ε/2. Since Em is norming, there is a y∗ ∈ S(x, ε) ∩ SEm .
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Taking into account that every element of the unit sphere of Em is (ε/2, 1)-
orthogonal to Ym we obtain

‖x∗ + y∗‖ ≥ ‖x∗m + y∗‖ − ‖x∗ − x∗m‖ ≥ 2− ε.

For the “only if” part we proceed as follows. First we fix a sequence of numbers
εn > 0 with

∏
n∈N(1− εn) > 0 and a dense sequence (xn) in SX . We can choose

these xn in such a way that each of them appears in the sequence (xn) infinitely
many times. Assume now that X ∈ DPr(Y ) with respect to a norming subspace
Y ⊂ X∗. Starting with Y0 = {0}, ε0 = 1 and applying Lemma 2.3 step-by-step
we can construct a sequence {e∗n}n∈N ⊂ SY in such a way that each e∗n+1 belongs
to S(xn, εn) and is (εn, 1)-orthogonal to Yn, where Yn = lin{e∗1, . . . , e∗n} as before.
This inductive construction ensures that the e∗n, n ∈ N, form an asymptotic `1-
sequence. On the other hand this sequence meets every slice S(xn, εn) infinitely
many times, and this implies by density of (xn) that (e∗n) is double-norming. �

In Corollary 3.5 we shall observe a somewhat more pleasing version of the last
result.

We conclude the section with two examples.

Proposition 2.6. The real space `1 is an almost Daugavet space.

Proof. To prove this statement we will construct a double-norming asymptotic
`1-sequence (fn) ⊂ `∞ = (`1)∗. At first consider a sequence (gn) ⊂ `∞ of elements
gn = (gn,j)j∈N with all gn,j = ±1 satisfying the following independence condition:
for arbitrary finite collections αs = ±1, s = 1, . . . , n, the set of those j that
gs,j = αs for all s = 1, . . . , n is infinite (for instance, put gs,j := rs(tj), where the
rs are the Rademacher functions and (tj)j∈N is a fixed sequence of irrationals that
is dense in [0, 1]). These gn, n ∈ N, form an isometric `1-sequence, and moreover
if one changes a finite number of coordinates in each of the gn to some other ±1,
the independence condition will survive, so the modified sequence will still be an
isometric `1-sequence.

Now let us define the vectors fn = (fn,j)j∈N, fn,j = ±1, in such a way that for
k = 1, 2, . . . and n = 2k + 1, 2k + 2, . . . , 2k+1 the vectors (fn,j)kj=1 ∈ `

(k)
∞ run over

all extreme points of the unit ball of `(k)∞ , i.e., over all possible k-tuples of ±1; for
the remaining values of indices we put fn,j = gn,j . As we have already remarked,
the fn form an isometric `1-sequence. Moreover, for every k ∈ N the restrictions
of the fn to the first k coordinates form a double-norming sequence over `(k)1 , so
(fn)n∈N is a double-norming sequence over `1. �
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Some ideas of the previous proof will enter into the proof of Theorem 1.1. As a
consequence of that theorem, the complex space `1 is almost Daugavet as well. It
is worth noting that `1 fails the Daugavet property and cannot even be renormed
to have it (see e.g. [8, Cor. 2.7]).

Since `∞ is isomorphic to L∞[0, 1], which has the Daugavet property, `∞ can
be equivalently renormed to possess the Daugavet property. Let us show that in
the original norm it is not even an almost Daugavet space. This is a special case
of the following proposition in which K stands for R or C.

Proposition 2.7. No Banach space of the form Z = X ⊕∞ K is an almost
Daugavet space.

Proof. Let us call a functional z∗0 ∈ Z∗ a Daugavet functional if

‖Id + z∗0 ⊗ z0‖ = 1 + ‖z∗0 ⊗ z0‖ for every z0 ∈ Z.

We shall show that z∗0 = (x∗0, b0) is not a Daugavet functional if b0 6= 0. Hence all
the Daugavet functionals lie in the weak∗ closed subspace ({0} ⊕X)⊥ of Z∗.

So let x∗0 ∈ X∗ and b0 6= 0 with ‖x∗0‖ + |b0| = 1, z∗0 = (x∗0, b0) and let z0 =
(0,−|b0|/b0). If z = (x, a) ∈ BZ , i.e., ‖x‖ ≤ 1 and |a| ≤ 1, then

‖z + z∗0(z)z0‖ = max{‖x‖, | a− z∗0(z)|b0|/b0 |}
≤ max{1, | a− (x∗0(x0) + b0a)|b0|/b0 |}
≤ max{1, ‖x∗0‖+ (1− |b0|)} < 2.

