Carsten Gräser

JProf. Dr. Carsten Gräser

Assistant professor

Head of research group:
Numerical methods for PDEs and numerical software

Freie Universität Berlin
Institut für Mathematik
Arnimallee 6
D-14195 Berlin
Germany

phone: +49 (30) 838 72637
fax: +49 (30) 838 472637
e-mail: graeser@mi.fu-berlin.de

Room 121
Office hour: Please make an appointment

Fingerprint of pgp key:
7267 75A8 A9E4 4663 716D C6C4 8273 716C 8B7E 9F67

orcid.org/0000-0003-4855-8655

Fields of Interest

Projects

Running:

Completed:

Member of

Software

Member of the Dune development team and Co-maintainer of the the following Dune modules:

Reviewed Publications

Reviewed Publications

  1. T. Kies and C. Gräser. On differentiability of the membrane-mediated mechanical interaction energy of discrete--continuum membrane--particle models. Interfaces Free Bound., 23:459–--484, 2021. (accepted). [ DOI | arXiv ]
  2. P. Bastian, M. Blatt, A. Dedner, N.-A. Dreier, C. Engwer, R. Fritze, C. Gräser, C. Grüninger, D. Kempf, R. Klöfkorn, M. Ohlberger, and O. Sander. The DUNE framework: Basic concepts and recent developments. Comput. Math. Appl., 2020. [ DOI | arXiv ]
  3. C. Gräser and O. Sander. Truncated nonsmooth Newton multigrid methods for block-separable minimization problems. IMA J. Numer. Anal., 39:454--481, 2019. [ DOI | arXiv ]
  4. C. Gräser and T. Kies. Discretization error estimates for penalty formulations of a linearized Canham--Helfrich type energy. IMA J. Numer. Anal., 39:626--649, 2019. [ DOI | arXiv ]
  5. C. Engwer, C. Gräser, S. Müthing, and O. Sander. The interface for functions in the dune-functions module. Archive of Numerical Software, 5(1):95--109, 2017. [ DOI | arXiv | http ]
  6. C. Gräser, M. Kahnt, and R. Kornhuber. Numerical approximation of multi-phase Penrose--Fife systems. Comput. Methods Appl. Math., 16(4):523--542, 2016. [ DOI | arXiv ]
  7. M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch, C. Gersbacher, C. Gräser, F. Gruber, C. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing, M. Nolte, M. Piatkowski, and O. Sander. The distributed and unified numerics environment, version 2.4. Archive of Numerical Software, 4(100):13--29, 2016. [ DOI | http ]
  8. C. M. Elliott, C. Gräser, G. Hobbs, R. Kornhuber, and M.-W. Wolf. A variational approach to particles in lipid membranes. Arch. Rational Mech. Anal., 222(2):1011--1075, 2016. [ DOI | arXiv ]
  9. C. Gräser, R. Kornhuber, and U. Sack. Nonsmooth Schur--Newton methods for multicomponent Cahn--Hilliard systems. IMA J. Numer. Anal., 35(2):652--679, 2015. [ DOI | preprint | http ]
  10. C. Gräser, R. Kornhuber, and U. Sack. Numerical simulation of coarsening in binary solder alloys. Comp. Mater. Sci., 93:221--233, 2014. [ DOI | preprint ]
  11. C. Gräser and O. Sander. Polyhedral Gauß--Seidel converges. J. Numer. Math., 22(3):221--254, 2014. [ DOI | preprint ]
  12. G. Jouvet and C. Gräser. An adaptive Newton multigrid method for a model of marine ice sheets. J. Comp. Phys., 252:419--437, 2013. [ DOI | preprint ]
  13. C. Gräser, R. Kornhuber, and U. Sack. Time discretizations of anisotropic Allen--Cahn equations. IMA J. Numer. Anal., 33(4):1226--1244, 2013. [ DOI ]
  14. G. Jouvet, E. Bueler, C. Gräser, and R. Kornhuber. A nonsmooth Newton multigrid method for a hybrid, shallow model of marine ice sheets. In J. Li, H. Yang, and E. Machorro, editors, Recent Advances in Scientific Computing and Applications, volume 586 of Contemporary Mathematics, pages 197--205. American Mathematical Society, 2013. [ DOI | preprint ]
  15. Q. Zou, A. Veeser, R. Kornhuber, and C. Gräser. Hierarchical error estimates for the energy functional in obstacle problems. Numerische Mathematik, 117(4):653--677, 2011. [ DOI | preprint ]
  16. C. Gräser, R. Kornhuber, and U. Sack. On hierarchical error estimators for time-discretized phase field models. In G. Kreiss, P. Lötstedt, A. Malqvist, and M. Neytcheva, editors, Numerical Mathematics and Advanced Applications 2009, pages 397--405. Springer, 2010. [ DOI | preprint ]
  17. C. Gräser and R. Kornhuber. Nonsmooth Newton methods for set-valued saddle point problems. SIAM J. Numer. Anal., 47(2):1251--1273, 2009. [ DOI | preprint ]
  18. C. Gräser and R. Kornhuber. Multigrid methods for obstacle problems. J. Comp. Math., 27(1):1--44, 2009. [ preprint ]
  19. C. Gräser and O. Sander. The dune-subgrid module and some applications. Computing, 8(4):269--290, 2009. [ DOI | preprint ]
  20. C. Gräser, U. Sack, and O. Sander. Truncated nonsmooth Newton multigrid methods for convex minimization problems. In M. Bercovier, M. Gander, R. Kornhuber, and O. Widlund, editors, Domain Decomposition Methods in Science and Engineering XVIII, volume 70 of LNCSE, pages 129--136. Springer, 2009. [ DOI | preprint ]
  21. C. Gräser. Globalization of nonsmooth Newton methods for optimal control problems. In K. Kunisch, G. Of, and O. Steinbach, editors, Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2007, pages 605--612, Berlin, 2008. Springer. [ DOI | preprint ]
  22. C. Gräser and R. Kornhuber. On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In O. B. Widlund and D. E. Keyes, editors, Domain Decomposition Methods in Science and Engineering XVI, volume 55 of LNCSE, pages 91--102, Heidelberg, 2007. Springer. [ DOI | preprint ]

