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Abstract. Kurt Gödel’s ontological argument for God’s existence
has been formalized and automated on a computer with higher-order
automated theorem provers. From Gödel’s premises, the computer
proved: necessarily, there exists God. On the other hand, the theorem
provers have also confirmed prominent criticism on Gödel’s ontolog-
ical argument, and they found some new results about it.

The background theory of the work presented here offers a novel
perspective towards a computational theoretical philosophy.

1 INTRODUCTION
Kurt Gödel proposed an argumentation formalism to prove the ex-
istence of God [23, 30]. Attempts to prove the existence (or non-
existence) of God by means of abstract, ontological arguments are
an old tradition in western philosophy. Before Gödel, several promi-
nent philosophers, including St. Anselm of Canterbury, Descartes
and Leibniz, have presented similar arguments. Moreover, there is
an impressive body of recent and ongoing work (cf. [31, 19, 18] and
the references therein). Ontological arguments, for or against the ex-
istence of God, illustrate well an essential aspect of metaphysics:
some (necessary) facts for our existing world are deduced by purely
a priori, analytical means from some abstract definitions and axioms.

What motivated Gödel as a logician was the question, whether it
is possible to deduce the existence of God from a small number of
foundational (but debatable) axioms and definitions, with a mathe-
matically precise, formal argumentation chain in a well defined logic.

In theoretical philosophy, formal logical confrontations with such
ontological arguments had been so far (mainly) limited to paper and
pen. Up to now, the use of computers was prevented, because the
logics of the available theorem proving systems were not expressive
enough to formalize the abstract concepts adequately. Gödel’s proof
uses, for example, a complex higher-order modal logic (HOML)
to handle concepts such as possibility and necessity and to support
quantification over individuals and properties.

Current works [10, 9] of the first author and Paulson illustrate that
many expressive logics, including quantified (multi-)modal logics,
can be embedded into the classical higher-order logic (HOL), which
can thus be seen as a universal logic [6]. For this universal logic,
efficient automated theorem provers have been developed in recent
years, and these systems were now employed in our work.

Gödel defines God (see Fig. 1) as a being who possesses all pos-
itive properties. He does not extensively discuss what positive prop-
erties are, but instead he states a few reasonable (but debatable) ax-
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A1 Either a property or its negation is positive, but not both:
∀φ[P(¬φ) ≡ ¬P(φ)]

A2 A property necessarily implied by a positive property is posi-
tive: ∀φ∀ψ[(P(φ) ∧ !∀x[φ(x) ⊃ ψ(x)]) ⊃ P(ψ)]

T1 Positive properties are possibly exemplified:
∀φ[P(φ) ⊃ !∃xφ(x)]

D1 A God-like being possesses all positive properties:
G(x) ≡ ∀φ[P(φ) ⊃ φ(x)]

A3 The property of being God-like is positive: P(G)
C Possibly, God exists: !∃xG(x)
A4 Positive properties are necessarily positive:

∀φ[P(φ) ⊃ ! P(φ)]
D2 An essence of an individual is a property possessed by it and

necessarily implying any of its properties:
φ ess. x ≡ φ(x) ∧ ∀ψ(ψ(x) ⊃ !∀y(φ(y) ⊃ ψ(y)))

T2 Being God-like is an essence of any God-like being:
∀x[G(x) ⊃ G ess. x]

D3 Necessary existence of an individ. is the necessary exemplifi-
cation of all its essences: NE(x) ≡ ∀φ[φ ess. x ⊃ !∃yφ(y)]

A5 Necessary existence is a positive property: P(NE)
T3 Necessarily, God exists: !∃xG(x)

Figure 1. Scott’s version of Gödel’s ontological argument [30].

ioms that they should satisfy. Various slightly different versions of
axioms and definitions have been considered by Gödel and by several
philosophers who commented on his proof (cf. [31, 3, 2, 19, 1, 18]).