This shows that z∗0 is not a Daugavet functional. �

If K is a compact Hausdorff space with an isolated point, then C(K) is of
the form X ⊕∞ K, hence it fails the almost Daugavet property. But if K is an
uncountable metric space, then C(K) is isomorphic to C[0, 1] by Milutin’s theorem
[14, Th. III.D.19], hence it can be renormed to have the Daugavet property.

3. Proof of Theorem 1.1

Since the three properties considered in Theorem 1.1 hold for a complex Banach
space X if and only if they hold for the underlying real space XR, we will tacitly
assume in this section that we are dealing with real spaces.

We will accomplish the proof of Theorem 1.1 by means of the following propo-
sitions.

The following fact applied for separable spaces is equivalent to implication (c)
⇒ (a) of Theorem 1.1.

Proposition 3.1. Every almost Daugavet space X has thickness T (X) = 2.
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Proof. Let Y ⊂ X∗ be a norming subspace with respect to which X ∈ DPr(Y ).
According to the definition of T (X) we have to show that for every ε0 > 0 there
is no finite (2 − ε0)-net of SX consisting of elements of SX . In other words we
must demonstrate that for every collection {x1, . . . , xn} ⊂ SX there is a y0 ∈ SX
with ‖xk − y0‖ > 2 − ε0 for all k = 1, . . . , n. But this is an evident corollary of
Lemma 1.3(iii): starting with an arbitrary y∗0 ∈ SY ∗ and applying (iii) we can
construct recursively elements y∗k ∈ SY ∗ and reals εk ∈ (0, ε), k = 1, . . . , n, in
such a way that S(y∗k, εk) ⊂ S(y∗k−1, εk−1) and

‖(−xk) + y‖ > 2− ε0

for every y ∈ S(y∗k, εk). Since S(y∗n, εn) is the smallest of the slices constructed,
every norm-one element of S(y∗n, εn) can be taken as the y0 we need. �

For spaces with the Daugavet property the previous proposition has been
proved in [11, Prop. 4.1.6].

Let us now turn to the implication (a) ⇒ (b) of Theorem 1.1.

Proposition 3.2. If T (X) = 2 and X is separable, then X contains a canonical
`1-type sequence.

Proof. Fix a dense countable set A = {an: n ∈ N} ⊂ SX and a null-sequence
(εn) of positive reals. Since for every n ∈ N the n-point set {−a1, . . . ,−an} is
not a (2 − εn)-net of SX there is an en ∈ SX with ‖en − (−ak)‖ > 2 − εn for
all k = 1, . . . , n. The constructed sequence (en) satisfies for every k ∈ N the
condition

lim
n→∞

‖ak + en‖ = ‖ak‖+ 1 = 2.

By the density of A in SX and a standard convexity argument (cf. e.g. [12,
page 78]) this yields that (en) is a canonical `1-type sequence. �

By the result in [1] mentioned in the introduction we obtain:

Corollary 3.3. Every almost Daugavet space contains `1.

It remains to prove the implication (b) ⇒ (c) of Theorem 1.1.

Proposition 3.4. A separable Banach space X containing a canonical `1-type
sequence is an almost Daugavet space.

Proof. We will use Theorem 2.5. Fix an increasing sequence of finite-dim-
ensional subspaces E1 ⊂ E2 ⊂ E3 ⊂ . . . whose union is dense in X. Also, fix
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sequences εn ↘ 0 and δn > 0 such that for all n

(3.1)
∞∏
k=n

(1− δk) ≥ 1− εn.

Passing to a subsequence if necessary we can find a canonical `1-type sequence (en)
satisfying the following additional condition: For every x ∈ lin(En ∪{e1, . . . , en})
and every α ∈ R we have

(3.2) ‖x+ αen+1‖ ≥ (1− δn)(‖x‖+ |α|).

Then we have for every x ∈ En and every y =
∑M
k=n+1 akek by (3.1) and (3.2)

(3.3) ‖x+ y‖ ≥ (1− εn)‖x‖+
M∑

k=n+1

(1− εk−1)|ak|.

