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Abstract. We present a new class of iterative schemes for large scale set–
valued saddle point problems as arising, e.g., from optimization problems in
the presence of linear and inequality constraints. Our algorithms can be ei-
ther regarded as nonsmooth Newton–type methods for the nonlinear Schur
complement or as Uzawa–type iterations with active set preconditioners. Nu-
merical experiments with a control constrained optimal control problem and
a discretized Cahn–Hilliard equation with obstacle potential illustrate the re-
liability and efficiency of the new approach.

1. Introduction

We consider the iterative solution of large scale saddle point problems of the
form

(1.1) u∗ ∈ R
n, w∗ ∈ R

m :

(
F BT

B −C

) (
u∗

w∗

)
3

(
f
g

)
,

where B, C are suitable matrices, and the set–valued operator F = ∂ϕ stands for
the subdifferential of a strictly convex functional ϕ. Such kind of problems typically
arise from the discretization of optimization or optimal control problems governed
by partial differential equations with inequality constraints (cf., e.g., [34, 47]). In
case of a quadratic objective functional, we get

(1.2) F = A+ ∂IK

where IK is denoting the indicator functional of the admissible set K, A is a self–
adjoint positive definite, sometimes even diagonal matrix, and C = 0. Another
rich and still growing class of problems of the form (1.1) consists of discretized
phase field models, such as Cahn–Hilliard equations [5, 6, 8, 18, 19], Penrose–
Fife equations [10] or Stefan–type problems [50]. For example, discretization of
Cahn–Hilliard equations with logarithmic potential leads to the single–valued but
singularly perturbed nonlinearity F (u) = Au+T log((1+u)/(1−u)) where the log-
arithmic term is understood componentwise. Nonlinearities of the form (1.2) occur
as singular limit for vanishing temperature T . The matrices A, C are essentially
stiffness matrices of the Laplacian with A augmented by a non–local term reflect-
ing mass conservation. Other possible applications include discretized plasticity
problems [21, 45].
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Saddle point problems of the form (1.1) with single-valued, Lipschitz–continuous
nonlinearities F have been considered in [12, 28]. Interior point methods (cf., e.g.,
[52, 53]) are based on suitable regularizations of set–valued nonlinearities (1.2).
It is not immediately clear, how this strategy should be generalized to single–
valued but singularly perturbed nonlinearities. Existing primal–dual active set
methods [27, 48] are based on the elimination of the state variables us and an active
set approach to the resulting constrained minimization problem for the controls
uc. These methods are applicable to (1.1) with u = (us, uc), provided that the
corresponding partitioning of B = (Bs, Bc) generates an invertible matrix Bs, that
the set–valued nonlinearity (1.2) only constrains uc, and finally C = 0. For example,
discretized Cahn–Hilliard equations have none of these properties.

The novel approach presented in this paper relies on convexity rather than
smoothness. It is motivated by the fact that a variety of practically relevant
nonlinearities F can be either inverted in closed form or can be efficiently in-
verted by multigrid methods. This includes, e.g., the nonlinearities mentioned
above [3, 4, 26, 30, 32, 33].

The basic idea is to reformulate (1.1) as an unconstrained convex minimization
problem for the dual unknown w. The gradient of the objective functional h is
just the nonlinear Schur complement H of (1.1) and thus involves F−1. Mini-
mization of h is carried out by well–known gradient–related descent methods (cf.,
e.g., [38, 39, 40]). Global convergence is enforced by standard Armijo damping [2],
for simplicity. We particularly concentrate on nonsmooth Newton or Newton–like
methods for nonlinearities of the form (1.2) taking into account that the nonlinear
Schur complement H is Lipschitz but not differentiable in the classical sense. We
prove global convergence and local exactness. Inexact versions are shown to be
globally convergent.

In the special case of discretized optimal control problems with control con-
straints and diagonal matrix A our algorithms reduce to well–known primal–dual
active set methods [23]. Hence, the algorithms presented in this paper can be
regarded as a new variational approach to primal–dual active set strategies, thus
providing a natural globalization and generalization of these methods. Extensions
to single–valued, but singularly perturbed nonlinearities F will be presented in a
forthcoming paper [25]. Our approach also sheds new light on well–established
algorithms in computational plasticity [51].

From a computational point of view, our algorithms can be reinterpreted as
nonlinear Uzawa iterations with active–set preconditioners [24]. For nonlinearities
of the form (1.2), each iteration step requires the detection of the actual active set of
uν = F−1(f−BTwν) (not of uν itself!), and the sufficiently accurate evaluation of a
corresponding linear saddle point problem (the actual preconditioner). We found in
our numerical experiments with a discretized Cahn–Hilliard equation that, for bad
initial iterates, the overall computational work was dominated by Armijo damping,
because each Armijo test involves the exact evaluation of F−1, i.e., the solution
of a discrete elliptic obstacle problem. For reasonable initial iterates as obtained,
e.g., from the preceding time step, almost no damping was necessary. In this case
the (inexact) evaluation of the linear saddle point problem clearly dominated the
overall computational cost.

The paper is organized as follows. After some notation and a precise formulation
of the assumptions, we derive the equivalent unconstrained minimization problem
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which is fundamental for the rest of this paper. In Section 3, we recall some general
convergence results for gradient–related descent methods for unconstrained mini-
mization, including damping strategies and inexact variants. Then, we concentrate
on the selection of suitable descent directions for the special case of nonlinearities of
the form (1.2). More precisely, we investigate the B-subdifferential of F and later of
H , giving rise to various nonsmooth Newton–type methods. The main convergence
results are collected in Theorems 4.1 – 4.3. Section 5 provides a more tangible
reformulation of these abstract schemes in terms of quadratic obstacle problems
and linear saddle point problems. Inexact evaluation of both of these subproblems
and a heuristic damping strategy is also discussed. In our numerical computa-
tions, we consider a control constrained optimal control problem and a discretized
Cahn–Hilliard equation. We found superlinear convergence and finite termination,
supporting our theoretical findings.

2. Set-valued saddle point problems

2.1. General assumptions and notation. Let 〈·, ·〉 denote the euclidian inner
product on R

m. We equip R
m with the norm ‖·‖M ,

‖x‖2
M = 〈Mx, x〉 , x ∈ R

m ,

induced by a fixed symmetric, positive definite (s.p.d.) matrix M ∈ R
m,m. Linear

mappings will be identified with their matrix representations with respect to the
canonical basis vectors ei with the coefficients (ei)j = δi,j (Kronecker–δ). Elements
x′ of the dual space (Rm)′ will be represented as x′ = 〈x, ·〉 with suitable x ∈ R

m.
Hence, using

|x′(y)| = | 〈x, y〉 | ≤ ‖M− 1

2 x‖‖M
1

2 y‖ = ‖x‖M−1 ‖y‖M ,

the dual space (Rm, ‖·‖M )′ is identified with (Rm, ‖·‖M−1).
We impose the following conditions on the saddle point problem (1.1).

(A1) F = ∂ϕ is the subdifferential of a proper, lower semi–continuous, strictly
convex functional ϕ : R

n → R = R ∪ {∞}. The inverse F−1 : R
n → R

n is
single-valued and Lipschitz continuous.

(A2) C ∈ R
m,m is symmetric, positive semi–definite.

(A3) B ∈ R
m,n.

(A4) The saddle point problem (1.1) has a unique solution.

