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Abstract We present a new approach for the globalization of the primal-dual ac-
tive set or equivalently the nonsmooth Newton method applied to an optimal control
problem. The basic result is the equivalence of this method to a nonsmooth New-
ton method applied to the nonlinear Schur complement of the optimality system.
Our approach does not require the construction of an additional merrit function or
additional descent direction. The nonsmooth Newton directions are naturally appro-
priate descent directions for a smooth dual energy and guarantee global convergence
if standard damping methods are applied.

1 Introduction

We consider the optimal control problem of minimizing the functional

J (y,u) =
1
2
‖y−yd‖

2
0 +

α
2
‖u‖2

0

subject to the constraints

u≤ ψ and −∆y= u

where the statey and the controlu are from suitable function spaces on the domain
Ω and‖ · ‖0 denotes theL2(Ω)-norm.
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It turned out that semismooth or nonsmooth Newton methods and interior point
methods are amongst the most efficient techniques to deal with this kind of problem.
Interior point methods ([2, 10] ...) regularize the problemby a sequence of barrier
functions to overcome the nonsmoothness inherited by the inequality constraints.

Nonsmooth Newton methods introduced in [8, 7, 9] solve such problems directly
by certain linearizations of nonsmooth operators. These methods have the advantage
that no regularization parameter has to be controlled. Theydiffer in the nonsmooth
operator used to incorporate the inequality constraints and in the concept of differ-
entiability and semismoothness used to get linearizationsand convergence results.
There are finite dimensional ([1, 6, 5] ...) as well as infinitedimensional ([11, 6]
...) approaches. The convergence results are in general only local and globalization
is tackled by the construction of merrit function and descent directions for these
functions if the Newton directions fail.

The approach used in [6] is shown to be equivalent to the primal-dual active set
method and a global convergence result is obtailed. However, this does only hold
under restrictive assumptions onα and in case of exact solution of the linear sub-
problems. In [5] the nonsmooth Newton idea is applied to a discrete dual minimiza-
tion problem. Thus the nonsmooth Newton directions are natural descent directions
an global convergence is achived by damping bases on the dualenergy. This paper
shows that the methods in [6] and [5] basically coincide. Hence [5] offers a natural
way to globalize the method of [6].

The paper is organized as follows. In Section 2 various reformulations of the
problem are presented. Sections 3 and 4 recall the methods of[6] and [5] respec-
tively. Finaly the equivalence of both methods is shown in Section 5.

2 An Optimal Control Problem

Using Green’s formula and appropriate Sobolev spaces the above problem can be
formulated in weak form as

(M )






Find (y,u) ∈ H1
0(Ω)×L2(Ω) such that

J (y,u) ≤ J (w,v)

s.t. u∈ K , (∇y,∇v) = (u,v) ∀v∈ H1
0(Ω)

with the convex setK = {v∈ L2(Ω) : v≤ ψ a.e inΩ}.
From now on we consider a corresponding discrete problem. Since we will not

discuss the discretization itself but the solution of the arising algebraic problem this
problem is formulated in terms of vectors and matrices instead of discrete function
spaces. Furthermore, to simplify notation we usey∈ R

m andu,ψ ∈ R
n as well for

the discrete approximations of the state, the control and the obstacle respectively.
The discrete analog of (M ) then reads:
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(M)






Find (y,u) ∈ R
m×R

n such that

J(y,u) ≤ J(w,v)

s.t. u∈ K, Ly = Iu

with the discrete convex setK = {v∈ R
n : v≤ ψ} and the discrete convex energy

J(y,u) =
1
2
〈D1y,y〉+

α
2
〈D2u,u〉− 〈b,y〉

b ∈ R
m is a discrete approximations of the linear functional(yd, ·) incorporating

the desired stateyd. The vectorsy andu may have different dimensions since they
will in general come from different discrete spaces. In the following we assume that
D1 andD2 are symmetric and positive definite andL is assumed to be invertible.
These assumptions are matched e.g. if (M ) is discretized by piecewise linear finite
elements. Notice thatD1,D2 andI are discrete analogs of the identity operator. For
a finite element discretization they represent discreteL2 inner products coupling
functions from possibly different finite element spaces. Hence the matrices might
differ in general.

Analogously to the continuous case the optimality system isgiven by

(S)






Find (y,u,w) ∈ R
m×R

n×R
m such that




D1 0 LT

0 αD2 + ∂ χK −IT

L −I 0








y
u
w



 3




b
0
0



 .

The elimination of the statey(u) = L−1Iu leads to a reduced problem

u∈ K : J̃(u) ≤ J̃(v) ∀v∈ K

with the energyJ̃(u) := J(L−1Iu,u). Its optimality system is given by

(PD)






Find (u,λ ) ∈ R
n×R

n such that

Au+ λ = f

u≤ ψ , λ ≥ 0,λ (u−ψ) = 0

with A = (L−1I)TD1(L−1I)+ αD2 and f = (L−1I)Tb.