Preprints

  1. C. Gräser, R. Kornhber, and J. Podlesny. Numerical simulation of multiscale fault systems with rate- and state-dependent friction. Preprint, 2021. arxiv:2110.14429. [ arXiv ]
  2. T. Kies, C. Gräser, L. Delle Site, and R. Kornhuber. Free energy computation of particles with membrane-mediated interactions via Langevin dynamics. Preprint, 2020. arxiv:2009.14713. [ arXiv ]
  3. C. Gräser, D. Kienle, and O. Sander. Truncated nonsmooth newton multigrid for phase-field brittle fracture problems. Preprint, 2020. arxiv:2007.12290. [ arXiv ]
  4. C. Gräser and P. A. Alathur Srinivasan. Error bounds for PDE-regularized learning. Preprint, 2020. arxiv:2003.06524. [ arXiv ]
  5. C. Engwer, C. Gräser, S. Müthing, and O. Sander. Function space bases in the dune-functions module. Preprint, 2018. arxiv:1806.09545. [ arXiv ]
  6. J. H. Peters, C. Gräser, and R. Klein. Membrane deformation by N-BAR proteins: Extraction of membrane geometry and protein diffusion characteristics from MD simulations. Preprint, 2017. arxiv:1712.02666. [ arXiv ]
  7. C. Gräser. A note on Poincaré- and Friedrichs-type inequalities. Technical report, 2015. arxiv:1512.02842. [ arXiv ]
  8. C. Gräser and O. Sander. Truncated nonsmooth Newton multigrid methods for simplex-constrained minimization problems. Preprint 384, IGPM Aachen, 2014. [ preprint ]
  9. C. Gräser. Nonsmooth Schur--Newton methods for nonsmooth saddle point problems. Preprint 1004, Matheon Berlin, 2013.

Other Publications

  1. D. Kienle, C. Gräser, O. Sander, and M.-A. Keip. Efficient and reliable phase-field simulation of brittle fracture using a nonsmooth multigrid solution scheme. PAMM, 18(1):e201800126, 2018. [ DOI ]

Theses

  1. C. Gräser. Convex Minimization and Phase Field Models. PhD thesis, Freie Universität Berlin, 2011. [ http ]
  2. C. Gräser. Analysis und Approximation der Cahn--Hilliard Gleichung mit Hindernispotential. Diplomarbeit, Freie Universität Berlin, 2004. [ .pdf ]