The overall idea of Gödel’s proof is in the tradition of Anselm’s
argument, who defined God as some entity of which nothing greater
can be conceived. Anselm argued that existence in the actual world
would make such an assumed being even greater; hence, by definition
God must exist. Gödel’s ontological argument is clearly related to
this reasoning pattern. However, it also tries to fix some fundamental
weaknesses in Anselm’s work. For example, Gödel explicitly proves
that God’s existence is possible, which has been a basic assumption
of Anselm. Because of this, Anselm’s argument has been criticized as
incomplete by Leibniz. Leibniz instead claimed that the assumption
should be derivable from the definition of God as a perfect being and
from the notion of perfection. Gödel’s proof addresses this critique,
and it also addresses the critique of others, including Kant’s objection
that existence should not be treated as a predicate. On the other hand,
Gödel’s work still leaves room for criticism, in particular, his axioms
are so strong that they imply modal collapse, that is, a situation where
contingent truths and necessary truths coincide. More information on
the philosophical debate on Gödel’s proof is provided in [31].
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We have analyzed Dana Scott’s version of Gödel’s proof [30]
(cf. Fig. 1) for the first-time with an unprecedented degree of de-
tail and formality with the help of higher-order automated theorem
provers (HOL-ATPs).3 The following has been done (and in this or-
der): (i) a detailed natural deduction proof; (ii) a formalization in
TPTP THF syntax [33]; (iii) an automatic verification of the consis-
tency of the axioms and definitions with Nitpick [16]; (iv) an auto-
matic demonstration of the theorems with the provers LEO-II [11]
and Satallax [17]; (v) a step-by-step formalization using the Coq
proof assistant [15]; (vi) a formalization using the Isabelle proof as-
sistant [26], where the theorems (and some additional lemmata) have
been automated with the Isabelle tools Sledgehammer and Metis.
Subsequently, we have studied additional consequences of Gödel’s
axioms, including modal collapse and monotheism, and we have in-
vestigated variations of the proof, for example, by switching from
constant domain semantics to varying domain semantics.

In this paper we focus on the core aspect of our work related to
AI: proof automation with HOL-ATPs (cf. aspects (ii)–(iv) above).
The particular contributions of this paper are as follows: In Sec. 2
we present an elegant embedding of HOML [21, 25] in HOL [5, 7].
This background theory extends and adapts the work as presented
in [9, 10]. In Sec. 3, we present details on the encoding of this em-
bedding and of Gödel’s argument in the concrete THF syntax [33]
for HOL, and we report on the experiments we have conducted with
HOL-ATPs. The main findings of these experiments are summarized
in Sec. 4. Related and future work is addressed in Sec. 5, and the
paper is concluded in Sec. 6. None of the above aspects have been
addressed (at least not in depth) in any of our other existing (short
and partly non-reviewed) publications on the subject [12, 13, 14, 34].

2 THEORY FRAMEWORK
An embedding of quantified modal logic (with first-order and propo-
sitional quantifiers) in HOL has been presented in [10]. The the-
ory below extends this work: quantifiers for all types are now sup-
ported, and nested uninterpreted predicate and function symbols of
arbitrary types are allowed as opposed to allowing top-level uninter-
preted predicate symbols over individual variables only.

2.1 Higher-order modal logic
A notion of HOML is introduced that extends HOL with a modal op-
erator !. An appropriate notion of semantics for HOML is obtained
by adapting Henkin semantics for HOL (cf. [24] and [21]). The pre-
sentation in this section is adapted from [25] and [5].

Def. 1 The set T of simple types is freely generated from the set
of basic types {o, µ} (o stands for Booleans and µ for individuals)
using the function type constructor !. We may avoid parentheses,
and α ! α ! α then stands for (α ! (α ! α)), that is, function types
associate to the right.

