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“THE GURARIJ SPACES ARE UNIQUE”

DIRK WERNER

Abstract. This note surveys Wolfgang Lusky’s proof of uniqueness of
the Gurariy spaces and mentions further developments.

1. Introduction

In 1966, V. I. Gurariy [11] defined the notion of a Banach space of (almost)
universal disposition by a certain extension property; see Definition 2.1. He
proved the existence of (separable) such spaces and investigated some of
their properties; henceforth, such spaces were called Gurariy spaces (alter-
native spellings: Gurarii, Gurarij, Gurarĭı, . . . ); we shall reserve this name
to separable spaces of this kind. While it is not a daunting task to prove
that any two Gurariy spaces are almost isometric in the sense that their
Banach-Mazur distance is 1, it remained open to decide whether they are
actually isometric. This was asked for instance by J. Lindenstrauss and his
collaborators at various junctures ([20, Problem II.4.13], [17]).

The isometry problem was solved in 1976 by a fresh PhD from the (like-
wise rather freshly established) University of Paderborn, Wolfgang Lusky,
in his first-ever published paper (the title says it all)

[L] The Gurarij spaces are unique. Arch. Math. 27, 627–635 (1976).

We shall refer to this paper, which is [23] in the bibliography, simply by [L].
The present note aims at surveying the background, Lusky’s proof, and

the ramifications of this result along with an outlook.
Interestingly, some 30 years later Gurariy and Lusky cooperated inten-

sively on a rather different topic, the Müntz spaces, which has led to their
monograph [12].

The notation in this note is standard; BX stands for the closed unit ball
of X and exBX for the set of its extreme points. We are considering only
real Banach spaces.
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2. Banach spaces of almost universal disposition

V. I. Gurariy (1935–2005) was a member of the Kharkiv school of Banach
spaces led by M. I. Kadets (sometimes spelled Kadec), one of the strongest
in Europe which had its heyday from the late 1950ies till the collapse of the
Soviet Union that produced a brain-drain in all fields of science. Gurariy
himself emigrated to the United States in the early 1990ies. After 2000,
the Kharkiv school was basically reduced to V. Kadets and his students.
In 2022 the terror regime in Moscow set out to destroy the university of
Kharkiv altogether [31], but remembering a slogan from many years back,
¡No pasarán!

Here is the key definition of his paper [11].

Definition 2.1. Let X be a Banach space with the following property.

• For finite-dimensional spaces E and F , isometries T : E → X and S:

E → F , and for ε > 0, there exists an operator T̂ : F → X satisfying

T̂ S = T and

(1 + ε)−1‖y‖ ≤ ‖T̂ y‖ ≤ (1 + ε)‖y‖ (y ∈ F )

(“an ε-isometry”).

Then X is called a Banach space of almost universal disposition. A separable
such space will also be called a Gurariy space.

The epithet “almost” in this definition refers to the quantifier “for all
ε > 0”; if ε = 0 is permissible above, then the “almost” will be dropped.
However, Gurariy proved in [11, Th. 10] that no separable space of universal
disposition exists, but see Subsection 6.3 below.

If in the above definition, S is the identical inclusion, i.e., E ⊂ F , then

T̂ is an extension of T , which can likewise be considered as the identical
inclusion.

To see that the condition of Definition 2.1 is quite restrictive, let us discuss
two examples.

Example 2.2. (a) c0 is not a space of almost universal disposition. Indeed,
let E = R, T : E → c0, T (r) = (r, 0, 0, . . . ), F = `2∞ = R2 with the max-

norm, S: E → F , S(r) = (r, r). Assume that T̂ has the properties of Defi-

nition 2.1, and let T̂ (−1, 1) = (x1, x2, . . . ). Note that T̂ (1, 1) = (1, 0, 0, . . . )
and therefore

T̂ (0, 1) =
(1 + x1

2
,
x2
2
, . . .

)
,

T̂ (1, 0) =
(1− x1

2
,
−x2

2
, . . .

)
.