3 Primal-Dual Active Set Method

The primal-dual active set method for the discrete problem is based on the primal-
dual formulation (PD). For givenu0,λ 0 ∈ L2(Ω) it reads:
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Algorithm 3.1

1. SetAk = {i : λ k
i +c(uk

i −ψi) > 0} andIk = {1, . . . ,n} \Ak

2. Solve
Auk+1 + λ k+1 = f ,

uk+1
i = ψi for i ∈ Ak, λ k+1

i = 0 for i ∈ Ik.

In [6] it is shown that the method can be interpreted as semismooth Newton method
and that the following convergence results hold.

Theorem 1 (cf. [6]). The sequence(uk,λ k) generated by algorithm 3.1 converges
superlinearly to the solution(u∗,λ ∗) of (PD) if ‖(u0,λ 0)− (u,λ )‖ is sufficiently
small. Furthermore, it converges for arbitrary(u0,λ 0) if A is the sum of an M-
matrix and a sufficiently small perturbation matrix. For thecase of a discretized
control problem the latter is the case ifα is small enough.

Unfortunately global convergence is in general not preserved if α is to small or if
the linear systems are solved inexactly. A similar result holds also in the infinite
dimensional case (cf. [6]).

4 Schur Complement Nonsmooth Newton

Another approach for the solution of the discrete algebraicproblem introduced in
[5] is based on the elimination of the primal unknowns in (S) by

(
y(w)
u(w)

)
:=

(
D1 0
0 αD2 + ∂ χK

)−1(
b−LTw

ITw

)
. (1)

Similar to linear saddle point problems (S) can be equivalently formulated as un-
constrained minimization problem

(M∗)

{
Findw∈ R

n such that

h(w) ≤ h(v) ∀v∈ R
n.

with the energy
h(w) = −L (y(w),u(w),w) (2)

whereL : R
m×R

n×R
m is the Lagrange functional associated with the saddle point

problem (S) given by

L (y,u,w) =
1
2
〈D1y,y〉+

α
2
〈D2u,u〉+ χK(u)−〈b,y〉+ 〈Ly− Iu,w〉 . (3)

Proposition 1 (cf. [5]). The energy h defined by(2) is strictly convex, coercive, and
continuously differentiable. Its gradient is given by the Lipschitz continuous opera-
tor



Globalization of Nonsmooth Newton Methods for Optimal Control Problems 5

∇h(w) = −(Ly(w)− Iu(w)).

This operator is also denoted the nonlinear Schur complement operator of (S).

Using these properties descent algorithms of the form

wk+1 = wk + ρkdk (4)

with appropriate descent directionsdk and step sizesρk can be applied to solve
(M∗). Choosingdk = −∇h(wk) leads to the gradient method which is equivalent to
a nonlinear Uzawa method ([3], [4]) applied to (S). Since∇h is Lipschitz continuous
a nonsmooth Newton approach is used to obtain linearizationsSk of ∇h atwk leading
to the (damped) nonsmooth Newton method:

Algorithm 4.1

1. Solve dk = −S−1
k ∇h(wk)

2. Set wk+1 = wk + ρkdk

The linearizationsSk of the Schur complement∇h at wk are given by

Sk = LD−1
1 LT + I D̂2(w

k)IT

whereD̂2(wk) is the linearization of(αD2 + ∂ χK)−1 constructed by

D̂2(w
k) = TA k

(
I −TA k

+TA k
αD2TA k

)−1

TA k

using the projection

(TA k
)i j =

{
1 if i = j andi /∈ A k

0 else

associated with the active set

A k = {i : u(wk)i = ψi}.

Its easy to see that these directions are descent directionsi.e. 〈dk,∇h(wk)〉 < 0 if
∇h(wk) 6= 0. The selected step sizes should guarantee sufficient descent. This can
be achieved by selecting them using the Armijo rule or bisection such that they are
efficient, i.e. they satisfy

∃C > 0∀k : h(wk + ρkdk) ≤ h(wk)−C

(〈
∇h(wk),dk

〉

‖dk‖

)2

. (5)

Having the descent property the following convergence result can be obtained.

Theorem 2 (cf. [5]). Assume that the stepsizesρk are efficient. Then the sequence
generated by algorithm 4.1 converges to the solution w∗ of (M∗) for arbitrary initial
iterates w0.
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This convergence result is in general preserved if inexact evaluation ofS−1
k is con-

sidered.

Algorithm 4.2

1. Solved̃k = −S−1
k ∇h(wk)+ εk

2. Set wk+1 = wk + ρkd̃k

Theorem 3 (cf. [5]). Assume that the step sizesρk are efficient, that the vectors̃dk

are descent directions, and that‖εk‖/‖d̃k‖ → 0 Then the sequence generated by
algorithm 4.2 converges to the solution w∗ of (M∗) for arbitrary initial iterates w0.