Def. 2 The grammar for HOML is:

s, t ::= pα | Xα | (λXα sβ)α!β | (sα!β tα)β | (¬o!o so)o |
((∨o!o!o so) to)o | (∀(α!o)!o(λXα so))o | (!o!o so)o

3 All sources of our formalization are publicly available at https://
github.com/FormalTheology/GoedelGod. Our work has attracted ma-
jor public interest, and leading media institutions worldwide have reported
on it; some exemplary links to respective media reports and interviews are
available at the above URL (see ‘Press’ subfolder).

where α, β ∈ T. pα denotes typed constants and Xα typed variables
(distinct from pα). Complex typed terms are constructed via abstrac-
tion and application. The type of each term is given as a subscript.
Terms so of type o are called formulas. The logical connectives of
choice are ¬o!o, ∨o!o!o, ∀(α!o)!o (for α ∈ T), and !o!o. Type sub-
scripts may be dropped if irrelevant or obvious. Similarly, parenthe-
ses may be avoided. Binder notation ∀Xα so is used as shorthand
for ∀(α!o)!o(λXα so), and infix notation s ∨ t is employed instead of
((∨s) t). From the above connectives, other logical connectives, such
as ⊤, ⊥, ∧, ⊃, ≡, ∃, and !, can be defined in the usual way.

Def. 3 Substitution of a term Aα for a variable Xα in a term Bβ is
denoted by [A/X]B. Since we consider α-conversion implicitly, we
assume the bound variables of B avoid variable capture.

Def. 4 Two common relations on terms are given by β-reduction and
η-reduction. A β-redex has the form (λX s)t and β-reduces to [t/X]s.
An η-redex has the form (λX sX) where variable X is not free in s; it
η-reduces to s. We write s =β t to mean s can be converted to t by a
series of β-reductions and expansions. Similarly, s =βη t means s can
be converted to t using both β and η. For each sα ∈ HOML there is a
unique β-normal form and a unique βη-normal form.

Def. 5 A frame D is a collection {Dα}α∈T of nonempty sets Dα, such
that Do = {T, F} (for truth and falsehood). The Dα!β are collections
of functions mapping Dα into Dβ.

Def. 6 A variable assignment g maps variables Xα to elements in
Dα. g[d/W] denotes the assignment that is identical to g, except for
variable W, which is now mapped to d.

Def. 7 A model for HOML is a quadruple M = ⟨W,R,D, {Iw}w∈W⟩,
where W is a set of worlds (or states), R is an accessibility relation
between the worlds in W, D is a frame, and for each w ∈ W, {Iw}w∈W
is a family of typed interpretation functions mapping constant sym-
bols pα to appropriate elements of Dα, called the denotation of pα in
world w (the logical connectives ¬, ∨, ∀, and ! are always given the
standard denotations, see below). Moreover, it is assumed that the
domains Dα!α!o contain the respective identity relations on objects
of type α (to overcome the extensionality issue discussed in [4]).

Def. 8 The value ∥sα∥M,g,w of a HOML term sα on a model M =

⟨W,R,D, {Iw}w∈W⟩ in a world w ∈ W under variable assignment g is
an element d ∈ Dα defined in the following way:

1. ∥pα∥M,g,w = Iw(pα) and ∥Xα∥M,g,w = g(Xα)
2. ∥(sα!β tα)β∥M,g,w = ∥sα!β∥M,g,w(∥tα∥M,g,w)
3. ∥(λXα sβ)α!β∥M,g,w = the function f from Dα to Dβ such that

f (d) = ∥sβ∥M,g[d/Xα],w for all d ∈ Dα
4. ∥(¬o!o so)o∥M,g,w = T iff ∥so∥M,g,w = F
5. ∥((∨o!o!o so) to)o∥M,g,w = T iff ∥so∥M,g,w = T or ∥to∥M,g,w = T
6. ∥(∀(α!o)!o(λXα so))o∥M,g,w = T iff for all d ∈ Dα we have
∥so∥M,g[d/Xα],w = T