This shows that T̂ cannot be an ε-isometry for small ε. (If x is a real number
close to 1 in modulus, then 1±x

2 cannot both be close to 1.)
(b) C[0, 1] is not a space of almost universal disposition. Indeed, let E =

R, T : E → C[0, 1], T (r) = r1 (the constant function), F = `22 = R2 with
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the `2-norm, S: E → F , S(r) = (r, 0). Assume that T̂ has the properties of

Definition 2.1, and let T̂ (0, 1) = f . Note that T̂ (1, 0) = 1 and therefore

T̂ (1, 1) =
1 + f

2
,

which must have norm
√

2 = ‖(1, 1)‖2 up to ε. Since (1+ε)−1 ≤ ‖f‖ ≤ 1+ε,
this is impossible for small ε.

These examples indicate that positive results might not be very easy to
come by. By a technical inductive argument, Gurariy shows in [11, Th. 2]
the following existence theorem.

Theorem 2.3. There exists a separable Banach space of almost universal
disposition.

As for uniqueness, he proves the following result. To formulate it suc-
cinctly, let us recall the Banach-Mazur distance between (isomorphic) Ba-
nach spaces

d(X,Y ) = inf{‖Φ‖‖Φ−1‖: Φ: X → Y is an isomorphism}

and call two Banach spaces almost isometric if their Banach-Mazur distance
equals 1.

Now for Theorem 5 of [11].

Theorem 2.4. Any two separable spaces of almost universal disposition are
almost isometric.

A quick sketch of the proof can also be found in [20, p. 168].

3. The Lazar-Lindenstrauss approach

A key property of the Gurariy spaces (from now on we shall use this ter-
minology) is that they are L1-preduals. Recall that an L1-predual (a.k.a. a
Lindenstrauss space) is a Banach space whose dual is isometrically isomor-
phic to a space L1(µ) of integrable functions on some measure space. This
class of spaces is the subject of Lindenstrauss’s epoch-making memoir [18].

Proposition 3.1. Every Gurariy space is an L1-predual.

In the literature, especially from the previous century, there are only
vague indications as to why this is so. Since a recent article [6] admits that
this proposition is “not completely evident from the definition” and since it
is instrumental for Lusky’s proof, I’ll sketch a proof. To begin with, we have
to recall a characterisation of L1-preduals from Lindenstrauss’s memoir; see
[20, Th. 6.1] in conjunction with [20, Lemma 4.2], or [16, §21].

Theorem 3.2. A Banach space X is an L1-predual if and only if any four
open balls U(xi, ri) that intersect pairwise have a nonvoid intersection. It is
enough to check this for balls of radius 1.
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Let us verify that a Gurariy space X has this property. So suppose
U(x1, 1), . . . , U(x4, 1) are four open balls in X with radius 1 that intersect
pairwise, i.e., ‖xi−xj‖ < 2. Choose ε > 0 such that even ‖xi−xj‖ < 2−4ε.
Let E be the span of x1, . . . , x4. There are some N ∈ N and a linear operator
S1: E → `N∞ such that

1

1 + ε
‖S1x‖∞ ≤ ‖x‖ ≤ ‖S1x‖∞ (x ∈ E).

Let us consider the balls U`N∞(S1xi, 1 − ε) in `N∞. They intersect pairwise
since

‖S1xi − S1xj‖∞ ≤ (1 + ε)‖xi − xj‖ < (1 + ε)(2− 4ε) < 2− 2ε.

Being pairwise intersecting balls in `N∞, these balls have a point in common.
This means that there exists some z ∈ `N∞ such that

‖z − Sxi‖∞ < 1− ε (i = 1, . . . , 4).

Unfortunately, S1 is not an isometry and therefore is not eligible for being
used in Definition 2.1. However, we can renorm `N∞ to make it an isometry:
note that B`N∞ ∩S1(E) ⊂ S1(BE), and we can renorm `N∞ by letting the new

unit ball be the convex hull of S1(BE) and B`N∞ . Call this renorming F , and
let S = S1 considered as an operator from E to F ; this is an isometry. We
have

1

1 + ε
‖y‖∞ ≤ ‖y‖F ≤ ‖y‖∞ (y ∈ F )

and thus

‖z − Sxi‖F ≤ ‖z − S1xi‖∞ < 1− ε.
Since X is a Gurariy space, there is an ε-isometry T̂ : F → X satisfying

T̂ Sx = x for x ∈ E. Let x0 = T̂ z; then x0 ∈
⋂
U(xi, 1):

‖x0 − xi‖ = ‖T̂ z − T̂ Sxi‖ ≤ (1 + ε)‖z − Sxi‖F < (1 + ε)(1− ε) < 1.