Fix a dense sequence (xn) in SX such that xn ∈ En and every element of the
range of the sequence is attained infinitely often, that is for each m ∈ N the
set {n: xn = xm} is infinite. Finally, fix an “independent” sequence (gn) ⊂ `∞,
gn,j = ±1, as in the proof of Proposition 2.6.

Now we are ready to construct a double-norming asymptotic `1-sequence (f∗n) ⊂
X∗. First we define f̃∗n on Fn := lin{xn, en+1, en+2, . . . } by

f̃∗n(xn) = 1− εn,(3.4)

f̃∗n(ek) = (1− εk−1)gn,k (if k > n).(3.5)

By (3.3), ‖f̃∗n‖ ≤ 1, and indeed ‖f̃∗n‖ = 1 by (3.5). Define f∗n ∈ X∗ to be a
Hahn-Banach extension of f̃∗n. Condition (3.4) and the choice of (xn) ensure that
(f∗n) is double-norming. Let us show that it is an isometric `1-basis. Indeed, due
to our definition of an “independent” sequence, for an arbitrary finite collection
A = {a1, . . . , an} of non-zero coefficients the set JA of those j > n that gs,j =
sign as, s = 1, . . . , n, is infinite. So by (3.5)∥∥∥∥∥

n∑
s=1

asf
∗
s

∥∥∥∥∥ ≥ sup
j∈JA

(
n∑
s=1

asf
∗
s

)
ej = sup

j∈JA

(1− εj−1)
n∑
s=1

|as| =
n∑
s=1

|as|.

�

Since we have constructed an isometric `1-basis (over the reals) in the last
proof, we have obtained the following version of Theorem 2.5.

Corollary 3.5. A real separable Banach space X is an almost Daugavet space if
and only if X∗ contains a double-norming isometric `1-sequence.
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4. Proof of Theorem 1.2

We start with two lemmas.

Lemma 4.1. Let X be a linear space, (en) ⊂ X, and let p be a seminorm on X.
Assume that (en) is an isometric `1-basis with respect to p, i.e., p(

∑n
k=1 akek) =∑n

k=1 |ak| for all a1, a2, . . . ∈ K. Fix a free ultrafilter U on N and define

pr(x) = U- lim
n
p(x+ ren)− r

for x ∈ X and r > 0. Then:

(a) 0 ≤ pr(x) ≤ p(x) for all x ∈ X,

(b) pr(x) = p(x) for all x ∈ lin{e1, e2, . . . },
(c) the map x 7→ pr(x) is convex for each r,

(d) the map r 7→ pr(x) is convex for each x,

(e) pr(tx) = tpr/t(x) for each t > 0,

(f) |pr(x)− pr(y)| ≤ p(x− y) for all x, y ∈ X.

Proof. The only thing that is not obvious is that pr is positive; note that (b)
is a well-known property of the unit vector basis of `1. Now, given ε > 0 pick nε
such that

p(x+ renε
) ≤ U- lim

n
p(x+ ren) + ε.

Then for each n 6= nε

p(x+ ren) = p(x+ renε + r(en − enε))

≥ 2r − p(x+ renε
)

≥ 2r − U- lim
n
p(x+ ren)− ε;

hence 2U- limn p(x+ ren) ≥ 2r − 2ε and pr ≥ 0. �

Lemma 4.2. Assume the conditions of Lemma 4.1. Then the function r 7→ pr(x)
is decreasing for each x. The quantity

p̄(x) := lim
r→∞

pr(x) = inf
r
pr(x)

satisfies (a)–(c) of Lemma 4.1 and moreover

(4.1) p̄(tx) = tp̄(x) for t > 0, x ∈ X.

Proof. By Lemma 4.1(a) and (d), r 7→ pr(x) is bounded and convex, hence
decreasing. Therefore, p̄ is well defined. Clearly, (4.1) follows from (e) above. �
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Since for separable spaces the condition T (X) = 2 is equivalent to the presence
of a canonical `1-type sequence and a canonical `1-type sequence evidently con-
tains a subsequence equivalent to the canonical basis of `1, to prove Theorem 1.2
it is sufficient to demonstrate the following:

Theorem 4.3. Let X be a Banach space containing a copy of `1. Then X can
be renormed to admit a canonical `1-type sequence. Moreover if (en) ⊂ X is an
arbitrary sequence equivalent to the canonical basis of `1 in the original norm,
then one can construct an equivalent norm on X in such a way that (en) is
isometrically equivalent to the canonical basis of `1 and (en) forms a canonical
`1-type sequence in the new norm.