7. ∥(!o!o so)o∥M,g,w = T iff for all v ∈ W with wRv we have
∥so∥M,g,v = T

Def. 9 A model M = ⟨W,R,D, {Iw}w∈W⟩ is called a standard model
iff for all α, β ∈ T we have Dα!β = { f | f : Dα −→ Dβ}. In a
Henkin model function spaces are not necessarily full. Instead it is
only required that Dα!β ⊆ { f | f : Dα −→ Dβ} (for all α, β ∈ T) and
that the valuation function ∥·∥M,g,w from above is total (i.e., every term
denotes). Any standard model is obviously also a Henkin model. We
consider Henkin models in the remainder.
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Def. 10 A formula so is true in model M for world w under assign-
ment g iff ∥so∥M,g,w = T; this is also denoted as M, g,w |= so. A
formula so is called valid in M iff M, g,w |= so for all w ∈ W and all
assignments g. Finally, a formula so is called valid, which we denote
by |= so, iff so is valid for all M. Moreover, we write Γ |= ∆ (for sets
of formulas Γ and ∆) iff there is a model M = ⟨W,R,D, {Iw}w∈W⟩, an
assignment g, and a world w ∈ W, such that M, g,w |= so for all
so ∈ Γ and M, g,w |= to for at least one to ∈ ∆.

The above definitions introduce higher-order modal logic K. In or-
der to obtain logics KB and S5 respective conditions on accessibility
relation R are postulated: R is a symmetric relation in logic KB, and
it is an equivalence relation in logic S5. If these restriction apply, we
use the notations |=KB and |=S 5. Gödel’s argument has been developed
and studied in the context of logic S5 (and logic S5 has subsequently
been criticized). However, the HOL-ATPs discovered (cf. Sec. 4) that
logic KB is sufficient.

An important issue for quantified modal logics is whether constant
domain or varying domain semantics is considered. The theory above
introduces constant domains. Terms (other than those of Boolean
type) are modeled as rigid, that is, their denotation is fixed for all
worlds. An adaptation to varying or cumulative domains is straight-
forward (cf. [20]). Moreover, non-rigid terms could be modeled; that
is, terms whose denotation may switch from world to world. The re-
spective assumptions of Gödel are not obvious to us.

2.2 Classical higher-order logic
HOL is easily obtained from HOML by removing the modal operator
! from the grammar, and by dropping the set of possible worlds W
and the accessibility relation R from the definition of a model. Nev-
ertheless, we explicitly state the most relevant definitions for the par-
ticular notion of HOL as employed in this paper. One reason is that
we do want to carefully distinguish the HOL and HOML languages
in the remainder (we use boldface fonts for HOL and standard fonts
for HOML). There is also a subtle, but harmless, difference in the
HOL language as employed here in comparison to the standard pre-
sentation: here three base types are employed, whereas usually only
two base types are considered. The third base type plays a crucial
role in our embedding of HOML in HOL.

Def. 11 The set T of simple types freely generated from a set of basic
types {o,µ, ι} using the function type constructor !. o is the type of
Booleans, µ is the type of individuals, and type ι is employed as the
type of possible worlds below. As before we may avoid parentheses.

Def. 12 The grammar for higher-order logic HOL is:

s, t ::= pα | Xα | (λXα sβ)α!β | (sα!β tα)β | ¬o!o so |
((∨o!o!o so) to) | ∀(α!o)!o(λXα so)

where α,β ∈ T. The text from Def. 2 analogously applies, except that
we do not consider the modal connectives ! and !.

The definitions for substitution (Def. 3), β- and η-reduction
(Def. 4), frame (Def. 5), and assignment (Def. 6) remain unchanged.

Def. 13 A model for HOL is a tuple M = ⟨D, I⟩, where D is a frame,
and I is a family of typed interpretation functions mapping constant
symbols pα to appropriate elements of Dα, called the denotation of
pα (the logical connectives ¬, ∨, and ∀ are always given the stan-
dard denotations, see below). Moreover, we assume that the domains
Dα!α!o contain the respective identity relations.

Def. 14 The value ∥sα∥M,g of a HOL term sα on a model M = ⟨D, I⟩
under assignment g is an element d ∈ Dα defined in the following
way:

1. ∥pα∥M,g = I(pα) and ∥Xα∥M,g = g(Xα)
2. ∥(sα!β tα)β∥M,g = ∥sα!β∥M,g(∥tα∥M,g)
3. ∥(λXα sβ)α!β∥M,g = the function f from Dα to Dβ such that

f (d) = ∥sβ∥M,g[d/Xα] for all d ∈ Dα

4. ∥(¬o!o so)o∥M,g = T iff ∥so∥M,g = F
5. ∥((∨o!o!o so) to)o∥M,g = T iff ∥so∥M,g = T or ∥to∥M,g = T
6. ∥(∀(α!o)!o(λXα so))o∥M,g = T iff for all d ∈ Dα we have
∥so∥M,g[d/Xα] = T

The definition for standard and Henkin models (Def. 9), and for
truth in a model, validity, etc. (Def. 10) are adapted in the obvious
way, and we use the notation M, g |= so, |= so, and Γ |= ∆. As for
HOML, we assume Henkin semantics in the remainder.

