Globalization of Nonsmooth Newton M ethods
for Optimal Control Problems

Carsten Graser

Abstract We present a new approach for the globalization of the pritoal ac-
tive set or equivalently the nonsmooth Newton method agpéiean optimal control
problem. The basic result is the equivalence of this metbaa nonsmooth New-
ton method applied to the nonlinear Schur complement of gtanality system.
Our approach does not require the construction of an additimerrit function or
additional descent direction. The nonsmooth Newton dwastare naturally appro-
priate descent directions for a smooth dual energy and gtesrglobal convergence
if standard damping methods are applied.

1 Introduction
We consider the optimal control problem of minimizing thadtional

1 a
S u) = Slly—vall+ 5 llullj
2 2
subject to the constraints
usy and —Ay=u

where the statg and the controli are from suitable function spaces on the domain
Q and|| - ||o denotes th&?(Q)-norm.
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It turned out that semismooth or nonsmooth Newton methodsrdarior point
methods are amongst the most efficient techniques to ddattvigtkind of problem.
Interior point methods ([2, 10] ...) regularize the problbyna sequence of barrier
functions to overcome the nonsmoothness inherited by epiality constraints.

Nonsmooth Newton methods introduced in [8, 7, 9] solve suoblpms directly
by certain linearizations of nonsmooth operators. Thesbods have the advantage
that no regularization parameter has to be controlled. Hifégr in the nonsmooth
operator used to incorporate the inequality constraingsiathe concept of differ-
entiability and semismoothness used to get linearizatimsconvergence results.
There are finite dimensional ([1, 6, 5] ...) as well as infidtmensional ([11, 6]
...) approaches. The convergence results are in genesdlomall and globalization
is tackled by the construction of merrit function and desadirections for these
functions if the Newton directions fail.

The approach used in [6] is shown to be equivalent to the ilnal active set
method and a global convergence result is obtailed. Howévisrdoes only hold
under restrictive assumptions anand in case of exact solution of the linear sub-
problems. In [5] the nonsmooth Newton idea is applied to erdte dual minimiza-
tion problem. Thus the nonsmooth Newton directions arerabtiescent directions
an global convergence is achived by damping bases on theedegdy. This paper
shows that the methods in [6] and [5] basically coincide. ¢¢ef®] offers a natural
way to globalize the method of [6].

The paper is organized as follows. In Section 2 various nefdations of the
problem are presented. Sections 3 and 4 recall the methd@$ afid [5] respec-
tively. Finaly the equivalence of both methods is shown iotide 5.

2 An Optimal Control Problem

Using Green’s formula and appropriate Sobolev spaces theegtroblem can be
formulated in weak form as

Find (y,u) € H3(Q) x L?(Q) such that

() S ) < 7 (wy)
st.  uex, (OyOv)=(uv) WeH3(Q)

with the convex setr” = {ve L?(Q) :v< Y a.einQ}.

From now on we consider a corresponding discrete problenteSie will not
discuss the discretization itself but the solution of thisiag algebraic problem this
problem is formulated in terms of vectors and matrices adbief discrete function
spaces. Furthermore, to simplify notation we yseR™ andu, y € R" as well for
the discrete approximations of the state, the control aadtistacle respectively.
The discrete analog of£) then reads:
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Find (y,u) € R™ x R" such that
(M) 3y, u) < I(wv)
s.t. ueK, Ly=1lu
with the discrete convex skt = {ve R": v < ¢} and the discrete convex energy

a

2 <D2U, U> - <b7y>

1
me=5®mw+

b € RMis a discrete approximations of the linear functiofw,-) incorporating
the desired statgy. The vectory andu may have different dimensions since they
will in general come from different discrete spaces. In thi®fving we assume that
D; andD, are symmetric and positive definite ahds assumed to be invertible.
These assumptions are matched e.g4f)(is discretized by piecewise linear finite
elements. Notice thdd;, D, andl are discrete analogs of the identity operator. For
a finite element discretization they represent disct&ténner products coupling
functions from possibly different finite element spacesnttethe matrices might
differ in general.

Analogously to the continuous case the optimality systegivisn by

Find (y,u,w) € R™x R" x R™ such that

(S) D; 0 L™\ [y b
0 aDy+dxk —I" ul>s .
L —I 0 W 0

The elimination of the statg(u) = L~lu leads to a reduced problem
ueK: Ju<dv) WweK
with the energyJ(u) := J(L~lu, u). Its optimality system is given by
Find (u,A) € R" x R" such that

(PD) Au+A =f
u<yg,A>0A(u—y)=0

with A= (L=1)TDy(L~11) + aDz andf = (L711)Th.