Nonlinearities F satisfying condition (A1) occur, e.g., in discretized Cahn–Hilliard
equations with logarithmic potential [5]. Later on, we will concentrate on the special
case

F = A+ ∂IK ,

where A ∈ R
n,n is s.p.d. and IK denotes the indicator functional of a closed convex

set K. In this case, (A1) holds with

ϕ(x) =
1

2
〈Ax, x〉 + IK ,

and x = F−1(y) is the unique solution of the variational inequality

x ∈ K : 〈Ax− y, v − x〉 ≥ 0 ∀v ∈ K .(2.1)

It is well–known that the corresponding mapping F−1 : (Rn, ‖ ·‖A−1) → (Rn, ‖ ·‖A)
is Lipschitz continuous with constant LF−1 ≤ 1 (cf., e.g., [29, p. 24]).
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2.2. Nonlinear Schur complement and unconstrained minimization. Our
aim is to reformulate the given saddle point problem as an unconstrained minimiza-
tion problem. In the first step the inclusion (1.1) is transformed into a single–valued
equation.

Proposition 2.1. The saddle point problem (1.1) is equivalent to

w∗ ∈ R
m : H(w∗) = 0(2.2)

with the Lipschitz continuous mapping

H(w) = −BF−1(f −BTw) + Cw + g , w ∈ R
m .(2.3)

Proof. Using (A1) the equivalence is easily obtained by straightforward block elim-
ination. Lipschitz–continuity is clear since H consists of a sum and a composition
of the Lipschitz continuous function F−1 with linear and constant functions. �

The operator H can be regarded as a nonlinear version of the well–known Schur
complement. In contrast to the linear case, the right–hand side f cannot be sep-
arated from the part depending on w. Note, that H is single–valued, because
F−1 = (∂ϕ)−1 is single–valued or, equivalently, the minimization of ϕ on R

n ad-
mits a unique solution.

Theorem 2.1. There is a Fréchet-differentiable, convex functional h : R
m → R

with the property ∇h = H and the representation

(2.4) h(w) = −L(F−1(f −BTw), w) , w ∈ R
m ,

where

L(u,w) = ϕ(u) − 〈f, u〉 + 〈Bu− g, w〉 −
1

2
〈Cw,w〉

denotes the Lagrange functional associated with (1.1).

Proof. The polar (or conjugate) functional ϕ∗ of ϕ is convex and, by Corollary
5.2 in [17, p. 22], has the property ∂ϕ∗ = (∂ϕ)−1 = F−1. Since F−1 is single-
valued, ϕ∗ is Gâteaux-differentiable. The continuity of F−1 implies that ϕ∗ is even
Fréchet-differentiable with ∇ϕ∗ = F−1. Setting

h(w) = ϕ∗(f −BTw) +
1

2
〈Cw,w〉 + 〈g, w〉(2.5)

we immediately get ∇h = H using the chain rule. By definition of ϕ∗ we have

ϕ∗(y) = sup
x∈Rn

(〈y, x〉 − ϕ(x)) = − inf
x∈Rn

(ϕ(x) − 〈y, x〉)

= −
(
ϕ(F−1(y)) −

〈
y, F−1(y)

〉)
, y ∈ R

n .

Inserting this representation with y = f −BTw into (2.5), we get (2.4).
The convexity of ϕ implies the monotonicity of F−1. In combination with the

non–negativity of C we get

(2.6) 〈w1 − w2, H(w1) −H(w2)〉

=
〈
(f −BTw1) − (f −BTw2), F

−1(f −BTw1) − F−1(f −BTw2)
〉

+ 〈C(w1 − w2), w1 − w2〉 ≥ 0

so that H is monotone. Therefore h is convex. �
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Assuming, in addition to (A2), that C is positive definite, it is not difficult to
show that h is strongly convex, i.e., there is a constant µ > 0 such that

h(λx+ (1 − λ)y) ≤ λh(x) + (1 − λ)h(y) − λ(1 − λ)
µ

2
‖x− y‖2

M ∀λ ∈ [0, 1]

(2.7)

holds for all x, y ∈ R
m. In general, however, h is not even strictly convex so that

we had to require uniqueness separately.
Combining Proposition 2.1 with Theorem 2.1, we are ready to state the main

result of this section.

Corollary 2.1. The set-valued saddle point problem (1.1) is equivalent to the un-

constrained convex minimization problem

w∗ ∈ R
m : h(w∗) ≤ h(w) ∀w ∈ R

m.(2.8)

Recall that the functional h is differentiable with Lipschitz continuous gradient
H = ∇h. However, the actual evaluation of h(w) and ∇h(w) might be expensive,
because it involves the solution of F (u) = f −BTw.

3. Gradient–related methods

Exploiting Corollary 2.1, existing algorithms for the unconstrained minimization
of convex, differentiable functionals now can be utilized to solve the constrained
saddle point problem (1.1). In this section, we consider the fairly general class
of gradient–related descent methods (see for example [39]). In agreement with
Section 2.2, we assume that h : R

m → R denotes a convex functional with Lipschitz
continuous Fréchet derivative ∇h and the unique minimizer w∗ ∈ R

m.

3.1. Global convergence results. We consider the iteration

wν+1 = wν + ρνdν , ν = 0, 1, . . . ,(3.1)

with given initial guess w0 ∈ R
m. In each step, first a search direction dν is chosen

according to the actual iterate wν and then a step size ρν is fixed according to wν

and dν , i.e.,

dν = d(ν, wν), ρν = ρ(ν, wν , dν) , ν = 0, 1, . . .(3.2)

with suitable mappings d, ρ.
The search directions dν should allow for a sufficient descent of h.

Definition 3.1. The search directions dν = d(ν, wν), ν ∈ N, are called gradient–

related descent directions, if for any sequence (wν ) ⊂ R
m the conditions

∇h(wν ) = 0 ⇐⇒ dν = 0 ∀ν ∈ N(3.3)

and

−〈∇h(wν ), dν〉 ≥ cD ‖∇h(wν)‖M−1 ‖dν‖M ∀ν ∈ N(3.4)

hold with a constant cD > 0 independent of ν.

Note that the preconditioned gradients dν = −M−1∇h(wν) satisfy (3.4) with
equality and cD = 1. Obviously, (3.4) implies

−(∇h(wν), dν) > 0 ,(3.5)
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if ∇h(wν) 6= 0. Search directions dν = d(ν, wν), ν ∈ N, satisfying (3.3) and, instead
of (3.4), the weaker condition (3.5) for arbitrary (wν) ∈ R

m are called descent
directions.

The step sizes ρν should realize a sufficient portion of possible descent.

Definition 3.2. Let dν = d(ν, wν), ν ∈ N, be descent directions. Then the step

sizes ρν = ρ(ν, wν , dν), ν ∈ N, are called efficient, if for any sequence (wν ) ⊂ R
m

the estimate

h(wν + ρνdν) ≤ h(wν) − cS

(
〈∇h(wν), dν〉

‖dν‖M

)2

(3.6)

holds for all ν ∈ N such that ∇h(wν) 6= 0 with a constant cS > 0 independent of ν.

We are now ready to prove convergence.

Theorem 3.1. Assume that (3.2) provides gradient–related descent directions dν

and efficient step sizes ρν . Then, for arbitrary initial iterate w0 ∈ R
m, the iterates

wν , ν ∈ N, obtained from (3.1) converge to the minimizer w∗ of h.

