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Abstract. We introduce a substitute for the concept of slice for the case
of non-linear Lipschitz functionals and transfer to the non-linear case some
results about the Daugavet and the alternative Daugavet equations previously
known only for linear operators.

1. Introduction

Our paper is motivated by a recent paper [16] by X. Huang, D. Tan, and R. Wang,
where the study of numerical range is extended to non-linear Lipschitz operators.
They show, among other interesting results that we shall comment on, that the
connection between the Daugavet and the alternative Daugavet equations and the
numerical range also holds for Lipschitz maps.

The aim of this note is to show that introducing a reasonable substitute for the
concept of slice for the case of non-linear Lipschitz functionals and using ideas from
[1], one can transfer to the non-linear case several results about the Daugavet and
the alternative Daugavet equations previously known only for linear operators.

Let us settle the notation and present the definitions and known results which
will be relevant to our discussion. Given a Banach space X over K (K = R or
K = C), we write SX for its unit sphere and BX for its closed unit ball. The
dual space of X is denoted by X∗ and L(X) is the Banach algebra of all bounded
linear operators from X to X. The space X has the Daugavet property [7] if every
rank-one operator T ∈ L(X) satisfies the Daugavet equation

‖Id + T‖ = 1 + ‖T‖. (DE)

In this case, all operators on X which do not fix copies of `1 (in particular, weakly
compact operators) also satisfy (DE) [14]. If every rank-one operator T ∈ L(X)
satisfies the alternative Daugavet equation

max
θ∈T
‖Id + θ T‖ = 1 + ‖T‖ (aDE)

(T being the set of scalars of modulus one), X has the alternative Daugavet property
[12] and then all operators on X which do not fix copies of `1 (in particular, weakly
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compact operators) also satisfy (aDE) [1]. Let us remark that, by a convexity
argument, T satisfies (DE) (resp. (aDE)) if and only if λT satisfies (DE) (resp.
(aDE)) for every λ > 0. A Banach space has numerical index 1 [5] if every T ∈ L(X)
satisfies that v(T ) = ‖T‖, where

v(T ) =
{
|x∗(Tx)|: x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}
is the numerical radius of the operator T . It is known [5] that

v(T ) = ‖T‖ ⇐⇒ T satisfies (aDE).

Thus, X has numerical index 1 if and only if every T ∈ L(X) satisfies (aDE).
The space of all Lipschitz functions T : X −→ Y will be equipped with the

seminorm

‖T‖ = sup

{
‖T (x1)− T (x2)‖
‖x1 − x2‖

: x1 6= x2 ∈ X
}
. (1)

Remark that for a linear operator this seminorm coincides with the standard opera-
tor norm. If one wants to make this space a Banach space one may quotient out the
kernel of the seminorm (1), i.e., the subspace of constant functions, or equivalently,
one may consider the Banach space Lip0(X,Y ) consisting of all Lipschitz functions
on X that vanish at 0, with the Lipschitz constant (1) as the actual norm. These
two procedures indeed lead to isometric versions of the Banach space of Lipschitz
functions which we denote by Lip(X,Y ); by Lip(X) we denote Lip(X,X). The
question of which procedure to choose is just a matter taste; maybe the approach
using Lip0(X,Y ) is a little is easier to visualise.

For a map T ∈ Lip(X,Y ) we denote

slope(T ) :=

{
T (x1)− T (x2)
‖x1 − x2‖

: x1 6= x2 ∈ X
}
;

Observe that if T ∈ L(X), then slope(T ) = T (SX).
In their paper [16] (see also [15]), X. Huang, D. Tan, and R. Wang defined a

new concept of numerical range for Lipschitz maps (which extends the classical one
in the case when the map is a linear operator), and the corresponding notion of
Lipschitz numerical index of a Banach space, as follows. The numerical range of
T ∈ Lip(X) is defined as