In the more contemporary literature one can find explicit proofs of Propo-
sition 3.1 based on another characterisation of L1-preduals and a “pushout
argument” [9, Th. 2.17], [5, Prop. 6.2.8].

Now let X be a separable L1-predual. By the results of Michael and
Pe lczyński [26] and Lazar and Lindenstrauss [17] there is a chain of finite-
dimensional subspaces En of X such that

(a) E1 ⊂ E2 ⊂ . . . ;
(b) dimEn = n, and En is isometrically isomorphic to `n∞,

(c)
⋃
En is dense in X.

The inclusion En ⊂ En+1 entails some degree of freedom, namely the choice
of an isometry ψn: `n∞ → `n+1

∞ . To study the structure of these ψn, we need
the ad-hoc notion of an admissible basis: if δ1, . . . , δn denotes the canonical
unit vector basis of `n∞ and ψ: `n∞ → `n∞ is an isometry, then ψ(δ1), . . . , ψ(δn)
is called an admissible basis for `n∞. Note that ψ takes a vector (a1, . . . , an)
to (ϑ1aπ(1), . . . , ϑnaπ(n)) for some permutation π and some signs ϑj = ±1.
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Thus, an admissible basis is just a permutation of the unit vector basis up to
signs, and the isometric image of an admissible basis is again an admissible
basis.

Let us return to the isometric embedding ψn: `n∞ → `n+1
∞ , and let e1,n, . . . ,

en,n be an admissible basis for `n∞. We can develop the vectors fj := ψn(ej,n)
into the unit vector basis of `n+1

∞ . Since ψn is an isometry, there is at least
one coordinate i where |fj(i)| = 1. Then, if k 6= j, fk(i) = 0: pick a sign λ
such that

|fj(i) + λfk(i)| = |fj(i)|+ |fk(i)| = 1 + |fk(i)|
and so

1 = ‖ej,n + λek,n‖ = ‖fj + λfk‖ ≥ |fj(i) + λfk(i)| = 1 + |fk(i)|,

hence the claim. Since ‖ψn‖ = 1, we also have∣∣∣ n∑
j=1

fj(i)
∣∣∣ =

∣∣∣ψn( n∑
j=1

ej,n

)
(i)
∣∣∣ ≤ ∥∥∥ n∑

j=1

ej,n

∥∥∥ = 1.

Therefore, there is an admissible basis e1,n+1, . . . , en+1,n+1 for `n+1
∞ such that

for some numbers ajn

ψn(ej,n) = ej,n+1 + ajnen+1,n+1 (j = 1, . . . , n)

and
n∑
j=1

|ajn| ≤ 1.

We can rephrase these representations in terms of the En as follows.

Proposition 3.3. There exist admissible bases in each En and real numbers
ajn such that

ej,n = ej,n+1 + ajnen+1,n+1 (j = 1, . . . , n; n = 1, 2, . . . )
n∑
j=1

|ajn| ≤ 1 (n = 1, 2, . . . ).

This proposition is due to Lazar and Lindenstrauss [17]. The triangu-
lar matrix (ajn)j≤n,n∈N is called a representing matrix for the given L1-
predual X. Conversely does the choice of admissible bases and of an array
(ajn) lead to an L1-predual.

Lazar and Lindenstrauss use this approach to present another proof of
the existence of Gurariy spaces. Let an = (a1n, . . . , ann, 0, 0, . . . ) be the nth

column of a matrix as in Proposition 3.3; then each an is in the unit ball
of `1.

Theorem 3.4. If {a1, a2, . . . } is dense in the unit ball of `1, then the cor-
responding matrix is associated to a Gurariy space.
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It should be noted that the representing matrix A of an L1-predual X
is not uniquely determined, and much work has been done to study the
relation of A and X for certain classes of L1-preduals; see e.g. Lusky’s paper
[24].

4. Lusky’s uniqueness proof

Here is Lusky’s uniqueness theorem.

