The module is designed for approx. 30 students.
12.07.16: Due to spontaneous construction work at SR006 we have to move our invited lecture on July 12th to the lecture hall.
21.06.16: The group work topic proposals have been added to the KVV system. Please prepare for the tutorial session on Wednesday, June 22nd, since we are assigned group work topics during the session. Also, the examination and group work guidelines are available at the KVV system.
15.06.16: The 1st International Grand Boolos Award has been awarded to the proud winners during the tutorial sessions! Congratulations!
15.06.16: The last assignment sheet in online. See assignments section.
26.04.16: The today's lecture and the lecture on thursday, April 28th, will take place at the great lecture hall (T9/HS großer Hörsaal).
21.04.16: The today's lecture will take place at the great lecture hall (T9/HS großer Hörsaal).
22.03.16: Due to room booking conflics, the lecture will now take place at the institute of computer science (Takustr. 9),mainly at seminar room SR006, please look at the detailed lecture schedule (below) for per-lecture room information.
15.02.16: A lot of literature resources have been added to this web site.
Formal logic (and formal reasoning) constitutes an substantial role in philosophy, mathematics and computer science. Topics such as basic reasoning in propositional and (first-order) predicate logic are often dealt with in early lecture of the aforementioned study programs. Unfortunately, other core topics are often omitted. This lecture addresses different advanced logic systems that are employed within modern studies in (theoretical) philosophy, mathematics and computer science. In conjunction therewith, a practical introduction to computer-assisted reasoning is given and their application to contemporary problems is demonstrated.
In the first part of the lecture we will retrace different variants of the Ontological Argument using computer deduction systems. Subsequently, we investigate the theory of abstract objects (by E.N. Zalta) as a logical foundation of metaphysics as well as means of representation in a computer system. Finally we discuss the interdisciplinary impact of these results and their influence on the young research area of computational metaphysics.
In student projects the learned techniques will be applied to similar arguments of metaphysics. Every promising project can be extended (with further supervision, if necessary) towards a publication in the field of logics or logical philosophy.
Die Formale Logik ist gleichermaßen beheimatet in der Philosophie, der Mathematik und der Informatik. Mit leicht unterschiedlicher Ausprägung ist sie in all diesen Disziplinen sowohl auf Anfänger- als auch auf Fortgeschrittenen-Niveau in Lehrveranstaltungen der jeweiligen Studiengänge vertreten. Kernthemen wie z.B. Aussagen- und Prädikatenlogik oder der Kalkül des natürlichen Schließens werden nicht selten mehrfach angesprochen, andere wichtige Themen aus Zeitgründen oft übergangen.
Mit unserer Lehrveranstaltung richten wir uns deshalb gleichzeitig an Studierende der Philosophie, Mathematik und Informatik. Ziel ist es, eine fachübergreifende Einführung in verschiedene (theoretische) Logikformalismen mit einer praktisch motivierten Einführung in moderne, computer-basierte Beweisassistenzsysteme zu kombinieren.
Zu Beginn werden wir die zentrale Idee der Veranstaltung näher beleuchten, in die theoretischen Grundlagen einführen und die zum praktischen Einsatz vorgesehenen Beweisassistenzsysteme vorstellen. Als einen ersten Höhepunkt werden wir dann Varianten des ontologischen Gottesbeweises mit einem Computersystem selbst nachvollziehen. Anschließend widmen wir uns weiteren relevanten Themen, beispielsweise Zalta's Theorie abstrakter Objekte als Grundlage für die Metaphysik, und untersuchen erneut die Formalisierbarkeit am Computer. Abschließend soll fachübergreifend die Bedeutung dieser Arbeiten diskutiert werden, insbesondere im Hinblick auf eine computationale Metaphysik und die sich andeutende (und zum Teil bereits nachgewiesene) Möglichkeit der formalen Verifikation von Publikationen in diesem Bereich.
In Projektarbeiten sollen die Studierenden versuchen, die erlernten Techniken auf weitere, ähnliche Argumente in der Metaphysik zu übertragen und anzuwenden. Dabei soll aber auch der enge übergeordnete Bezug zu verwandten, aber technisch weitaus komplexeren Arbeiten in der Mathematik (Beweis der Kepler'schen Vermutung) beleuchtet werden. Jede gute Arbeit kann potenziell in einer wissenschaftlichen Publikation münden, für dessen Veröffentlichung die Gruppen weiterführende Betreuung erhalten.