V (T ) :=

{
f
(
Tx− Ty

)
‖x− y‖2

: x, y ∈ X, x 6= y, f ∈ X∗,Re f(x− y) = ‖f‖‖x− y‖ = ‖x− y‖2
}

and the numerical radius of T is v(T ) = sup{|λ|: λ ∈ V (T )}. Observe that in the
case when T is a linear operator, then the numerical range (and so the numerical
radius) coincides with the classical definition. They demonstrated for a Lipschitz
map T on a Banach space X the following statements, previously known for linear
operators:

‖Id + T‖ = 1 + ‖T‖ ⇐⇒ supReV (T ) = ‖T‖

and

max
θ∈T
‖Id + θT‖ = 1 + ‖T‖ ⇐⇒ v(T ) = ‖T‖.

The Lipschitz numerical index of X is also defined in [16] as

nL(X) = inf
{
v(T ): T ∈ Lip(X), ‖T‖ = 1

}
.
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Observe that we always have that nL(X) 6 n(X), and it is proved in [16] that
equality holds for spaces with the Radon-Nikodým property and also that nL(X) =
1 for a real lush space X. (The notion of a lush space will be recalled in Section 4.)
Besides, they also investigated stability properties of the Lipschitz numerical index,
extending to this new setting known results of the (linear) numerical index for c0-,
`1- and `∞-sums and for some vector valued function spaces.

As we have already mentioned, our goal in this paper is to transfer some known
results for linear operators on spaces with the Daugavet property or the alternative
Daugavet property to Lipschitz operators. To do so, we introduce the Lipschitz
version of the concept of a slice of the unit sphere and prove that this new concept
shares some fundamental properties of linear slices (see the fundamental Lemma 2.4)
which allow to show that well-known geometrical characterizations of the Daugavet
and the alternative Daugavet properties in terms of slices are also true for Lipschitz
slices. This is the content of Section 2. With these results as tools, we are able to
extend in Section 3 some ideas of the paper [1] to Lipschitz operators, showing that
in a Banach space with the Daugavet property (respectively with the alternative
Daugavet property), those Lipschitz operators whose slopes are Radon-Nikodým
sets, or Asplund sets, or CPCP sets, or do not contain copies of `1, satisfy (DE)
(resp. (aDE)). As a consequence of this, we show that a Banach space X with
numerical index 1 has Lipschitz numerical index 1 provided it is Asplund, or it has
the Radon-Nikodým property, or it has the CPCP, or it does not contains copies of
`1 (for the Radon-Nikodým property, this result appeared in [16]). Finally, Section 4
is devoted to show that (complex) lush spaces have Lipschitz numerical index 1,
extending [16, Theorem 2.6] which was only proved for the real case.

Let us finish this introduction presenting some common notation. For a set A of
a Banach space X, conv(A) and conv(A) stand for the convex hull and the closed
convex hull of A, respectively, and conv(TA) and conv(TA) are the absolutely
convex hull and the absolutely closed convex hull of A, respectively. By Re(·) we
denote the real part function, understanding that it is just the identity if we are
dealing only with real numbers.

2. Slices and Lipschitz slices

Let X be a Banach space. A slice of a set A ⊂ X is a non-empty intersection of
A with an open half-space. In other words a slice of A is a non-empty set of the
form

{x ∈ A: Rex∗(x) > α}, (2)

where x∗ is a non-zero continuous linear functional and α ∈ R. Slices of the unit
sphere play a crucial role in the geometric approach to the Daugavet and alternative
Daugavet equations, thanks to the following two results.

Lemma 2.1 (a particular case of [7, Lemma 2.2]). A Banach space X has the
Daugavet property if and only if for every x ∈ SX , every ε > 0 and every slice S of
SX , there is y ∈ S such that ‖x+ y‖ > 2− ε.

Lemma 2.2 ([12, Proposition 2.1]). A Banach space X has the alternative Dau-
gavet property if and only if for every x ∈ SX , every ε > 0 and every slice S of SX ,
there is y ∈ S such that maxθ∈T ‖x+ θy‖ > 2− ε.
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We introduce a notion of slice generated by a Lipschitz functional which will play
a fundamental role in our discussion; note that non-linear slices were also considered
in [13].