2.3 HOML as a fragment of HOL
The encoding of HOML in HOL is simple: we identify HOML for-
mulas of type o with certain HOL formulas of type ι ! o. The HOL
type ι ! o is abbreviated as σ in the remainder. More generally, we
define for each HOML type α ∈ T the associated raised HOL type
⌈α⌉ as follows: ⌈µ⌉ = µ, ⌈o⌉ = σ = ι ! o, and ⌈α ! β⌉ = ⌈α⌉ ! ⌈β⌉.
Hence, all HOML terms are rigid, except for those of type o.

Def. 15 HOML terms sα are associated with type-raised HOL terms
⌈sα⌉ in the following way:

⌈pα⌉ = p⌈α⌉
⌈Xα⌉ = X⌈α⌉

⌈(sα!β tα)⌉ = (⌈sα!β⌉ ⌈tα⌉)
⌈(λXα sβ)⌉ = (λ⌈Xα⌉ ⌈sβ⌉)
⌈(¬o!o so)⌉ = (¬̇σ!σ ⌈sα⌉)

⌈((∨o!o!o so) to)⌉ = ((∨̇σ!σ!σ ⌈sα⌉) ⌈tα⌉)
⌈((∀(α!o)!o (λXα sβ)⌉ = (∀̇(α!σ)!σ (λ⌈Xα⌉ ⌈sβ⌉)

⌈(!o!o so)⌉ = (!̇σ!σ ⌈so⌉)

¬̇, ∨̇, ∀̇, and !̇ are the type-raised modal HOL connectives asso-
ciated with the corresponding modal HOML connectives. They are
defined as follows (where rι!ι!o is a new constant symbol in HOL
associated with the accessibility relation R of HOML):

¬̇σ!σ = λsσ λWι ¬ (s W)
∨̇σ!σ!σ = λsσ λtσ λWι s W ∨ t W
∀̇(α!σ)!σ = λsα!σ λWι ∀Xα s X W
!̇σ!σ = λsσ λWι ∀Vι ¬(rι!ι!o W V) ∨ s V

As before, we write ∀̇Xα sσ as shorthand for ∀̇(α!σ)!σ(λXα sσ).
Further operators, such as ⊤̇, ⊥̇, ∧̇, ⊃̇, ≡̇, !̇, and ∃̇ (∃̇Xα sσ is used
as shorthand for ∃̇(α!σ)!σ(λXα sσ)) can now be easily defined.4 The
above equations can be treated as abbreviations in HOL theorem
provers. Alternatively, they can be stated as axioms where = is either
Leibniz equality or primitive equality (if additionally provided in the
HOL grammar, as is the case for most modern HOL provers).

4 We could introduce further modal operators, such as the difference modality
D, the global modality E, nominals with !, and the @ operator (cf. [10]).
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As a consequence of the above embedding we can express HOML
proof problems elegantly in the type-raised syntax of HOL. Using
rewriting or definition expanding, we can reduce these representa-
tions to corresponding statements containing only the basic HOL
connectives ¬o!o, ∨o!o!o, and ∀(α!o)!o.

Ex. 1 The HOML formula !∃Pµ!o P aµ is associated with the type
raised HOL formula !̇ ∃̇Pµ!σ P aµ, which rewrites into the follow-
ing βη-normal HOL term of type σ

λWι ∀Vι ¬(r W V) ∨ ¬∀Pµ!σ ¬(P aµ V)

Next, we define validity of type-raised modal HOL propositions
sσ in the obvious way: sσ is valid iff for all possible worlds wι we
have wι ∈ sσ, that is, iff (sσ wι) holds.