3 Primal-Dual Active Set M ethod

The primal-dual active set method for the discrete probkeleised on the primal-
dual formulation (PD). For given®,A° € L?(Q) it reads:
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Algorithm 3.1
1. Seter = {i : AK+c(uf— ) > 0} and A = {1,...,n} \
2. Solve

Auk+1+/\k+1: f
Ut = i fori e o4, AXl=0forie 4.

In [6] it is shown that the method can be interpreted as sepusirNewton method
and that the following convergence results hold.

Theorem 1 (cf. [6]). The sequencéX,AX) generated by algorithm 3.1 converges
superlinearly to the solutioiu*,A*) of (PD) if ||(u% A°) — (u,A)]| is sufficiently
small. Furthermore, it converges for arbitraru®,A°) if A is the sum of an M-
matrix and a sufficiently small perturbation matrix. For thase of a discretized
control problem the latter is the casedfis small enough.

Unfortunately global convergence is in general not presgif/a is to small or if
the linear systems are solved inexactly. A similar resultdfa@lso in the infinite
dimensional case (cf. [6]).

4 Schur Complement Nonsmooth Newton

Another approach for the solution of the discrete algebpaablem introduced in
[5] is based on the elimination of the primal unknowns in (§) b

yw)\ . (D 0 b LTw )
uw)/ " \ 0 aDy+ dxk Tw )~
Similar to linear saddle point problems (S) can be equiubldormulated as un-
constrained minimization problem

Findw € R" such that
(M7) {
h(w)<h(v)  WeR"
with the energy
where.Z : R™x R" x R™is the Lagrange functional associated with the saddle point
problem (S) given by
a

5 (D2u,u) + Xk (W) = (b,y) +(Ly—lu,w). (3)

1
Z(y,u,w) = 5 (Dy.y) +
Proposition 1 (cf. [5]). The energy h defined [§®) is strictly convex, coercive, and
continuously differentiable. Its gradient is given by thpdchitz continuous opera-
tor
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Oh(w) = —(Ly(w) — lu(w)).
This operator is also denoted the nonlinear Schur complémgerator of (S).
Using these properties descent algorithms of the form

\Nk+1 — \A/k+pkdk (4)

with appropriate descent directiod and step sizeg* can be applied to solve
(M*). Choosingd® = —Oh(wX) leads to the gradient method which is equivalent to
a nonlinear Uzawa method ([3], [4]) applied to (S). Siateis Lipschitz continuous
anonsmooth Newton approach is used to obtain lineariz8oof [h atwX leading

to the (damped) nonsmooth Newton method:

Algorithm 4.1
1. Solve 8 = —S 10h(w)
2. Set Wt = wK 4 pkdk

The linearization§, of the Schur complementh atwX are given by
Sc=LD; T +1D(wi)IT
whereD, (W) is the linearization ofaD, 4+ dxk )~ constructed by

~

-1
Do (WK) = T, (I ~ T+ TykaDzTyk> T,

using the projection

1 ifi=jandi¢ o\
— ) =
( ”k)” {0 else

associated with the active set
A= {i ru(w)i = i}

Its easy to see that these directions are descent dire¢téorigk, Ih(wX)) < O if
Oh(wK) # 0. The selected step sizes should guarantee sufficientrde3tes can
be achieved by selecting them using the Armijo rule or bieacduch that they are
efficient i.e. they satisfy

(5)

2
IC>0vk:  h(w<4 pkd) < h(wk)—C <M) .

1]

Having the descent property the following convergenceltesin be obtained.

Theorem 2 (cf. [5]). Assume that the stepsize’ are efficient. Then the sequence
generated by algorithm 4.1 converges to the solutiblof(M*) for arbitrary initial
iterates .
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This convergence result is in general preserved if inexaadtiation of$1 is con-
sidered.

Algorithm 4.2

1. Solved® = —S 10h(wK) + ek
2. Set W'l = wK 4 pkdk

Theorem 3 (cf. [5]). Assume that the step size$Sare efficient, that the vectod¥
are descent directions, and thagX||/||d¥|| — 0 Then the sequence generated by
algorithm 4.2 converges to the solutior of (M*) for arbitrary initial iterates wf.