Definition 2.3. Let X be a Banach space. A Lip-slice of SX is a non-empty set
of the form {

x1 − x2
‖x1 − x2‖

: x1 6= x2,
f(x1)− f(x2)
‖x1 − x2‖

> α

}
,

where f ∈ Lip(X,R) is non-zero and α ∈ R. The following notation will be useful:
for f ∈ Lip(X,R) \ {0} and ε > 0, we write

S(SX , f, ε) :=

{
x1 − x2
‖x1 − x2‖

: x1 6= x2,
f(x1)− f(x2)
‖x1 − x2‖

> ‖f‖ − ε
}

and observe that this is never empty and so it is a Lip-slice of SX ; conversely, every
Lip-slice of SX can be written in this form.

Remark that for a real-linear functional f = Rex∗ with x∗ ∈ X∗, the above
definition gives a usual slice of SX

S(SX ,Rex
∗, ε) := {x ∈ SX : Rex∗(x) > ‖x∗‖ − ε} ,

which agrees with the formula (2).
The next result shows that slices generated by Lipschitz functionals behave sim-

ilarly to those generated by linear functionals.

Lemma 2.4 (Fundamental lemma). Let X be a Banach space, f ∈ Lip(X,R),
ε > 0, and A ⊂ SX . If conv(A) ∩ S(SX , f, ε) 6= ∅ then A ∩ S(SX , f, ε) 6= ∅.

We need a preliminary result which shows that every rescaling of a functional
has the same Lipschitz slices.

Lemma 2.5. Let f ∈ Lip(X,R) and ε > 0. Then, for every r > 0 the functional
defined by fr(x) = 1

rf(rx) for x ∈ X satisfies ‖fr‖ = ‖f‖ and

S(SX , fr, ε) = S(SX , f, ε).

Proof. Fix r > 0 and x, y ∈ X with x 6= y, and observe that

fr(x)− fr(y)
‖x− y‖

=
f(rx)− f(ry)
‖rx− ry‖

.

Using this it is immediate that ‖fr‖ = ‖f‖. Besides, if x−y
‖x−y‖ ∈ S(SX , fr, ε) then,

by the above equality, we have that
x− y
‖x− y‖

=
rx− ry
‖rx− ry‖

∈ S(SX , f, ε),

which gives the inclusion S(SX , fr, ε) ⊂ S(SX , f, ε). The converse inclusion is
proved analogously, or one just observes that (fr)1/r = f . �

Proof of Lemma 2.4. Let y1, y2 be distinct elements in X such that y1−y2
‖y1−y2‖ ∈

conv(A)∩S(SX , f, ε). By rescaling the functional, we can suppose that ‖y1−y2‖ =
1: Indeed, let r = ‖y1 − y2‖ and observe that

fr

(
y1

‖y1 − y2‖

)
− fr

(
y2

‖y1 − y2‖

)
=
f(y1)− f(y2)
‖y1 − y2‖

.
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Taking into account Lemma 2.5, it is easy to observe that the functional fr and the
points y1

‖y1−y2‖ ,
y2

‖y1−y2‖ satisfy the desired conditions.
Now, we have that

y1 − y2 ∈ conv(A) and f(y1)− f(y2) > ‖f‖ − ε.

So we can find x1, . . . , xn ∈ A and λ1, . . . , λn ∈ [0, 1] with
∑n
k=1 λk = 1 satisfying

f(y1)− f(y2)−
∥∥∥y1 − y2 −∑n

k=1 λkxk

∥∥∥‖f‖ > ‖f‖ − ε
and, therefore,

f(y1)− f(y2)−
∣∣∣f(y2)− f(y1 −∑n

k=1 λkxk
)∣∣∣ > ‖f‖ − ε.