Proof. Combining the properties of dν = d(ν, wν) and ρν = ρ(ν, wν , dν) we get

h(wν) − h(wν+1) ≥ cSc
2
D ‖∇h(wν )‖2

M−1 ∀ν ∈ N.(3.7)

Since h has a global minimizer, the sequence (h(wν)) is bounded from below and,
by (3.7), is monotonically decreasing. Hence, h(wν) converges to some h∗ ∈ R.
Using again (3.7), we get

0 ≤ cSc
2
D ‖∇h(wν )‖2

M−1 ≤ h(wν) − h(wν+1) → 0(3.8)

so that ∇h(wν ) must tend to zero.
The section S = {w ∈ R

m | h(w) ≤ h(w0)} is bounded. Otherwise there would
be a sequence (wk) ⊂ S with the property λ−1

k := ‖wk − w∗‖ ≥ k. Then, by
compactness of the unit sphere with center w∗, the sequence w′

k = w∗ + (wk −
w∗)/‖wk −w∗‖ has a convergent subsequence w′

kj
→ w∗∗ 6= w∗. By continuity and

convexity of h this leads to

h(w∗∗) = lim
j→∞

h(w′
kj

) ≤ lim
j→∞

λkj
h(wkj

) + (1 − λkj
)h(w∗) = h(w∗) ,

contradicting the uniqueness of w∗.
The section S is also closed and therefore compact. As a consequence, (wν) has a

convergent subsequence (wνi ) → w∗∗. The continuity of ∇h provides ∇h(w∗∗) = 0
and uniqueness implies w∗∗ = w∗. Hence, each convergent subsequence must tend
to w∗. This proves the assertion. �

In the proof, we have made extensive use of Heine–Borel’s Theorem which is
restricted to finite dimensions. However, using weak compactness and the weak
lower semi-continuity of h, weak convergence of the iterates wν can be shown by
similar arguments in the infinite–dimensional case. Strong linear convergence can
be shown in any dimension under the additional assumption that h is strongly
convex. The proof is based on the following lemma summarizing well known results
(cf., e.g., [39]).
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Lemma 3.1. Let h be strongly convex with constant µ > 0. Then h satisfies the

estimates

µ

2
‖w − w∗‖2

M ≤ h(w) − h(w∗) ≤
1

2µ
‖∇h(w)‖2

M−1 ∀w ∈ R
m(3.9)

with the minimizer w∗ of h.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied and, in

addition, h is strongly convex with constant µ > 0. Then the iterates wν , ν ∈ N,

produced by (3.1) satisfy the error estimate

‖wν − w∗‖2
M ≤ qν 2

µ

(
h(w0) − h(w∗)

)
(3.10)

where 0 ≤ q = (1 − 2cSc
2
Dµ) < 1 if w0 6= w∗.

The proof is straightforward using Lemma 3.1.

3.2. Damping strategies. A variety of algorithms for efficient step size control
is available from surveys and textbooks like [16, 38, 39, 40]. For simplicity, we
consider the standard Armijo strategy [2], [16, p. 121], [39, p. 491] based on the
actual decrease of the functional h. More precisely, for a fixed parameter δ ∈ (0, 1)
and each ν ∈ N a step size ρ ≥ 0 is called admissible, if

(3.11) h(wν + ρdν) ≤ h(wν) + ρδ 〈∇h(wν ), dν〉

is satisfied.

Proposition 3.1. Let (wν) ⊂ R
m and let dν = d(ν, wν), ν ∈ N, be descent direc-

tions. For suitably selected, fixed parameters α > 0 and δ, β ∈ (0, 1) determine the

step sizes ρν = ρ(ν, wν , dν) ≥ 0 by

(3.12) ρν = max
j∈N∪{0}

{
ρ = ανβ

j

∣∣∣∣∣ αν ≥ −α
〈∇h(wν), dν〉

‖dν‖2
M

, ρ admissible

}

if dν 6= 0 and set ρν = 0 otherwise. Then the efficiency condition (3.6) holds with

cS = δmin
{
α, β

(
1−δ
L

)}
.(3.13)

Here L stands for the Lipschitz constant of ∇h, i.e.,

‖∇h(v) −∇h(w)‖M−1 ≤ L ‖v − w‖M ∀v, w ∈ R
m .(3.14)

The proof of Proposition 3.1 adopts standard arguments, e.g., from [39]. Starting
with j = 0, efficient step sizes can be computed from (3.12) by a finite number of
tests. Observe that each of these tests might be expensive, because it requires the
evaluation of h and therefore the evaluation of F−1 (cf. Theorem 2.1).

3.3. Inexact versions. We consider inexact search directions d̃ν . This means
that for given ν and wν the exact evaluation dν = d(ν, wν) is replaced by some
approximation

d̃ν = d̃(ν, wν)(3.15)

based on some approximation d̃ of the exact mapping d.
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Proposition 3.2. Let dν = d(ν, wν) be gradient–related descent directions with

constant cD. Assume that the approximations d̃ν = d̃(ν, wν) satisfy (3.3) and the

accuracy condition

‖dν − d̃ν‖M

‖d̃ν‖M

≤ c <
cD
2

∀ν ∈ N(3.16)

for any sequence (wν ). Then the approximations d̃ν = d̃(ν, wν) are also gradient–

related descent directions.

Proof. Let (wν) ⊂ R
m. Then, the vectors dν = d(ν, wν), ν ∈ N, satisfy (3.4) and

we have to prove a similar estimate for the approximations d̃ν . This is trivial for
d̃ν = 0. In the light of (3.3) there is only the remaining case dν , d̃ν 6= 0. Some
elementary calculations involving the Cauchy–Schwarz inequality and the triangle
inequality yield

∣∣∣∣∣

〈
∇h(wν)

‖∇h(wν)‖M−1

,
dν

‖dν‖M

−
d̃ν

‖d̃ν‖M

〉∣∣∣∣∣ ≤ 2
‖dν − d̃ν‖M

‖d̃ν‖M

.

As ‖dν − d̃ν‖M/‖d̃ν‖M ≤ c < cD/2, it is clear that

−
〈
∇h(wν), d̃ν

〉
≥ c̃D‖∇h(wν)‖M−1‖d̃ν‖M

with c̃D = cD − 2c > 0. �

Usually the constant cD occurring in the accuracy condition (3.16) is not known.
Replacing (3.16) by the asymptotic criterion

lim
ν→∞

‖dν − d̃ν‖M

‖d̃ν‖M

= 0(3.17)

the approximate directions d̃ν have the desired property (3.4) for sufficiently large
ν.