Talks

  1. Multiscale modelling of particles in membranes
    (invited plenary) SciCADE, Innsbruck, 2019.
  2. Conforming and dg multigrid for nonsmooth minimization
    WIAS Seminar Materialmodellierung, 2019.
  3. Multi-scale modeling of particles in membranes
    Oberwolfach workshop 1904: Surface, Bulk, and Geometric Partial Differential Equations: Interfacial, stochastic, non-local and discrete structures, 2019.
  4. Langevin dynamics for particles in membranes
    CRC 1114 Workshop: Particles in Membranes, 2018.
  5. Truncated nonsmooth newton multigrid for nonsmooth minimization problems
    ECCM-ECFD, Glasgow, 2018.
  6. Solving nonsmooth pdes in dune
    WIAS Seminar Numerical Mathematics, 2017.
  7. Modeling and simulation of particles in membranes
    Scaling Cascades in Complex Systems, CRC 1114 conference, 2017.
  8. Moving particles in biological membranes
    Applied Mathematics Seminars, University of Warwick, 2017.
  9. Nonlinearly preconditioned inexact Newton methods for nonsmooth optimization
    DD 24, Longyearbyen, Norway, 2017.
  10. Moving particles in biological membranes
    Oberwolfach workshop 1704: Emerging Developments in Interfaces and Free Boundaries, 2017.
  11. Nonlinearly preconditioned inexact Newton methods for nonsmooth optimization
    7th European Congress of Mathematics, Berlin, 2016.
  12. Nonlinearly preconditioned inexact Newton methods for nonsmooth optimization
    Seminar des of Instituts für Numerische Mathematik, TU Dresden, 2016.
  13. Nonlinearly preconditioned inexact Newton methods for nonsmooth optimization
    Colloque de mathématiques, University of Geneva, 2016.
  14. A variational approach to particles in lipid membranes
    Workshop Biological Membranes: Modelling, Analysis and Numerics, Imperial College London, 2016.
  15. A variational approach to particles in lipid membranes
    Oberwolfach workshop 1549: Geometric Partial Differential Equations, 2015.
  16. Type-erased interfaces in dune-functions
    Dune user meeting 2015, Heidelberg, 2015.
  17. Nonsmooth schur-newton methods for nonsmooth saddle point problems
    DD 23, Jeju, 2015.
  18. Multigrid for block-structured nonsmooth problems
    Workshop Long running trends and upcoming traditions in the numerical treatment of PDEs, Berlin, 2015.
  19. Truncated nonsmooth newton multigrid methods for vector valued minimization problems
    EMG, Leuven, 2014.
  20. Efficient solution of nonsmooth multicomponent phase field models
    AIMS, Madrid, 2014.
  21. Numerical solution of binary and multicomponent phase field models
    IGPM Oberseminar, RWTH Aachen, 2014.
  22. Nonsmooth Newton multigrid solvers for nonsmooth minimization problems
    DD 22, Lugano, Switzerland, 2013.
  23. Nonsmooth Newton multigrid solvers for nonsmooth minimization problems
    IFIP TC 7, Klagenfurt, 2013.
  24. Nonsmooth Schur--Newton methods for multicomponent Cahn--Hilliard equations
    EUCCO, Chemnitz, 2013.
  25. What is a ... variational inequality?
    ”What is ...?” seminar, BMS, Berlin, 2013.
  26. Nonsmooth Schur--Newton methods for multicomponent Cahn--Hilliard equations
    (short talk) Oberwolfach workshop 1313: Interfaces and Free Boundaries, 2013.
  27. Robust multigrid solution of phase field models
    Lothar-Collatz-Kolloquium, Uni Hamburg, 2012.
  28. A 20 minute introduction to multigrid methods (for algebraists)
    Oberwolfach seminar 1247a: Subspace Correction Methods, 2012.
  29. Truncated nonsmooth Newton multigrid methods for nonsmooth minimization
    ISMP, Berlin, 2012.
  30. Efficient implementation of Rothe's method with adaptive finite elements
    PDESoft, Münster, 2012.
  31. Nonsmooth Newton multigrid methods for nonlinear minimization problems
    Matheon AAC workshop on Optimization with PDE Constraints, Berlin, 2011.
  32. Convex minimization and phase field models
    Oberwolfach workshop 1148: Geometric Partial Differential Equations, 2011.
  33. Schur nonsmooth Newton methods
    IFIP TC 7, Berlin, 2011.
  34. Nonsmooth Newton multigrid
    ISMP, Chicago, 2009.
  35. Multigrid methods for phase field models
    Matheon ICM Workshop, Berlin, 2008.
  36. Global convergence of nonsmooth Newton methods for constrained minimization
    DD 18, Jerusalem, Israel, 2008.
  37. Nonsmooth Newton methods for set-valued saddle point problems
    Enumath, Graz, 2007.
  38. Nonsmooth Newton methods for set-valued saddle point problems
    DMV Jahrestagung, Berlin, 2007.
  39. Nonsmooth Newton methods for set-valued saddle point problems
    DD 17, Strobl, Austria, 2006.
  40. On preconditioned Uzawa-type iterations for the Cahn--Hilliard equation with obstacle potential
    EMG, Scheveningen, 2005.

Teaching