We can write
f(y1)− f(y1 − λ1x1)

λ1
λ1 +

f(y1 − λ1x1)− f
(
y1 − (λ1x1 + λ2x2)

)
λ2

λ2

+ · · ·+
f
(
y1 −

∑n−1
k=1 λkxk

)
− f

(
y1 −

∑n
k=1 λkxk

)
λn

λn

= f(y1)− f(y2) +
[
f(y2)− f

(
y1 −

∑n
k=1 λkxk

)]
> ‖f‖ − ε.

Now, an evident convexity argument gives the existence of ` ∈ {1, . . . , n} such that

f
(
y1 −

∑`−1
k=1 λkxk

)
− f

(
y1 −

∑`
k=1 λkxk

)
λ`

> ‖f‖ − ε,

understanding that in case ` = 1 the element
∑`−1
k=1 λkxk is zero. Therefore, we get

that

x` =

(
y1 −

∑`−1
k=1 λkxk

)
−
(
y1 −

∑`
k=1 λkxk

)
λ`

∈ S(SX , f, ε)

(recall that ‖x`‖ = 1), which finishes the proof. �

As a consequence of this result we can show that Lipschitz slices in a space with
the Daugavet property present the same wild behaviour as linear ones.

Corollary 2.6. Let X be a space with the Daugavet property, let ε > 0 and let S
be a Lip-slice. Then, for every x ∈ SX there is y ∈ S such that ‖x+ y‖ > 2− ε.

Proof. Fix x ∈ SX . Since X has the Daugavet property we have by [7, Lemma 2.2]
that

conv({y ∈ SX : ‖x+ y‖ > 2− ε}) = BX ;

so Lemma 2.4 gives that

{y ∈ SX : ‖x+ y‖ > 2− ε} ∩ S 6= ∅. �

A similar result for the alternative Daugavet property can be produced in the
same way.

Corollary 2.7. Let X be a space with the alternative Daugavet property, let ε >
0 and let S be a Lip-slice. Then, for every x ∈ SX there is y ∈ S such that
maxθ∈T ‖x+ θy‖ > 2− ε.
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Proof. Fix x ∈ SX . Since X has the alternative Daugavet property, we have by
[12, Proposition 2.1] that

BX = conv
(
T{y ∈ SX : ‖x+y‖ > 2−ε}

)
= conv

({
y ∈ SX : max

θ∈T
‖x+ θy‖ > 2− ε

})
,

so Lemma 2.4 gives the result. �

3. The Daugavet equation for Lipschitz operators

We devote this section to obtain some sufficient conditions for a Lipschitz oper-
ator to satisfy the Daugavet or the alternative Daugavet equation.

Recall from [1] that a bounded subset A of a Banach space X is an SCD set
(SCD is an abbreviation for slicely countably determined) if there is a determin-
ing sequence {Sn: n ∈ N} of slices of A, i.e., a sequence {Sn: n ∈ N} such that
A ⊂ conv(B) whenever B ⊂ A intersects all the Sn’s. This property, which clearly
implies separability, is possessed by many classes of separable bounded convex sub-
sets, for example by dentable sets (in particular by Radon-Nikodým sets), by sets
with the Asplund property, by strongly regular sets, by CPCP sets, by sets which do
not contain `1 sequences [1] and by the unit ball of any space with a 1-unconditional
basis [10]. Remark that in [1] the property SCD was defined only for convex sets,
so for future applications of results from [1] we need the following simple lemma.

Lemma 3.1. If A ⊂ X and convA is an SCD set, then A is also an SCD set.

Proof. Let {Sn: n ∈ N} be a determining sequence of slices of convA. Then, the
sets S′n := Sn ∩A are not empty and are slices of A. It remains to show that {S′n:
n ∈ N} is a determining sequence for A. This is evident: if B ⊂ A intersects all the
S′n, then B intersects all the Sn, so A ⊂ convA ⊂ conv(B). �

We need some more notation in the spirit of [1]. Given a Banach space X,
we denote by K(X∗) the intersection of SX∗ with the weak∗-closure in X∗ of
ext(BX∗). We consider K(X∗) as a topological space equipped with the weak∗
topology σ(X∗, X). For a Lip-slice S of SX and ε > 0, we consider the set

D(S, ε) := {x∗ ∈ K(X∗): ∃y ∈ S with Rex∗(y) > 1− ε}
= {x∗ ∈ K(X∗): S ∩ S(SX ,Rex∗, ε) 6= ∅}.