4. Nonsmooth Newton methods and related algorithms

We now consider the question how to choose the descent directions dν = d(wν).
We will concentrate on preconditioned gradients of h or, more precisely, on direc-
tions of the form

dν = −S−1
ν H(wν) , H = ∇h ,(4.1)

with suitable s.p.d. matrices Sν = S(ν, wν). If H would be sufficiently smooth, the
derivative

Sν = H ′(wν) : R
m → R

m

would provide the classical Newton iteration. From our assumptions (A1) – (A4)
and the definition (2.3), we cannot expect H ′ to exist. Hence, related concepts from
nonsmooth analysis will be applied. To this end, (A1) is from now on replaced by
the stronger condition (A1’):

(A1’) F = A + ∂IK where A ∈ R
n,n is s.p.d. and IK denotes the indicator

functional of the closed convex set

K = {x ∈ R
n | a ≤ x ≤ b} a, b ∈ (R ∪ {−∞,∞})n , a < 0 < b .(4.2)
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Recall that F is the subdifferential of ϕ(x) = 1
2 〈Ax, x〉+ IK and Lipschitz continu-

ous with constant L ≤ 1 in this case. Nonlinearities F satisfying (A1’) occur, e.g.,
in discretized optimal control problems with inequality constraints [34, 47] or dis-
cretized phase field models with obstacle potentials [6, 8]. The condition a < 0 < b
causes no loss of generality and will be notationally convenient in the sequel.

4.1. The B-subdifferential of F−1. Let c ∈ K with K ⊂ R
n defined in (4.2).

We introduce the subset of all active indices

N•
c := {i ∈ N | ai = ci or ci = bi}

of the index set N = {1, ..., n}. The mapping Tc : R
n → R

n, defined by

Tcx :=
∑

i∈N\N•

c

xiei , x ∈ R
n ,

truncates all coefficients with active indices. Note that Tc is an orthogonal projec-
tion with respect to the euclidian scalar product 〈·, ·〉. The finite set

C := {c ∈ K | (I − Tc)c = c}

represents all possible configurations of active coefficients, i.e., of coefficients with
active indices. The active coefficients of x ∈ K are given by

TCx := (I − Tx)x ∈ C .(4.3)

As F : K → R
n is invertible, K and R

n can be decomposed according to

K =
⋃

c∈C

Ic , R
n =

⋃

c∈C

F (Ic) , Ic := {x ∈ K | TCx = c} ,(4.4)

based on the subsets Ic of vectors with the same active coefficients. Note that

(I − Tc)x = c ∀x ∈ Ic , c ∈ C .

We now investigate the restriction of F to Ic. To this end, it is convenient to
introduce the mapping

Âc := TcATc + I − Tc : R
n → R

n .(4.5)

Observe that Âc : ranTc → ranTc and Âc reduces to the identity on the orthogonal
complement ran(I − Tc). Hence,

ÂcTc = TcATc = TcÂc , Âc(I − Tc) = I − Tc .(4.6)

Using

〈Âcx, y〉 = 〈ATcx, Tcy〉 + 〈(I − Tc)x, (I − Tc)y〉

it is easy to show that Âc is s.p.d. Multiplying (4.6) with Â−1
c we obtain

Â−1
c Tc = TcÂ

−1
c , Â−1

c (I − Tc) = I − Tc .(4.7)

Lemma 4.1. Let c ∈ C. Then the restriction of F to Ic takes the form

F (x) = Ax +
∑

i∈N•

c

[0,∞)si(c)ei , x ∈ Ic ,(4.8)

denoting

si(c) =

{
+1 if ci = bi

−1 if ci = ai

, i ∈ N•
c .
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Conversely, the restriction of F−1 to F (Ic) takes the form

F−1(y) = TcÂ
−1
c Tcy + (I − TcÂ

−1
c TcA)c , y ∈ F (Ic) .(4.9)

Proof. Let x ∈ Ic. Using the representation

IK(x) =
∑

i∈N

I[ai,bi](xi) , x =
∑

i∈N

xiei ,

of the characteristic functional IK , we immediately get (cf. [17, page 26])

∂IK(x) =
∑

i∈N

∂I[ai,bi](xi)ei =
∑

i∈N•

c

[0,∞)si(c)ei .

This proves (4.8).
Let x ∈ Ic and y ∈ F (x). We apply Tc to the representation (4.8), insert the

splitting x = Tcx+ (I − Tc)x, and use the identity (I − Tc)x = c to obtain

Tcy = TcAx = TcATcx+ TcAc = Âcx− (I − TcA)c .

Multiplication by Â−1
c and reordering terms, we get

(4.10) x = Â−1
c Tcy + Â−1

c (I − TcA)c .

The left identity in (4.7) yields

Â−1
c Tc = Â−1

c TcTc = TcÂ
−1
c Tc .

Using c = (I − Tc)c and the right identity in (4.7), we obtain

Â−1
c c = Â−1

c (I − Tc)c = (I − Tc)c = c.

Inserting these representations into (4.10) the assertion (4.9) follows. �

As a consequence of (4.4) and (4.9), F−1 is piecewise affine linear on R
n with

the linear part TcÂ
−1
c Tc on each subset F (Ic), c ∈ C. In the extreme case, N•

c = N ,
F−1 is even constant on F (Ic).

As F−1 is Lipschitz continuous, F−1 must be differentiable almost everywhere
(cf. Rademacher’s theorem [37]). Let DF−1 denote the set where F−1 is differen-
tiable. Then the B-subdifferential ∂B(F−1) (cf. [41, 48]) is defined by

∂B(F−1)(y) =




 lim
yn→y

yn∈D
F−1

D(F−1)(yn)




 .

Note that

∂B(F−1)(y) ⊂ co ∂B(F−1)(y) = ∂(F−1)(y)

with ∂(F−1) denoting Clarke’s generalized derivative [13, Chapter 2].

Proposition 4.1. Let y ∈ R
n and c = TC(F−1(y)) ∈ C. Then

TcÂ
−1
c Tc ∈ ∂B(F−1)(y) .(4.11)

Proof. Note that F−1(y) ∈ Ic by definition (4.4) of Ic. Inserting the decomposition
x = Tcx + c of some arbitrary x ∈ Ic into (4.8), it turns out that F (Ic) is the
parallelepiped translated from the origin by Ac and spanned by the nonzero column
vectors of ATc and of I − Tc with coefficients zi ∈ (ai, bi), i ∈ N \ N•

c , and zi ∈
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F (I(b1,0))

F (I(b1,a2))

F (I(b1,b2))

F (I(a1,0))

F (I(0,0))

Figure 4.1. Decomposition of R
2 into parallelepipeds F (Ic), c ∈ C.

[0,∞)si(c), i ∈ N•
c , respectively. Utilizing the identities ATc + I − Tc = Âc + (I −

Tc)ATc, (4.7), and the orthogonality Tc(I − Tc) = 0, it is easily checked that
(
Â−1

c − (I − Tc)ATcÂ
−1
c

)
(ATc + I − Tc) = I .

Hence, the interior of F (Ic) cannot be empty so that the convexity of F (Ic) yields

F (Ic) ⊂ intF (Ic) .(4.12)

If y ∈ int F (Ic), then the representation (4.9) implies

D(F−1)(y) = TcÂ
−1
c Tc .

If y ∈ F (Ic)\int F (Ic), then (4.12) implies that there is a sequence (yk) ⊂ int F (Ic)
with yk → y. Obviously,

lim
k→∞

DF−1(yk) = TcÂ
−1
c Tc

which proves the assertion. �

Figure 4.1 illustrates the decomposition of R
n into the nondegenerating paral-

lelepipeds F (Ic), c ∈ C, for n = 2. The only bounded parallelepiped F (I(0,0)) is
spanned by the column vectors of A.

4.2. Algorithms and convergence results. Proposition 4.1 suggests to use B-

subdifferentials TcÂ
−1
c Tc, c ∈ C, for the linearization of the Schur complement

H(w) = −BF−1(f −BTw) + Cw + g , w ∈ R
m ,

as introduced in (2.3).