Theorem 4.1. Any two Gurariy spaces are isometrically isomorphic.

Let us first remark that almost isometric spaces (cf. Theorem 2.4) need not
be isometric. The following is a classical counterexample due to Pe lczyński
from [28]: Let X and Y be c0 equipped with the equivalent norms (x = (xn))

‖x‖X = ‖x‖∞ +
( ∞∑
n=1

|xn|2

2n

)1/2
,

‖x‖Y = ‖x‖∞ +
( ∞∑
n=1

|xn+1|2

2n

)1/2
.

The operators Φn: X → Y , x 7→ (xn, x1, . . . , xn−1, xn+1, . . . ) are isomor-
phisms satisfying limn ‖Φn‖‖Φ−1n ‖ = 1 so that X and Y are almost iso-
metric; but X is strictly convex while Y isn’t, therefore X and Y are not
isometric.

Benyamini [3] has shown that such counterexamples also exist among
L1-preduals.

The proof of Theorem 4.1 consists of a delicate inductive construction of
`n∞-subspaces and admissible bases. The key problem to be solved here is
this.

Problem 4.2. Let X be a Gurariy space and E ⊂ F be finite-dimensional
spaces with E ∼= `n∞ and F ∼= `n+1

∞ . Let T : E → X be an isometry. When

does there exist an isometric extension T̂ : F → X?

Lusky notes that this is not always the case [L, p. 630], and he gives the
following useful criterion in terms of admissible bases. W.l.o.g. suppose that
T is the identity. Let e1, . . . , en and f1, . . . , fn+1 be admissible bases for E
resp. F such that

ei = fi + rifn+1, i = 1, . . . , n.

Lemma 4.3. Problem 4.2 has a positive solution if
∑n

i=1 |ri| < 1.

This criterion is a little hidden in the proof of the Corollary [L, p. 630],
where the extreme point condition exBE ∩ exBF = ∅ is spelled out to be
sufficient; but the heart of the matter is Lemma 4.3.

Now let’s take a quick glimpse at the proof of Theorem 4.1. Suppose that
X and Y are Gurariy spaces coming with `n∞-approximations

⋃
nEn and⋃

Fn, respectively. Comparing Proposition 3.3 with Lemma 4.3 one realises
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that one has to perturb the given admissible bases so that Lemma 4.3 be-
comes applicable. The details of this process are quite technical [L, pp. 631–
633] and lead to sequences of admissible bases. Ultimately one can pass to
the limit and obtain admissible bases {ei,n: i ≤ n, n ≥ 1} resp. {fi,n: i ≤ n,
n ≥ 1} spanning dense subspaces of X resp. Y , and the operator ei,n 7→ fi,n
acts as a well-defined isometry.

In an addendum to [L], dated January 10, 1976, Lusky applies his methods
to Mazur’s rotation problem that asks whether a separable transitive space
is isometric to a Hilbert space; a Banach space X is called transitive if
whenever ‖x‖ = ‖y‖ = 1, there is an isometric automorphism T : X → X
mapping x to y, i.e., Tx = y. This problem is open to this day, and recent
papers on the subject include [4] and [6].

What Lusky proves in his addendum is that the Gurariy space (now that
we know it’s unique we may use the definite article) is transitive for smooth
points. Recall that x0 is a smooth point of the unit ball BX if ‖x0‖ = 1
and there is exactly one x∗0 ∈ X∗ such that ‖x∗0‖ = x∗0(x0) = 1; equivalently,
the norm function x→ ‖x‖ is Gâteaux differentiable at x0. It is a theorem
of Mazur that smooth points are dense in the unit sphere of a separable
Banach space.

Theorem 4.4. Let x and y be smooth points of the unit ball of the Gurariy
space G. Then there is an isometric automorphism T : G → G mapping x
to y.

Another result of [L] is a refined version of a theorem originally due to
Wojtaszczyk [32] (see also [24]).

Theorem 4.5. Let X be a separable L1-predual and G be the Gurariy space.
Then there exist an isometry T : X → G and a norm-1 projection P : G→ G
onto T (X); further (Id− P )(G) is isometrically isomorphic to G.