Lemma 3.2. K(X∗) is a Baire space and D(S, ε) is an open subset of K(X∗) for
every ε > 0. If, moreover, X has the Daugavet property, then D(S, ε) is dense in
K(X∗).

Proof. LetK ′(X∗) be the weak∗-closure inX∗ of ext(BX∗), which is weak∗-compact,
and observe that

K ′(X∗) \K(X∗) =
⋃
n∈N

[
(1− 1

n )B(X∗) ∩K ′(X∗)
]

is of the first category in K ′(X∗), so K(X∗) is a Baire space.
Since each set Dy := {x∗ ∈ K(X): Rex∗(y) > 1−ε} is relatively σ(X∗, X)-open

in K(X∗), D(S, ε) =
⋃
y∈S Dy, D(S, ε) is evidently relatively σ(X∗, X)-open in

K(X∗).
Finally, to show that D(S, ε) is weak∗ dense in K(X∗) for a Banach space with

the Daugavet property it is sufficient to demonstrate that the weak∗ closure of
D(S, ε) contains every extreme point of BX∗ . Since weak∗-slices form a base of
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(relative) neighborhoods of any extreme point of BX∗ (Choquet’s lemma, see [4,
Definition 25.3 and Proposition 25.13]), it is sufficient to prove that every weak∗-
slice

S(BX∗ , x, δ) := {x∗ ∈ BX∗ : Rex∗(x) > 1− δ}
with δ ∈ (0, ε) and x ∈ SX intersects D(S, ε). To this end, let us use Corollary 2.6:
Given x and δ as above, there is a y ∈ S such that ‖x + y‖ > 2 − δ. By Krein-
Milman theorem, there is y∗ ∈ ext(BX∗) such that Re y∗(x+y) > 2− δ. Therefore,
both Re y∗(x) > 1− δ and Re y∗(y) > 1− δ, which implies that y∗ ∈ S(BX∗ , x, δ)∩
D(S, ε). �

An application of the Baire Theorem gives the following result.

Corollary 3.3. Let X be a Banach space with the Daugavet property. Given any
sequence of Lip-slices {Sn: n ∈ N} and any sequence {δn: n ∈ N} of positive
numbers, we have that

⋂
n∈ND(Sn, δn) is a dense Gδ-subset of K(X∗).

We are now ready to state the main result of the present section.

Theorem 3.4. Let X be a Banach space with the Daugavet property. Then, every
T ∈ Lip(X) for which slope(T ) is an SCD-set satisfies (DE).

Proof. It is sufficient to consider the case of ‖T‖ = 1. For ε > 0 fixed, let u, v ∈ X
with u 6= v such that

‖T (u)− T (v)‖
‖u− v‖

> 1− ε.

Since slope(T ) is an SCD-set, there is a sequence {Sn} of slices of slope(T ) which
is determining. For every n ∈ N, we write

Sn = {z ∈ slope(T ): Rex∗n(z) > 1− εn}

=

{
T (x)− T (y)
‖x− y‖

: x 6= y,
Rex∗n(T (x))− Rex∗n(T (y))

‖x− y‖
> 1− εn

}
,

where εn > 0 and x∗n ∈ SX∗ . Next, for each n ∈ N we consider the subset of SX
given by

S̃n =

{
x− y
‖x− y‖

: x 6= y,
T (x)− T (y)
‖x− y‖

∈ Sn
}

=

{
x− y
‖x− y‖

: x 6= y,
Rex∗n(T (x))− Rex∗n(T (y))