Def. 16 Validity is modeled as an abbreviation for the following λ-
term: valid = λsι!o ∀Wι s W (alternatively, we could define validity
simply as ∀(ι!o)!o). Instead of valid sσ we also use the notation [sσ].

Ex. 2 We analyze whether the type-raised modal HOL for-
mula !̇ ∃̇Pµ!σ (P aµ) is valid or not. For this, we formalize
the HOL proof problem [!̇ ∃̇Pµ−!σ (P aµ)], which expands into
∀Wι ∀Vι ¬(r W V) ∨ ¬∀Pµ!σ ¬(P aµ V). It is easy to check that
this term is valid in Henkin semantics: put P = λXµ λYι ⊤.

Theorem 1 (Soundness and Completeness) For all HOML formu-
las so we have:

|= so iff |= [⌈so⌉]
Proof sketch: The proof adapts the ideas presented in [10]. By
contraposition it is sufficient to show ̸|= so iff ̸|= [⌈so⌉], that is,
∥so∥M,g,w (for some HOML model M, assignment g, and w) iff
∥∀Wι ⌈so⌉W∥M,g (for some HOL model M and assignment g) iff
∥⌈so⌉W∥M,g[w/W] (for some M, g, and w). We easily get the proof by
choosing the obvious correspondences between D and D, W and Dι,
I and I, g and g, R and rι!ι!o, and w and w. !

From Theorem 1 we get the following corollaries:

|=KB so iff (symmetric rι!ι!o) |= [⌈so⌉]

|=S 5 so iff (equiv-rel rι!ι!o) |= [⌈so⌉]
where symmetric and equiv-rel are defined in an obvious way.

Constant domain quantification is addressed above. Techniques
for handling varying domain and cumulative domain quantification
in the embedding of first-order modal logics in HOL have been out-
lined in [8]. These techniques, which have also been adapted for the
theory above, cannot be presented here for space limitations.

Note that also non-rigid terms can easily be modeled by
type-raising. For example, a non-rigid HOML constant symbol
kingOfFranceµ would be mapped to a type-raised (and thus world-
depended) HOL constant symbol kingOfFranceι!µ.

3 EXPERIMENTS
The above embedding has been encoded in the concrete THF0 syntax
[33] for HOL; cf. the files Quantified K/ KB/ S5.ax5 available
5 The formalization in these files slightly varies from the above theory w.r.t.

technical details. For example, a generic !-operator is introduced that can
be instantiated for different accessibility relations as e.g. required for multi-
modal logic applications (cf. [10]). Moreover, since THF0 does not support
polymorphism, copies of the ∀̇(α!σ)!σ and ∃̇(α!σ)!σ connectives are pro-
vided only for the selected types (µ ! σ) ! σ and ((µ ! σ) ! σ) ! σ as
precisely required in Gödels’s proof. The Isabelle version [13] and the Coq
version of the encoding instead provide respective polymorphic definitions.

at https://github.com/FormalTheology/GoedelGod/tree/
master/Formalizations/THF (all files mentioned below are pro-
vided under this URL). The definition for quantifier ∀̇((µ!σ)!σ)!σ,
for example, is given as6

thf(mforall_indset,definition,
( mforall_indset
= ( ˆ [S: ( mu > $i > $o ) > $i > $o,W: $i] :

! [X: mu > $i > $o] :
( S @ X @ W ) ) )).

Subsequently the axioms, definitions, and theorems from Fig. 1
and some further, related problems have been encoded in THF0.
Then the THF0 compliant HOL-ATPs LEO-II [11], Satallax [17],
and Nitpick [16] have been employed to automate the proof prob-
lems. LEO-II, which internally cooperates with the first-order prover
E [29], was used exclusively in the initial round of experiments, that
is, it was the first prover to automate Gödel’s ontological argument.

Theorem T1 from Fig. 1, for example, is formalized as

thf(thmT1,conjecture,
( v
@ ( mforall_indset
@ ˆ [Phi: mu > $i > $o] :

( mimplies @ ( p @ Phi )
@ ( mdia
@ ( mexists_ind
@ ˆ [X: mu] :

( Phi @ X ) ) ) ) ) )).