It is easy to see that these convergence results also hold if the Sk are replaced by
preconditionersSk defined analogously using the smaller active sets

A k =
{

i : (αD2u(wk))i 6= (ITwk)i
}
⊂ A k.

Remark 1.Each damping startegy requires the evaluation of eitherh or ∇h possibly
multiple times. These evaluations incorporate the solution of the nonlinear convex
problem in (1). However, solving this problem is in general very cheap sinceD2

represents theL2 inner produkt or the identity and not a differential operator. Thus
a nonlinear Gauß-Seidel method will converge to machine accuracy in a few steps.

5 Globalization of Primal-Dual Active Set Method

Now we analyze the relation between the presented methods. In the following let
(uk,λ k) the sequence generated by algorithm 3.1. Defining the sequences

yk = L−1Iuk, wk = L−Tb−L−TD1L−1Iuk

the multiplier is given by

λ k+1 = ITwk+1−αD2uk+1 (6)

and the linear system in algorithm 3.1 is equivalent to




D1 0 LT

0 TIk +TAkαD2 TAk(−IT)
L −I 0








yk+1

uk+1

wk+1



=




b

TIkψ
0



 . (7)

A simple computation shows that the constantc in the definition of the active set
drops out after the first iteration. More precisely using (6)we have

Lemma 1. Let k> 0 thenAk can be equivalently defined by

Ak =
{

i : (ITwk−αD2uk)i +ci(u
k
i −ψi) > 0

}
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for any ci > 0.

Proof. Sincek > 0 each indexi is either inAk−1 or in Ik−1. Hence(uk
i −ψi) or

(ITwk −αD2uk)i = λ k
i must be zero. Therefore the sum is positive iff one of these

expressions is positive. Havingc,ci > 0 it is clear that

c(uk
i −ψi) > 0⇔ (uk

i −ψi) > 0⇔ ci(u
k
i −ψi) > 0.

The definition ofAk is closely related to the Euclidean projection which differs
from the projection with respect toD2 if it is not diagonal. However, we need this
projection in the following since it is the proper discrete analog of the continuous
L2-projection. Therefore we assume

(A) D2 is a diagonal matrix.

This is not very restrictive since (A) holds ifu is discretized by finite differences,
by piecewise constant finite elements, or by piecewise linear finite elements using
mass lumping forD2.

Using (A) and lemma 1 withci = (αD2)ii we get

Lemma 2. Let k> 0 then

Ak =
{

i : (αD2u(wk))i 6= (ITwk)i
}

.

By this representationu(wk) can be expressed by a linear equation depending on the
active setAk. Thus from (7) we get




D1 0 LT

0 TIk +TAkαD2TAk −TAkI
T

L −ITAk 0








yk+1−y(wk)
uk+1−u(wk)
wk+1−wk



=




0
0

∇h(wk)



 . (8)

Here we used the fact thatuk+1−u(wk) = TAk(u
k+1−u(wk)). By this representation

we instantly get the main result:

Theorem 4. Assume that assumption (A) holds. For k> 0 algorithm 3.1 is equiva-
lent to the iteration

wk+1 = wk−S
−1
k ∇h(wk)︸ ︷︷ ︸

dk

(9)

with the symmetric, positive definite preconditioner

Sk = LD−1
1 LT + ITA k

(
I −TA k

+TA k
αD2TA k

)−1

TA k
IT

in the sense that(yk,uk) is computed from wk using(7). Thus global convergence of
this descent method can be achieved by introducing appropriate damping parame-
tersρk in (9) even in the case of inexact evaluation in the sense of theorem3.

Proof. (9) follows from (8) by elimination of the state and control variables. The
convergence results are direct consequences of theorem 2 and theorem 3.
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Remark 2.Theorem 4 shows that the primal-dual active set method and the (un-
damped) Schur complement nonsmooth Newton method applied to control prob-
lems basically coincide. The interpretation as descent method provides a natural
way to globalize the method using damping even in the case of inexact solution of
the linear systems. Notice that no artificial merrit function and descent directions
have to be contructed if this approach is used.

Remark 3.The above result does not carry over to the continuous problem. Since
the natural embeddingI : H1

0(Ω)→H1
0(Ω)′ is not invertible the elimination of the

state used in (1) is in general only possible in a suitable subspace. In this subspace
algorithm 4.2 can also be defined in the infinite dimensional case. However, the
convergence theory given in [5] is no longer applicable.

This might suggest that the convergence gets slower for larger discrete problems.
The numerical results presented in [5] seem contradict thisconjecture even in the
case that damping is applied. Extension of the ideas to the infinite dimensional case
is the topic of current research.
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