Proposition 4.2. Assume that rankB = n. Then

S(c) = BTcÂ
−1
c (BTc)

T + C ∈ ∂BH(w) , w ∈ R
m ,(4.13)

where

c = c(w) = TCF
−1(f −BTw) .(4.14)
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Proof. Let G : R
m → R

n be defined by G(w) = F−1(f − BTw), w ∈ R
m. We

consider some fixed w ∈ R
m and c = TCG(w). As rankB = n, the mapping

BT : R
m → R

n is surjective. Hence, the preimage G−1(Ic) of Ic is still a nonde-
generate parallelepiped. Therefore we can use the same arguments as in the proof
of Proposition 4.1 to show

−TcÂ
−1
c TcB

T ∈ ∂BG(w) .

As H is an affine transformation of G, the assertion follows. �

Simple counterexamples show that (4.13) might not hold for rankBT < n.
Let us check whether S(c) is invertible. We immediately get

〈S(c)x, y〉 =
〈
Â−1

c (BTc)
Tx, (BTc)

T y
〉

+ 〈Cx, y〉 , x, y ∈ R
m .

Hence, S(c) is symmetric and positive semi–definite. It is a sufficient (but not
necessary) condition for the regularity of S(c) that C is s.p.d..

Lemma 4.2. Assume that S(c) is s.p.d. for all c ∈ C. Then h is strongly convex.

Proof. Consider G(w) = F−1(f − BTw) as already introduced in the proof of
Proposition 4.2. Let c ∈ C. Then, for all w ∈ G−1Ic the representation ∇h(w) =
H(w) = S(c)w + g̃(c) holds with suitable g̃(c) ∈ R

m independent of w (cf. Lemma
4.1). As S(c) is s.p.d., we have

(4.15) 〈S(c)w,w〉 ≥ γc‖w‖
2
M ∀w ∈ G−1Ic

with some constant γc > 0. This means that h is quadratic and strongly convex
on each preimage G−1Ic. We now show strong convexity on the whole R

m =⋃
c∈C G

−1Ic with the constant µ = minc∈C γc > 0. To this end, we define the scalar
functions

ψ1(λ) = ‖x− y‖−2
M h(λx+ (1 − λ)y)

ψ2(λ) = ‖x− y‖−2
M

(
λh(x) + (1 − λ)h(y)

)
− µ

2λ(1 − λ)
, λ ∈ [0, 1] ,

with some fixed x 6= y ∈ R
m. It is sufficient to show ψ1 ≤ ψ2. Obviously, ψ1 is

piecewise quadratic, ψ2 is quadratic, and ψ1(λ) = ψ2(λ) at the boundary λ = 0, 1.
By definition,

ψ′′
1 (λ) ≥ min

c∈C
γc = ψ′′

2 (λ)

holds for almost all λ ∈ [0, 1]. Now ψ1 ≤ ψ2 follows either from elementary ar-
guments or from a weak maximum principle (cf. [20, Theorem 9.1]) as applied to
ψ1 − ψ2. �

We are ready to state the basic convergence result of this section.

Theorem 4.1. Assume that S(c) is s.p.d. for all c ∈ C. Then, for arbitrary

initial iterate w0 ∈ R
m, the damped nonsmooth Newton–type method, as obtained

by inserting the search directions

dν = −S−1
ν H(wν) , H(wν) = ∇h(wν) ,(4.16)

with

Sν = S(cν) , cν = TCF
−1(f −BTwν) ,
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and step sizes ρν selected according to Proposition 3.1 into the basic algorithm (3.1),
converges linearly to the solution w∗ of (2.8). If (2.8) is nondegenerate in the sense

that

F−1(f −BTw∗) ∈ int Ic∗ , c∗ = TCF
−1(f −BTw∗) ,(4.17)

then the algorithm terminates after a finite number of steps.

Proof. To prove convergence by Theorem 3.1, we only have to show that the direc-
tions dν as defined in (4.16) are gradient–related. Let c ∈ C. Denoting the norm
of the linear mapping S(c) : (Rm, ‖·‖M ) to (Rm, ‖·‖M−1) by Γc and using the
coercivity (4.15), we get
〈
∇h(w), S(c)−1∇h(w)

〉
≥ γc‖S(c)−1∇h(w)‖2

M ≥
γc

Γc

‖S(c)−1∇h(w)‖M‖∇h(w)‖M−1

for all w ∈ R
m. Since C is finite, (3.4) now holds with

cD := min
c∈C

γc

Γc

> 0 .

Utilizing Lemma 4.2, linear convergence immediately follows from Theorem 3.2. If
(2.8) is nondegenerate, then F−1(f − BTwν0) ∈ Ic∗ holds for sufficiently large ν0.
This implies wν0+1 = w∗, becauseH is affine on all w with F−1(f−BTw) ∈ Ic∗ . �

On the additional assumption rankB = n we obtain (cf. Proposition 4.2)

Sν = S(cν) ∈ ∂BH(w) ∀ν ∈ N ,

and therefore a nonsmooth Newton method. In order to prove local quadratic
convergence (cf. [42, 41]), it is essential that ρν → 1 for ν → ∞ which, in general,
does not hold for the standard Armijo strategy. Hence, nonsmooth analogues of
well–known affine–invariant damping strategies [16, Section 3.4] will be the subject
of future research.

If h is not strongly convex, then S(c) is not invertible for certain c. Therefore,
we now modify S(c) to ensure invertibility.

By symmetry we have kerS(c) = (ranS(c))⊥. We introduce the mapping I(c) :
R

m → R
m by

I(c)|ker S(c) = I|ker S(c) , I(c)|ran S(c) = 0 ,(4.18)

to define

Ŝ(c) = S(c) + I(c) , c ∈ C .(4.19)

Observe that the orthogonal subspaces kerS(c) and ranS(c) are invariant with

respect to Ŝ(c). Decomposing x, y into their components from kerS(c) and ranS(c),
respectively, we get

〈
Ŝ(c)x, y

〉
= 〈S(c)xran, yran〉 + 〈xker, yker〉

so that Ŝ(c) is s.p.d. Note that Ŝ(c) can be rewritten as

Ŝ(c) = S(c) +
l∑

i=1

kik
T
i

‖ki‖2

with k1, . . . , kl denoting an orthogonal basis of kerS(c). If S(c) is replaced by Ŝ(c),
then nonsmooth Newton steps are carried out on ranSν , i.e., if possible, while
simple gradient steps are performed on kerSν .
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Theorem 4.2. For arbitrary initial iterate w0 ∈ R
m, the nonsmooth Newton–like

method, as obtained by inserting the search directions

dν = −Ŝ−1
ν H(wν) , H(wν) = ∇h(wν) ,(4.20)

with

Ŝν = Ŝ(cν) , cν = TCF
−1(f −BTwν) ,

and step sizes ρν selected according to Proposition 3.1 into the basic algorithm (3.1),
converges to the solution w∗ of (2.8). If the problem (2.8) is nondegenerate in the

sense of (4.17) and S(c∗), c∗ = TCF
−1(f − BTw∗), is positive definite, then the

algorithm terminates after a finite number of steps.