Week | Tuesday dates | Thursday dates |
---|---|---|
1 | 19.4.Introduction: Computational Metaphysics
(C. Benzmüller) Location: T9/SR006 |
21.4. Logic Recap: Propositional, First-order,
Higher-order, Classical- and Non-classical logic
(C. Benzmüller) Location: T9/HS |
2 | 26.4 Classical Higher-order Logic (HOL) (C. Benzmüller) Location: T9/HS |
28.4. Interactive Proofs in Isabelle/HOL (J. Blanchette, Inria Nancy and MPII Saarbrücken) Location: T9/HS |
3 | 3.5. Automatic Proofs and Models in Isabelle/HOL: Sledgehammer,
Nitpick, Leo-II, Satallax and Friends (J. Blanchette, Inria Nancy and MPII Saarbrücken) Location: T9/SR006 |
|
4-6 | Lecture break with many exercises e.g. on HOL and interactive/automated proofs in Isabelle/HOL | |
7 | 31.5. The Ontological Argument and Modal
Higher-order Logics (C. Benzmüller) Location: T9/SR006 |
|
8 | 7.6. Automating Modal Higher-order Logics in HOL:
The Logic Embeddings Approach (C. Benzmüller) Location: T9/SR006 |
9.6. Computational Analysis of Gödel's Ontological Argument (C. Benzmüller) Location: T9/SR006 |
9 | No Lecture this week. | |
10 | 21.6. Computational Analysis of Further Variants of the
Ontological Argument (B. Woltzenlogel-Paleo, ANU Canberra) Suggested reading: [40] Location: T9/SR046 |
23.6. Logic Embeddings: Further Topics and Applications ---
e.g. free logic, multivalued logic, paraconsistent logic, etc.
(B. Woltzenlogel-Paleo and C. Benzmüller) Location: T9/SR006 |
11 | 28.6. Axiomatic Metaphysics: Two Applications (E.N. Zalta, Stanford) Suggested reading: [27] [28] Location: T9/SR006 |
30.6. Computational Methods for Axiomatic Metaphysics (E.N. Zalta, Stanford) Suggested reading: [26] [25] [29] Location: T9/SR006 |
12 | 5.7. Experiments: (A) The Theory of Abstract Objects in Isabelle/HOL (B) Free Logic (and Axiomatic Category Theory) in HOL (C. Benzmüller) Location: T9/SR006 |
|
13 | 12.7. Leibniz‘ Ontologischer Beweis der Existenz Gottes (Abstract)
(W. Lenzen, Osnabrück) Location: T9/HS (lecture hall) |
|
14 | 19.7. Final Lecture: Group presentations
and final discusion Preliminary talk schedule Location: T9/SR006 |
Instructors for tutorial sessions, assignment organization.
E-Mail: a.steen@fu-berlin.de, Website: inf.fu-berlin.de/~lex // E-Mail: m.wisniewski@fu-berlin.de, Website: inf.fu-berlin.de/~mwisnie
Tutors for the wednesday tutorial session
E-Mail: m.claus@fu-berlin.de // E-Mail: hansjoerg@zedat.fu-berlin.de
Assignments will be given out every week until approx. week 10. Thereafter, there will be group projects until the end of the lecture. Introductory problems are discussed in the tutorial session (on wednesday).
Assignment sheets are solved and submitted in pairs of two. Please find yourself a partner for the tutorial assignments.
No. | Assignment sheet | Hints and comments |
---|---|---|
1 | [Ex. sheet as PDF] | Due: Tuesday, April 26th, until the end of the lecture |
2 | [Ex. sheet as PDF] |
Due: Upload until Tuesday, May 3rd, until midnight into the KVV system
under 'Excercise sheet 2'. Additional material:
|
3 | [Ex. sheet as PDF] | Upload until Tuesday, May 10th, until midnight into the KVV system under 'Excercise sheet 3'. |
4 | [Ex. sheet as PDF] | Upload until Tuesday, May 17th, until midnight into the KVV system under 'Excercise sheet 4'. |
5 | [Ex. sheet as PDF] |
Upload until Tuesday, May 24th, until midnight into the KVV system
under 'Excercise sheet 5'. Additional material: |
6 | [Ex. sheet as PDF] |
Upload until Tuesday, May 31st, until midnight into the KVV system
under 'Excercise sheet 6'. Additional material:
|
7 | [Ex. sheet as PDF] | Upload until Tuesday, June 7th, until midnight into the KVV system under 'Excercise sheet 7'. |
8 | [Ex. sheet as PDF] | Upload the relevant parts until Tuesday, June 14th, until midnight into the KVV system under 'Excercise sheet 8', the rest may be handed in at our office (Arnimalle 7, room 113). |
9 | [Ex. sheet as PDF] |
Upload the relevant parts until Tuesday, June 21st, until midnight into the KVV system
under 'Excercise sheet 9'. Additional material:
|
n/a | Thera are no more exercise sheets! |
There are a lot of interesting topics for bachelor and master theses. Check out the proposals and contact us, if you are interested.