Proof. Let Y be a subspace of X isomorphic to `1, and let (en) be its canonical
basis. To begin with, we can renorm X in such a way that Y is isometric to `1
and (en) is an isometric `1-basis.

Let P be the family of all seminorms p̃ on X that are dominated by the norm
of X and for which p̃(y) = ‖y‖ for y ∈ Y . By Zorn’s lemma, P contains a minimal
element, say p. We shall argue that

(4.2) lim
n→∞

p(x+ en) = p(x) + 1 ∀x ∈ X.

To show this it is sufficient to prove that for every free ultrafilter U on N

(4.3) U- lim
n
p(x+ en) = p(x) + 1 ∀x ∈ X.

To this end associate to p and U the functional p̄ from Lemma 4.2. Note that
0 ≤ p̄ ≤ p, but a priori p̄ need not be a seminorm. However,

q(x) =
p̄(x) + p̄(−x)

2
in the real case, resp.

q(x) =
∫ 1

0

p̄(e2πitx) dt

in the complex case, defines a seminorm, and q ≤ p. (Lemma 4.1(f) implies that
the integrand is a continuous function of t.) By Lemma 4.1(b) and by minimality
of p we get that

(4.4) q(x) = p(x) ∀x ∈ X.

Now, since p(x) = p(λx) ≥ p̄(λx) whenever λ is a scalar of modulus 1, (4.4)
implies that p(x) = p̄(x). Finally, by Lemma 4.1(a) and the definition of p̄ we
have p(x) = pr(x) for all r > 0; in particular p(x) = p1(x), which is our claim (4.3).
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To complete the proof of the theorem, consider

|||x||| := p(x) + ‖[x]‖X/Y ;

this is the equivalent norm that we need. Indeed, clearly |||x||| ≤ 2‖x‖. On the
other hand, |||x||| ≥ 1

3‖x‖. To see this assume ‖x‖ = 1. If ‖[x]‖X/Y ≥ 1
3 , there is

nothing to prove. If not, pick y ∈ Y such that ‖x−y‖ < 1
3 . Then p(y) = ‖y‖ > 2

3 ,
and

|||x||| ≥ p(x) ≥ p(y)− p(x− y) >
2
3
− ‖x− y‖ > 1

3
.

Therefore, ‖ . ‖ and ||| . ||| are equivalent norms, and

lim
n→∞

|||x+ en||| = lim
n→∞

p(x+ en) + ‖[x]‖X/Y = p(x) + 1 + ‖[x]‖X/Y = |||x|||+ 1

shows that (en) is a canonical `1-type sequence for the new norm. �

We would like to mention another proof of Theorem 4.3 that was suggested to
us by W.B. Johnson. In this proof X is a real Banach space. Let again Y ⊂ X

be a subspace isometric to `1 with canonical basis (en). We denote by (rn) the
sequence of Rademacher functions in L∞[0, 1]. Then there is a norm-1 operator
from Y to L∞[0, 1] mapping en to rn, for each n. Since L∞[0, 1] is 1-injective,
the operator can be extended to a norm-1 operator T : X → L∞[0, 1]. If we let

|||x||| = ‖Tx‖+ ‖[x]‖X/Y ,

then this equivalent norm works; the details of the computation are the same as
above.

(Added September 21, 2009.) In his diploma thesis, Simon Lücking has recently
extended Proposition 2.6 and Corollary 3.5 to the complex case.

(Added May 31, 2010.) Barry Turett has kindly informed us that there are
links between Theorem 4.3 and Gilles Godefroy’s work. In [4] Godefroy defined
a norm to be octahedral if, for some u 6= 0 in X∗∗,

(∗) ‖x+ u‖ = ‖x‖+ ‖u‖ for all x ∈ X.

He proved that a Banach space contains a copy of `1 (if and) only if X admits an
equivalent octahedral norm. He also pointed out that (∗) implies the following
condition (∗∗): For all finite-dimensional subspaces F of X and ε > 0 there exists
z 6= 0 in X such that ‖x+z‖ = (1−ε)(‖x‖+‖z‖) for all x ∈ F ; and he noted that
(∗∗) is sufficient for (∗) if X is separable. In this connection let us remark that
(∗∗) is equivalent to T (X) = 2, hence Theorem 4.3 is equivalent to Godefroy’s
result in the separable case. In the non-separable case the interrelation remains
open.
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We would also like to take the opportunity to mention that the original method
of proof of Theorem 4.3 has meanwhile proved useful in [3].
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