Proof. Using the same arguments as in the proof of Theorem 4.1 it can shown that
the modified search directions dν defined in (4.20) are gradient–related. Hence,
convergence is a consequence of Theorem 3.1. Finite termination also follows by
the reasoning as in the proof of Theorem 4.1. �

Remark . In general one would expect local superlinear convergence of a Newton–

like method. Indeed, this is an immediate consequence of the fact that, in a suffi-

ciently small neighborhood, the algorithms terminate with the exact solution after

one step, because H is piecewise affine. Further insight would be obtained by show-

ing that the domain of superlinear convergence is larger than the domain of one

step termination and, in particular, does not depend on the dimension m.

In order to determine dν = −Ŝ−1
ν H(wν), a linear saddle point problem associated

with the Schur complement matrix Ŝν = Ŝ(cν) has to be solved (see Section 5
below). Sufficiently accurate iterative solution preserves convergence.

Theorem 4.3. For arbitrary initial iterate w0 ∈ R
m, the inexact nonsmooth

Newton–like method, as obtained by inserting search directions d̃ν which satisfy

(3.3) and the accuracy condition (3.16) with dν = −Ŝ−1
ν H(wν) and step sizes ρν

selected according to Proposition 3.1 into the basic algorithm (3.1), converges to the

solution w∗ of (2.8). The iterates converge linearly, if h is strongly convex, e.g.,

for positive definite C.

Proof. As the directions dν are gradient related (see the proof of Theorem 4.2
above) the convergence is an immediate consequence of Proposition 3.2. If C is
positive definite, then h is strongly convex. In this case linear convergence follows
from Theorem 3.2. �

5. Computational Aspects

5.1. Preconditioned Uzawa methods. Denoting uν := F−1(f − BTwν) the
Newton–like method as introduced in Theorem 4.2 can be interpreted as the pre-
conditioned Uzawa iteration

uν = F−1(f −BTwν)(5.1a)

wν+1 = wν + ρν Ŝ−1
ν (Buν − Cwν − g)(5.1b)

for the saddle point problem (1.1).
The first substep (5.1a) amounts to the solution of the quadratic obstacle problem

uν = arg min
v∈K

(
1
2 〈Av, v〉 − 〈f −BTwν , v〉

)
,(5.2)
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which has been extensively treated in the literature (cf., e.g., [14, 22, 31, 36, 46, 4]).

Inserting the definitions (4.19) and (4.13) of Ŝν and S(cν), the evaluation of the
preconditioned residual

dν = Ŝ−1
ν (Buν − Cwν − g)

in the second substep (5.1b) can be rewritten as the solution of the linear saddle
point problem

(
Âcν (BTcν )T

(BTcν ) −(C + I(cν))

) (
ũν

dν

)
=

(
0

g + Cwν −Buν

)
.(5.3)

where, according to (4.3), cν = TCu
ν identifies the active coefficients of uν . Recall

that Âcν is obtained from A by replacing the i–th row and the i–th column by the
unit vector ei, if i is active, i.e., ci ∈ {ai, bi}. BTcν is obtained from B by annihilat-
ing the i-th column, if i is active. Finally, I(cν) has been defined in (4.18). Thus the

preconditioner Ŝν is approximating the original set–valued operator by essentially
eliminating the actual active coefficients [24]. Sufficiently accurate, iterative solu-
tion of (5.3) preserves convergence of the overall iteration (5.1) (cf. Theorem 4.3).
In particular, multigrid methods have been investigated in [9, 44, 49, 54, 55].

5.2. Inexact evaluation of F−1. The exact solution uν = F−1(f − BTwν) ap-
pears on the right hand side of the linear saddle point problem (5.3). However, it
turns out that the preconditioned residual can be computed from wν and the active

coefficients cν of uν alone.

Proposition 5.1. For given wν ∈ R
m and cν = TCu

ν let (ũν , w̃ν) be the solution

of
(

Âcν (BTcν )T

(BTcν ) −(C + I(cν))

) (
ũν

w̃ν

)
=

(
Tcνf − TcνAcν

g −Bcν − I(cν)wν

)
.(5.4)

Then

Ŝ−1
ν (Buν − Cwν − g) = w̃ν − wν .

Proof. Let dν = Ŝ−1
ν (Buν − Cwν − g) = −Ŝ−1

ν H(wν). Utilizing the definitions
(2.3) of H , the representation (4.9) of F−1 and the definitions (4.19) and (4.13) of

Ŝν and S(cν), respectively, we get

Ŝν(wν + dν) = Ŝνw
ν −H(wν)

= Ŝνw
ν +BTcν Â−1

cν Tcν(f −BTwν −Acν) +Bcν − Cwν − g

= (BTcν )Â−1
cν (Tcνf − TcνAcν) − (g −Bcν − I(cν)wν) .

Hence, w̃ν = wν + dν is the second component of the solution of (5.4). This
completes the proof. �

Usually, the active coefficients cν of uν can be computed much faster than uν

itself: For nondegenerate problems monotone multigrid methods [31] or even simple
projected Gauß–Seidel relaxations [22, Chapter V] provide cν in a finite number of
steps. Using the a priori estimate (cf., e.g., [29, p. 24])

(5.5) ‖u∗ − uν‖A ≤ ‖B(w∗ − wν)‖A−1

the accuracy of uν can be estimated without actual computation of uν .
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In order to determine efficient step sizes ρν by Armijo’s strategy (cf. Proposi-
tion 3.1), we have to evaluate F−1 for each test j = 0, . . . in (3.12). Though it is
possible to develop straightforward inexact variants of existing damping strategies,
e.g., of the Curry–Altmann principle [39, p. 483], an even cheaper heuristic strategy
will be applied in the numerical computations to be reported below: We set ρν = 1,
if the condition

‖dν‖M ≤ σ‖dν−1‖M(5.6)

holds with some fixed parameter σ ∈ (0, 1) and compute ρν according to Armijo’s
strategy otherwise. Note that it is not hard to show convergence, if (5.6) holds for

dν = Ŝ−1
ν H(wν) and all ν ∈ N.

6. Numerical Results

In the following examples Ω = (0, 1) × (0, 1) denotes the unit square and the
triangulation TJ of Ω is resulting from J uniform refinement steps as applied to
the initial partition T0 consisting of four congruent subtriangles. The uniform
refinement Tj+1 of Tj is obtained by connecting the midpoints of all triangles T ∈ Tj .
Hence, the meshsize of TJ is hJ = 2−J . The sequence T0 ⊂ T1 ⊂ · · · ⊂ TJ of
triangulations gives rise to a nested sequence S0 ⊂ S1 ⊂ · · · ⊂ SJ of finite element
spaces

Sj = {v ∈ C(Ω) | v|T is linear ∀T ∈ Tj} ⊂ H1(Ω) , j = 0, . . . , J .

The standard nodal basis of SJ is denoted by λp, p ∈ NJ , where NJ stands for the
set of vertices of TJ . Homogeneous Dirichlet conditions give rise to the subspace

SJ,0 = span{λp | p ∈ NJ,0} ⊂ H1
0 (Ω) , NJ,0 = NJ ∩ Ω .

The scalar product in L2(Ω) and its lumped version in SJ is denoted by (·, ·) and
〈·, ·〉, respectively. The linear space of piecewise constant functions

PJ = {v ∈ L2(Ω) | v|T is constant ∀T ∈ TJ} ⊂ L2(Ω)

is spanned by the canonical basis µT , T ∈ TJ , as defined by µT (x) = 1 for x ∈ int T
and µT (x) = 0 otherwise.