‖x− y‖
> 1− εn

}
and observe that S̃n is not empty (as Sn is a non-empty subset of slope(T )) and
so, as Rex∗n ◦ T ∈ Lip(X,R), S̃n is a Lip-slice of SX . Therefore, we can apply
Corollary 3.3 for the sequence {S̃n: n ∈ N} to obtain that the set

A =
⋂
n∈N

D(S̃n, ε)

is dense in K(X∗). Thus, there is x∗ ∈ A such that

Rex∗
(
T (u)− T (v)
‖u− v‖

)
> 1− ε. (3)



8 V. KADETS, M. MARTÍN, J. MERÍ, AND D. WERNER

Besides, since x∗ ∈ A, for every n ∈ N we have that S(SX ,Rex∗, ε) ∩ S̃n 6= ∅.
Hence, for every n ∈ N we can find distinct xn, yn ∈ X such that

xn − yn
‖xn − yn‖

∈ S(SX ,Rex∗, ε) and
T (xn)− T (yn)
‖xn − yn‖

∈ Sn.

Therefore, using that the sequence {Sn} is determining for slope(T ), we get that

slope(T ) ⊂ conv

{
T (xn)− T (yn)
‖xn − yn‖

: n ∈ N
}
.

This, together with (3), allows us to find λ1, . . . , λN > 0 with
∑N
k=1 λk = 1 such

that

Rex∗

(
N∑
k=1

λk
T (xk)− T (yk)
‖xk − yk‖

)
> 1− ε.

So, by convexity, there is ` ∈ {1, . . . , N} satisfying

Rex∗
(
T (x`)− T (y`)
‖x` − y`‖

)
> 1− ε.

Recalling that x`−y`
‖x`−y`‖ ∈ S(SX ,Rex

∗, ε), we can write

‖Id + T‖ >
∥∥∥∥ x` − y`
‖x` − y`‖

+
T (x`)− T (y`)
‖x` − y`‖

∥∥∥∥ > Rex∗
(

x` − y`
‖x` − y`‖

+
T (x`)− T (y`)
‖x` − y`‖

)
> 2− 2ε.

Letting ε → 0, we get ‖Id + T‖ > 2, which finishes the proof since the converse
inequality always holds. �

The condition that slope(T ) is an SCD-set of Theorem 3.4 means, in particular,
that T has separable image. In order to get rid of this separability restriction, one
can use the following lemma.

Lemma 3.5. Let X be a Banach space with the Daugavet property and let T ∈
Lip(X). Then there is a separable subspace E ⊂ X having the Daugavet property,
with T (E) ⊂ E and ‖T |E‖ = ‖T‖.

Proof. Fix a sequence (xk) ⊂ X such that

lim
k→∞

‖T (x2k)− T (x2k−1)‖
‖x2k − x2k−1‖

= ‖T‖ (4)

and define recursively two sequences of separable subspaces Xn ⊂ X and En ⊂ X,

X1 ⊂ E1 ⊂ X2 ⊂ E2 . . . ,

in the following way. Put X1 = lin{xk}k∈N. When a separable subspace Xn is
defined, we select a separable subspace En ⊃ Xn having the Daugavet property (the
possibility of such a choice is guaranteed by [11, Theorem 4.5]) and put Xn+1 =

lin(En ∪ T (En)). Under this construction E =
⋃
n∈NEn is the subspace we need

(the Daugavet property of E easily follows from the Daugavet property of the En
and from Lemma 2.1). �

Corollary 3.6. Let X be a Banach space with the Daugavet property, T ∈ Lip(X)
and suppose that conv(slope(T )) has one of the following properties: Radon-Nikodým
property, Asplund property, CPCP or absence of `1-sequences. Then T satisfies
(DE).
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Proof. Let E ⊂ X be the subspace from Lemma 3.5. Denote by TE ∈ Lip(E) the
restriction of T to E. Then conv(slope(TE)) ⊂ conv(slope(T )), so conv(slope(TE))
also has one of the properties listed above and hence, as it is also separable,
conv(slope(TE)) is an SCD-set; see [1]. Thanks to Lemma 3.1 this means that
slope(TE) is an SCD-set, so by Theorem 3.4 TE satisfies the Daugavet equation.
Consequently,

‖Id + T‖ > ‖IdE + TE‖ = 1 + ‖TE‖ = 1 + ‖T‖,
as claimed. �

Similar results like Theorem 3.4 and Corollary 3.6 hold true for the alternative
Daugavet property as well.