It is easy to see that these convergence results also hdid §tare replaced by
preconditioner$y defined analogously using the smaller active sets

= {i: (aDau(w))i # (I"W)i } C Fx.

Remark 1Each damping startegy requires the evaluation of ettt lh possibly
multiple times. These evaluations incorporate the satubibthe nonlinear convex
problem in (1). However, solving this problem is in generafycheap sinc®,
represents the? inner produkt or the identity and not a differential operalthus
a nonlinear Gaul3-Seidel method will converge to machinaracy in a few steps.

5 Globalization of Primal-Dual Active Set M ethod

Now we analyze the relation between the presented methodbselfollowing let
(uk, AK) the sequence generated by algorithm 3.1. Defining the seqaen

Y=Lk, wK=LTb—L DL uk
the multiplier is given by
A k+1 _ IT\Nk+l _ aDzuk+l (6)

and the linear system in algorithm 3.1 is equivalent to

D 0 LT yktl b
0 Ty +Teg0D2 Ty (—1T) | [ U ) = [ Thy |- (7)
L —1 0 witl 0

A simple computation shows that the constamt the definition of the active set
drops out after the first iteration. More precisely usingv@)have

Lemma 1. Let k> 0 then.« can be equivalently defined by

= {i F(1TW— aDaub)i + i (Ui — ) > 0}
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forany g > 0.

Proof. Sincek > 0 each index is either in_, or in 1. Hence(u}‘ — ) or
(ITwk — aD,uk); = AK must be zero. Therefore the sum is positive iff one of these
expressions is positive. Havirge; > 0 it is clear that

( LIJ|)>0<:>( 4’!)>0@CI( — ) >

The definition of.e is closely related to the Euclidean projection which dfer
from the projection with respect i, if it is not diagonal. However, we need this
projection in the following since it is the proper discreteabpg of the continuous
L2-projection. Therefore we assume

(A) D»is a diagonal matrix.

This is not very restrictive since (A) holdsfis discretized by finite differences,
by piecewise constant finite elements, or by piecewise fifiedie elements using
mass lumping foD-.

Using (A) and lemma 1 witlg; = (aD5);i we get

Lemma2. Let k> Othen
= {i: (aDau(w))i # (ITw)i } -

By this representation(w¥) can be expressed by a linear equation depending on the
active setw. Thus from (7) we get

D 0 LT YL — y(wK) 0
0 Ty + T @D2Tyy —ToylT | | UL —u(w¥) | = 0 . (8)
L 1Ty, 0 Wk wk Oh(wk)

Here we used the fact that™* — u(w¥) = T, (U1 — u(w¥)). By this representation
we instantly get the main result:

Theorem 4. Assume that assumption (A) holds. For 0 algorithm 3.1 is equiva-

lent to the iteration L
Wi = wK—5 "Oh(wX) (9)
with the symmetric, positive definite preconditioner
-1
S - T T
S = LDl L'+ |Tyk (l — T;k +TﬂkaD2Tp{k) T;kl

in the sense thaty, u¥) is computed from twsing(7). Thus global convergence of
this descent method can be achieved by introducing apm@tpdamping parame-
terspk in (9) even in the case of inexact evaluation in the sense of the®rem

Proof. (9) follows from (8) by elimination of the state and contr@riables. The
convergence results are direct consequences of theorethtBeorem 3.
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Remark 2Theorem 4 shows that the primal-dual active set method aaduh-
damped) Schur complement nonsmooth Newton method appliedrtrol prob-
lems basically coincide. The interpretation as descenhoakprovides a natural
way to globalize the method using damping even in the caseesfict solution of
the linear systems. Notice that no artificial merrit funotind descent directions
have to be contructed if this approach is used.

Remark 3The above result does not carry over to the continuous prolfénce
the natural embedding : H}(Q) — H3(Q)’ is not invertible the elimination of the
state used in (1) is in general only possible in a suitablssate. In this subspace
algorithm 4.2 can also be defined in the infinite dimensioralec However, the
convergence theory given in [5] is no longer applicable.

This might suggest that the convergence gets slower foetaligcrete problems.
The numerical results presented in [5] seem contradictdbiigecture even in the
case that damping is applied. Extension of the ideas to fietendimensional case
is the topic of current research.
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