This indicates that the Gurariy space is “maximal” among the separable
L1-predual spaces; in particular it contains C[0, 1] and is universal, a fact
proved by other means by Gevorkyan in [10].

We close this section by mentioning another proof of Theorem 4.1, due to
W. Kubís and S. Solecki [15]. Their proof avoids the Lazar-Lindenstrauss
machinery and just depends on the defining properties of a Gurariy space.
They also prove the universality of the Gurariy space from first principles,
without relying on the universality of C[0, 1]. Still another proof is in Kubís’s
paper [14] in Archiv der Mathematik, which builds on a Banach-Mazur type
game.

5. The Poulsen simplex

This note wouldn’t be complete without mentioning the cousin of the
Gurariy space in the world of compact convex sets, the Poulsen simplex.
The traditional definition of a (compact) simplex is a compact convex subset
S of a Hausdorff locally convex space E such that the cone generated by
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S×{1} in E⊕R is a lattice cone. Thus, a triangle in the plane is a simplex
while a rectangle isn’t. For our purposes it is important to note that the
space A(S) of affine continuous functions on a compact convex set is an
L1-predual if and only if S is a simplex.

Poulsen [29] had proved the existence of a metrisable simplex, which now
bears his name, whose set of extreme points is dense. It is a result due
to Lindenstrauss, Olsen, and Sternfeld [19] that such a simplex is uniquely
determined up to affine homeomorphism. They write:

We discovered the uniqueness of the Poulsen simplex after reading
Lusky’s paper [L] on the uniqueness of the Gurari space. Our proof
of the uniqueness uses the same idea which Lusky used in [L].

The role of admissible bases is now played by peaked partitions of unity.
The authors mention a lot of similarities between the Poulsen simplex and

the Gurariy space. For example, the counterpart of the defining property of
the Poulsen simplex SP is Lusky’s theorem from [L] and [24] that a separable
L1-predual is a Gurariy space G if and only if exBG∗ is weak∗ dense in the
unit ball BG∗ . However, A(SP ) is not the Gurariy space since for example
the transitivity property of Theorem 4.4 fails. But, as shown by Lusky [25],
one can salvage this by requiring a slightly more stringent assumption on x
and y, which are now supposed to be positive: in addition, 1− x and 1− y
should be smooth points.

6. Outlook

6.1. Fräıssé theory. The Gurariy space is a very homogeneous object,
for example [11, Th. 3]: If E and F are finite-dimensional subspaces of
the same dimension of a Gurariy space G, then for every ε > 0, every
isometric isomorphism from E to F extends to an ε-isometric automorphism
of G. In recent years, such homogeneous structures were investigated by
methods of model theory known as Fräıssé theory ([8], [2], [13]). Fräıssé
theory associates a unique limit to certain substructures. This approach
is at least implicit in the Kubís-Solecki uniqueness proof, and a detailed
exposition involving the Gurariy space, the Poulsen simplex and a whole lot
more can be found in M. Lupini’s paper [22].

6.2. Noncommutative Gurariy spaces. T. Oikhberg, in his Archiv der
Mathematik paper [27], proved the existence and uniqueness of a “noncom-
mutative” Gurariy space, i.e., a Gurariy-like object in the setting of operator
spaces à la Effros-Ruan. Again, this can also be viewed from the perspective
of Fräıssé theory [21].

6.3. Nonseparable spaces. We have already mentioned in Section 2 Gu-
rariy’s result that no space of universal disposition can be separable. Since
the definition of (almost) universal disposition makes perfect sense beyond
the separable case, it was studied in several papers, e.g., [1], [7], [9]. It turns
out that there are spaces of almost universal disposition of density character
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ℵ1, but the uniqueness breaks down (Th. 3.6 and Th. 3.7 in [9]). Likewise,
there are spaces of universal disposition of density ℵ1, and again, unique-
ness fails ([1], [7]). Indeed, it should be noted that in these papers also the
variant of being of (almost) universal disposition with respect to separable
spaces, already considered by Gurariy, is studied: in Definition 2.1 one now
allows E and F to be separable rather than finite-dimensional.

6.4. Banach lattices. Recently, M. A. Tursi [30] proved the existence of
a uniquely determined Gurariy-like Banach lattice. She exploits ideas of
Fräıssé theory.
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