Theorem 3.7. Let X be a Banach space with the alternative Daugavet property.
Then, every T ∈ Lip(X) for which slope(T ) is an SCD-set satisfies (aDE).

Corollary 3.8. Let X be a Banach space with the alternative Daugavet property,
T ∈ Lip(X) and suppose that conv(slope(T )) has one of the following proper-
ties: Radon-Nikodým property, Asplund property, CPCP or absence of `1-sequences.
Then T satisfies (aDE).

To get these two results, one only needs to modify the definition of D(S, ε) and to
generalize Lemma 3.2, Corollary 3.3 and Lemma 3.5. We state here such modified
results but we omit their proofs which are just adaptations of the corresponding
ones for the Daugavet property, as it was done in [1, §4 & §5] in the linear case.
We need some notation. For a Lip-slice S and ε > 0, we consider the set

D̃(S, ε) := {x∗ ∈ K(X∗): ∃y ∈ S with |x∗(y)| > 1− ε}
= {x∗ ∈ K(X∗): S ∩ TS(SX ,Rex∗, ε) 6= ∅}.

Lemma 3.9. D̃(S, ε) is an open subset of K(X∗). If, moreover, X has the alter-
native Daugavet property, then D̃(S, ε) is dense in K(X∗).

Corollary 3.10. Let X be a Banach space with the alternative Daugavet property.
Given any sequence of Lip-slices {Sn: n ∈ N} and any sequence {δn: n ∈ N} of
positive numbers, we have that

⋂
n∈N D̃(Sn, δn) is a dense Gδ-subset of K(X∗).

Lemma 3.11. Let X be a Banach space with the alternative Daugavet property and
let T ∈ Lip(X). Then there is a separable subspace E ⊂ X having the alternative
Daugavet property, with T (E) ⊂ E and ‖T |E‖ = ‖T‖.

Let us remark that as a consequence of Theorem 3.7 and Corollary 3.8, we get
the following results, which extend [16, Theorem 3.4] in the case of n(X) = 1.
They are also consequences of the results of the next section and, in the real case,
of [16, Theorem 2.6] and [1, Theorem 4.4]. Recall that a Banach space X is SCD
[1] if every bounded convex subset of X is SCD (by Lemma 3.1 this is equivalent
to the fact that every bounded subset of X is SCD). Examples of SCD spaces
are separable Asplund spaces, separable spaces with the Radon-Nikodým property,
those separable spaces not containing `1, and separable spaces with the convex
point of continuity property.

Corollary 3.12. Let X be an SCD Banach space. If n(X) = 1, then nL(X) = 1.

As a consequence of Corollary 3.8, we have the following result.
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Corollary 3.13. Let X be a Banach space with n(X) = 1. If X has the Radon-
Nikodým property, or X is an Asplund space, or X does not contain `1, or X has
the convex point of continuity property, then nL(X) = 1.

4. Complex lush spaces and Lipschitz numerical index

Since it is not easy to deal with Banach spaces with numerical index 1, several
sufficient geometrical conditions have been considered in the literature (see [8]),
the weakest one being the so-called lushness. A Banach space X is said to be lush
[3] if for every x, y ∈ SX and every ε > 0, there is a slice S = S(SX ,Re y

∗, ε)
with y∗ ∈ SX∗ such that y ∈ S and dist (x, conv(TS)) < ε (observe that the
original definition of lushness used slices of the unit ball, but this reformulation
is equivalent.) Lush spaces have numerical index 1 [3, Proposition 2.2], but the
converse result is not true [6], even though most of the known examples of Banach
spaces with numerical index 1 are actually lush [2]. We refer to the cited papers
[2, 3, 6] for background.