6.1. An optimal control problem with control constraints. For given y0 ∈
L4(Ω) and ε > 0, we consider the following optimal control problem [47].

Find y ∈ H1
0 (Ω) and u ∈ L∞(Ω) such that

(6.1) J (y, u) =

∫

Ω

1

2
‖y − y0‖

2
L2(Ω) +

ε

2
‖u‖2

L2(Ω) dx

is minimal over all functions in H1
0 (Ω) and L∞(Ω), subject to the state equation

(6.2) (∇y,∇v) = (u, v) ∀v ∈ H1
0 (Ω)

and the control constraint

(6.3) u ∈ K = {v ∈ L∞(Ω) | |v(x)| ≤ 1, a.e. in Ω} .

Approximating H1
0 (Ω) by SJ,0 and K by

KJ = {v ∈ PJ |
∣∣v|T

∣∣ ≤ 1 ∀T ∈ TJ} ⊂ K ,

we obtain a discrete analogue of the continuous problem. For existence and error
estimates, we refer to [1]. We restrict our considerations to this discretization only.
However, the algorithm behaves similar for other discretizations, e.g., with linear
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Figure 6.1. Iteration history for ε = 10−4 (left) and ε = 10−8

(right). The filled dots indicate ρν = 1.

finite elements for the control. After incorporating (6.2) by a Lagrange multiplier
w, the Kuhn–Tucker conditions of the discretized problem can be rewritten in the
form (1.1) with n = |NJ,0| + |TJ |, m = |TJ |, F = A+ ∂KJ ,

A =

(
DS 0
0 εDP

)
, DS =

(
〈λp, λq〉

)
p,q∈NJ,0

, DP =
(
(µT , µT ′)

)
T,T ′∈TJ

,

B =
(
AS −DSP

)
, AS =

((
∇λp,∇λq

))
p,q∈NJ,0

, DSP =
((
λp, µT

))
p∈NJ,0,T∈TJ

,

C = 0 and suitable right hand sides f , g. It is easily checked that the assumptions
(A1’), (A2), and (A3) are fulfilled. Moreover, it turns out that S(c) is s.p.d. ∀c ∈ C.
As a consequence, h must be strongly convex (cf. Lemma 4.2) providing uniqueness
(A4) and linear convergence of the Newton–type iteration to be called Newton

as well as its inexact version (cf. Theorem 4.1 and Theorem 4.3). In general,
we have rankB = m < n so that it is not clear from our present analysis that
Sν = S(cν) ∈ ∂B(H(wν)) (cf. Proposition 4.2). As A is diagonal, the quadratic
obstacle problems (5.2) arising in each iteration step can be easily solved by nodal
projection. The linear saddle point problems (5.3) are evaluated by the direct solver
UMFPACK [15].

Following [43, Chapter 5], we select the desired state

y0(x) = 0.001






4 if x ∈ [0, 0.75]× [0, 0.5]

−10 if x ∈ [0, 0.75]× [0.5, 1]

−2 if x ∈ [0.75, 1]× [0, 0.5]

50 if x ∈ [0.75, 1]× [0.5, 1]

in our numerical computations. The mesh size hJ = 2−J is resulting from J = 7
refinement steps. Finally, we choose the parameters

(6.4) α = 10−2 , αν = max{1,−α 〈∇h(wν),dν〉
‖dν‖2

M

} , β = 0.5 , δ = 0.5

in the associated Armijo strategy (cf. Proposition 3.1).
Figure 6.1 shows the algebraic error ‖w∗ − wν‖M over the number of iteration

steps for the two problem parameters ε = 10−4 and ε = 10−8, respectively. The
algebraic error is measured in the energy norm induced by the Schur complement
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Figure 6.2. Mesh dependence for ε = 10−4 (left) and ε = 10−8 (right)

M = BA−1BT providing

‖w∗ − wν‖M = ‖BT (w∗ − wν)‖A−1 ≥ ‖u∗ − uν‖A

according to (5.5). The “exact” solution w∗ is precomputed to roundoff errors.
In both cases, we observe superlinear convergence and finite termination, even
exceeding the findings of Theorem 4.1. The condition number of (6.1) is increasing
for decreasing regularization parameter ε. This is reflected by the large number
of iteration steps for the small value ε = 10−8. As the solution of the (diagonal!)
obstacle problems (5.2) is almost for free and, in addition, no more than two tests
are necessary in Armijo damping, almost 100% of cpu time is consumed by the
solution of the linear saddle point problems. For the given initial iterates the
undamped algorithm only converges for ε = 10−4 but not for ε = 10−8 as indicated
by Figure 6.1. On the other hand, in both cases the damping parameter ρν = 1 is
accepted before the correct active set is detected in the last iteration step.

We now investigate the mesh dependence of Newton. The two pictures in
Figure 6.2 show the number of iteration steps required for the solution to roundoff
errors over the refinement levels. For both values ε = 10−4 and ε = 10−8, the
convergence speed seems to saturate with increasing refinement. It is interesting
that coarser problems seem to become even harder for small ε. Note that the
maximal number of Armijo tests is also increasing from two to ten on the coarsest
mesh.

6.2. A Cahn-Hilliard problem. For given ε > 0, final time T > 0 and initial
condition u0 ∈ K = {v ∈ H1(Ω) | |v| ≤ 1}, we consider the following initial value
problem for the Cahn-Hilliard equation with an obstacle potential [7, 11, 18].

Find u ∈ H1(0, T ; (H1(Ω))′) ∩ L∞(0, T ;H1(Ω)) and w ∈ L2(0, T ;H1(Ω)) with
u(0) = u0 such that u(t) ∈ K and

〈
du

dt
, v

〉

H1(Ω)

+
(
∇w,∇v

)
= 0, ∀v ∈ H1(Ω),(6.5a)

ε
(
∇u,∇v −∇u

)
− (u, v − u) ≥ (w, v − u), ∀v ∈ K ,(6.5b)

holds for a.e. t ∈ (0, T ).
Here 〈·, ·〉H1(Ω) denotes the duality pairing of H1(Ω) and H1(Ω)′. The unknown

functions u and w are called order parameter and chemical potential, respectively.
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For existence and uniqueness results we refer to [7]. Semi-implicit Euler discretiza-
tion in time and finite elements in space [6, 8] lead to the following discretized
problem.

Find uk
J ∈ KJ and wk

J ∈ SJ such that
〈
uk

J , v
〉

+ τ
(
∇wk

J ,∇v
)

=
〈
uk−1

J , v
〉
, ∀v ∈ SJ ,(6.6a)

ε
(
∇uk

J ,∇(v − uk
J)

)
−

〈
wk

J , v − uk
J

〉
≥

〈
uk−1

J , v − uk
J

〉
, ∀v ∈ KJ .(6.6b)

holds for each k = 1, . . . , N .
We have chosen a uniform time step size τ = T/N , and KJ = K ∩ SJ is the

nodal approximation of K. The initial condition u0
J ∈ KJ is obtained by discrete

L2 projection 〈u0
J , v〉 = (u0, v) ∀v ∈ SJ . Existence, uniqueness and error estimates

have been established in [8]. More precisely, there exists a discrete solution (uk
J , w

k
J )

with uniquely determined uk
J , k = 1, . . . , N . Moreover, wk

J is also unique, provided
that the condition

(6.7) ∃p ∈ NJ : |uk
J(p)| < 1

is fulfilled. Hence, (A4) is satisfied in this case. If (6.7) is violated, then either
the triangulation TJ is too coarse to resolve the diffuse interface or only one phase
is present, i.e., uJ is constant. For the iterative solution of each spatial problem
(6.6) a projected block Gauß-Seidel scheme [6] and an ADI-type iteration [35] are
widely used. Both algorithms suffer from rapidly deteriorating convergence rates
for increasing refinement.