It is proved in [16, Theorem 2.6] that real lush spaces have Lipschitz numerical
index 1. Our aim is to show that the same happens for complex spaces.

Theorem 4.1. Let X be a (complex) lush space. Then, nL(X) = 1.

We need a reformulation of lushness which follows from the results of [9].

Lemma 4.2. Let X be a lush space. Then, for every x, y ∈ SX and every ε > 0,
there is a slice S = S(SX ,Re y

∗, ε) with y∗ ∈ SX∗ such that y ∈ S and x ∈
conv(TS).

Proof. By Lemma 4.2 of [9], given y ∈ SX and ε > 0, there is a dense subset Ky

of K(X∗) (with the notation of section 3) such that y ∈ conv
(
TS(SX ,Re y∗, ε)

)
for every y∗ ∈ Ky (observe that in [9, Lemma 4.2], Ky is a subset of what is called
K ′(X∗) in the proof of Lemma 3.2, but since K(X∗) is also a Baire space, the same
argument gives the result that we are using). Now, as the set of extreme points of
BX∗ is contained in the closure of Ky, there is y∗ ∈ Ky such that Re y∗(x) > 1− ε,
that is, x ∈ S(SX ,Re y∗, ε). �

Proof of 4.1. Let T ∈ Lip(X) with ‖T‖ = 1. By [16, Corollary 2.3] it suffices to
show that max

θ∈T
‖Id + θT‖ = 2 (actually, it is equivalent). For a fixed ε > 0, there

are x1, x2 ∈ X such that
‖T (x1)− T (x2)‖
‖x1 − x2‖

> 1− ε.

We denote

y =
T (x1)− T (x2)
‖x1 − x2‖

, y0 =
y

‖y‖
, and x0 =

x1 − x2
‖x1 − x2‖

.

Using Lemma 4.2, we may find a slice S = S(SX ,Re y
∗, ε) such that y0 ∈ S and

x0 ∈ conv(TS). Next, we write

S̃ =

{
y1 − y2
‖y1 − y2‖

: y1 6= y2,
Re y∗ ◦ T (y1)− Re y∗ ◦ T (y2)

‖y1 − y2‖
> 1− 2ε

}
and observe that x0 ∈ S̃ since we have that

Re y∗(Tx1)− Re y∗(Tx2)

‖x1 − x2‖
= Re y∗(y) > Re y∗(y0)− ε > 1− 2ε.
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In particular, S̃ is not empty and so it is a Lip-slice.Further, x0 ∈ conv(TS) ∩ S̃,
so Lemma 2.4 gives us that TS intersects S̃ as well. Hence, there are θ0 ∈ T and
z ∈ S satisfying θ0z ∈ S̃. That is, there exist z1 6= z2 in X such that

θ0z =
z1 − z2
‖z1 − z2‖

and
Re y∗T (z1)− Re y∗T (z2)

‖z1 − z2‖
> 1− 2ε.

Finally, we have

max
θ∈T
‖Id + θT‖ > ‖θ−10 Id + T‖

>
∥∥∥z + Tz1 − Tz2

‖z1 − z2‖

∥∥∥
> Re y∗

(
z +

Tz1 − Tz2
‖z1 − z2‖

)
= Re y∗(z) + Re y∗

(Tz1 − Tz2
‖z1 − z2‖

)
> (1− ε) + (1− 2ε) = 2− 3ε,

which finishes the proof by letting ε→ 0. �

As we have already commented in the previous section, Corollaries 3.12 and 3.13
also follow from this result.

It is asked in [16] whether n(X) = nL(X) for every Banach space X. As far
as we know, even the following particular case of the above question also remains
open.

Question 4.3. LetX be a Banach space with n(X) = 1. Is it true that nL(X) = 1?
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