Exploiting discrete mass conservation 〈uk
J , 1〉 = (u0, 1), each spatial problem

(6.6) takes the form (1.1) with n = m = |NJ |, F = A+ ∂IKJ
,

A = ε
(
〈λp, 1〉 〈λq, 1〉 +

(
∇λp,∇λq

))
p,q∈NJ

,

B = − (〈λp, λq〉)p,q∈NJ
, C = τ

((
∇λp,∇λq

))
p,q∈NJ

.

and suitable right hand sides f and g. Assuming (6.7), it is easily checked that the
assumptions (A1’), (A2), and (A3) are satisfied. Observe that A is the sum of a
sparse stiffness matrix and a rank one matrix. We clearly have rankB = n so that
S(c) ∈ ∂BH(w) is a B-subdifferential of H (cf. Proposition 4.2). However, as C
is only positive semidefinite, the kernel ker S(c) is trivial only if N•

c 6= N . In the
singular case N•

c = N , ker S(c) is spanned by the constant vector k1 = (1, . . . , 1)T .
For our numerical computations, we select ε = 10−4, the time step τ = ε, and the

mesh size hJ = 2−J is resulting from J = 9 refinement steps. The initial condition
u0 takes the values u0(x) = max{min{2 sin(4πx1) sin(4πx2), 1},−1}.

We compare the nonsmooth Newton–like method (cf. Theorem 4.2) called New-

ton–Like, the inexact variant (cf. Theorem 4.3) called Inexact and projected
block Gauß-Seidel relaxation [6] called Gauß–Seidel. The actual active coef-
ficients are computed from the obstacle problem (5.2) by a monotone multigrid
method [31]. The linear saddle point problems (5.4) are solved iteratively by a lin-
ear multigrid method with block Gauß–Seidel smoother and canonical restriction
and prolongation. In the exact version Newton–Like the solution wν is com-
puted to machine accuracy, and we use Armijo damping (cf. Proposition 3.1) with
δ = 10−3 and the other parameters given in (6.4). In the ν–th outer iteration
of Inexact we apply 3ν steps of the linear multigrid method with V (3, 3) cycle
to match the asymptotic accuracy condition (3.17), and we use heuristic damping
(5.6) with σ = 0.5.
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Figure 6.3. Iteration histories for good initial iterates (left) and
bad initial iterates (right). The filled dots indicate ρν = 1.

Figure 6.3 illustrates the algebraic error ‖w∗ − wν‖M over the computational
work for the first two spatial problems. We choose the discrete H1–norm induced
by M = D + C with D = τ (〈λp, λq〉)p,q∈NJ

. Hence, ‖u∗ − uν‖A ≤ c‖w∗ − wν‖M

with a constant c independent of J (cf. (5.5) and Poincaré’s inequality). The
“exact” solution w∗ is precomputed to roundoff errors. For a fair comparison, the
computational work is now measured in work units (not in iteration steps). One
work unit is the cpu time required by one linear multigrid V (3, 3) cycle as applied
to the linear saddle point problem (5.4). The left and the right picture in Figure 6.3
show the iteration histories for the spatial problems arising from the first and the
second time step, respectively. Each marker refers to one iteration step of Newton–

like and Inexact, respectively. As no initial data are available for the chemical
potential w, we start with the bad initial iterate w0 = 0 in the first problem while
the final approximation from the previous time step provides a reasonable initial for
the second one. This makes quite a difference. For the bad initial iterate, it takes
about 400 work units (about 6 iteration steps) until Newton–like and Inexact

finally display superlinear convergence. Gauß–Seidel is even more efficient in the
beginning of the iteration, but not comparable later. For reasonable initial iterates,
superlinear convergence starts immediately (observe the different scaling of the x-
axis). In both cases, Inexact turns out to be more efficient than Newton–like.

Table 1 gives more detailed insight into the performance of the different building
blocks of Inexact as applied to the first problem. The number of tests involved

Inexact 1 2 3 4 5 6 7 8 9 10 11

# tests 7 3 5 3 3 1 3 1 0 0 0

% Armijo 88.7 85.9 88.1 76.1 74.2 49.2 69.3 44.4 0.1 0.1 0.1
% obstacle 7.2 0.0 -0.0 -0.0 0.0 0.0 0.0 -0.0 0.0 27.2 24.0
% linear 4.1 14.0 11.9 23.8 25.7 50.7 30.7 55.5 99.7 72.6 75.7

work units 106.1 50.1 78.5 49.0 56.4 24.5 40.5 21.8 11.0 13.4 10.9

Table 1. Distribution of cpu time over the subtasks in each Uzawa step
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Figure 6.4. Mesh dependence for good initial iterates (left) and
bad initial iterates (right)

in Armijo damping is given in the first line. Due to the bad initial iterate, a
considerable number of tests is required in the beginning which later goes down to
zero. The following three lines show the actual percentage of cpu time required by
damping and the approximate solution of the obstacle problem and of the linear
saddle point problem, respectively. These numbers do not sum to 100, because
minor computations are neglected. Observe that the computational work is first
dominated by Armijo damping and later by the increasing number of multigrid
sweeps for the linear saddle point problem. Apart from the initial step, the detection
of the active set takes not more than 5 monotone multigrid sweeps, each of which
is cheaper than a multigrid sweep for the linear saddle point problem. As shown in
the last line, the absolute amount of computational work strongly depends on the
number of Armijo tests which in turn strongly depends on the (problem dependent!)
choice of the parameters. Hence, the performance of Inexact could be probably
improved by more careful tuning the damping parameters. Observe that for bad
initial iterates neither the exact nor the inexact method converges without damping.
On the other hand, for both versions the damping parameter ρν = 1 is accepted
before the correct active set is detected (cf. Figure 6.3). More efficient affine–
invariant damping strategies for nonsmooth Newton–type algorithms will be the
subject of future research.

We now investigate the mesh dependence of Newton–Like and Inexact. Fig-
ure 6.4 shows the number of iteration steps required for the solution to roundoff
errors over the refinement levels. For the first spatial problem (left), we always start
with wν = 0, while for the second spatial problem, (right), we always start from
the previous time level. In both cases, the overall convergence speed seems to be
scarcely affected by decreasing mesh size. It is astonishing that Inexact sometimes
even needs less iteration steps. Note that the averaged error reduction per work
unit of Inexact is about ρ = 0.6. We observed ρ ≈ 0.16 for the linear multigrid
solver as applied to the linear saddle point problems. Hence, for reasonable initial
iterates, the solution of the discrete Cahn–Hilliard problem by straightforward in-
exact versions required about three to four times the cpu time for the solution of
related linear saddle point problems by standard multigrid methods.
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[23] C. Gräser. Globalization of nonsmooth newton methods for optimal control
problems. 2007. submitted.
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