This encodes the HOL formula

[∀̇φµ!σ p(µ!σ)!σφ ⊃̇ !̇∃̇Xµ φX]

v in the THF0 encoding stands for valid and p corresponds to the
uppercase P, for ‘positive’, from Fig. 1. The respective encodings
and the results of a series of recent experiments with LEO-II (ver-
sion 1.6.2), Satallax (version 2.7), and Nitpick (version 2013) are
provided in Fig. 2. The first row marked with T1, for example, shows
that theorem T1 follows from axioms A2 and A1 (where only the
⊃-direction is needed); LEO-II and Satallax confirm this in 0.1 sec-
ond. The experiments have been carried out w.r.t. the logics K and/or
KB, and w.r.t. constant (const) and varying (vary) domain semantics
for the domains of individuals. The exact dependencies (available
axioms and definitions) are displayed for each single problem. The
results of the prover calls are given in seconds. ‘—’ means time-
out. ‘THM’, ‘CSA’, ‘SAT’, and ‘UNS’ are the reported result sta-
tuses; they stand for ‘Theorem’, ‘CounterSatisfiable’, ‘Satisfiable’,
and ‘Unsatisfiable’, respectively. The experiments can be easily re-
produced: all relevant files have been provided at the above URL.
For example, the two THF0 problem files associated with the first
table row for T1 are T1 K const min.p and T1 K vary min.p, and
those associated with the second row for T1 are T1 K const max.p
and T1 K vary max.p, respectively. Moreover, a simple shell script
call tptp.sh is provided, which can be used to make remote
calls to LEO-II, Satallax, and Nitpick installed at Sutcliffe’s Syste-
mOnTPTP infrastructure [32] at the University of Miami. The ex-
periments used standard 2.80GHz computers with 1GB memory re-
motely located in Miami.

6 $i, $o, and mu represent the HOL base types i, o, and µ. $i>$o encodes
a function (predicate) type. Function application is represented by @, and
for universal quantification, existential quantification and λ-abstraction the
symbols !, ? and ˆ are employed. ¬, ∨, ∧, and ⊃ are written as ˜, |, &, and
=>, respectively. The type-raised modal connectives are called mforall *,
mexists *, mnot, mor, mand, mimplies, etc.
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HOL encoding dependencies logic status LEO-II Satallax Nitpick
const/vary const/vary const/vary

A1 [∀̇φµ!σ p(µ!σ)!σ(λXµ ¬̇(φX)) ≡̇ ¬̇(pφ)]
A2 [∀̇φµ!σ ∀̇ψµ!σ (p(µ!σ)!σφ ∧̇ !̇∀̇Xµ (φX ⊃̇ψX)) ⊃̇ pψ]
T1 [∀̇φµ!σ p(µ!σ)!σφ ⊃̇ !̇∃̇Xµ φX] A1(⊃),A2 K THM 0.1/0.1 0.0/0.0 —/—

A1,A2 K THM 0.1/0.1 0.0/5.2 —/—
D1 gµ!σ = λXµ ∀̇φµ!σ p(µ!σ)!σφ ⊃̇ φX
A3 [p(µ!σ)!σ gµ!σ]
C [!̇∃̇Xµ gµ!σX] T1,D1,A3 K THM 0.0/0.0 0.0/0.0 —/—

A1,A2,D1,A3 K THM 0.0/0.0 5.2/31.3 —/—
A4 [∀̇φµ!σ p(µ!σ)!σφ ⊃̇ !̇pφ]
D2 ess(µ!σ)!µ!σ = λφµ!σ λXµ φX ∧̇ ∀̇ψµ!σ (ψX ⊃̇ !̇∀̇Yµ (φY ⊃̇ψY))
T2 [∀̇Xµ gµ!σX ⊃̇ (ess(µ!σ)!µ!σ gX)] A1,D1,A4,D2 K THM 19.1/18.3 0.0/0.0 —/—

A1,A2,D1,A3,A4,D2 K THM 12.9/14.0 0.0/0.0 —/—
D3 NEµ!σ = λXµ ∀̇φµ!σ (ess φX ⊃̇ !̇∃̇Yµ φY)
A5 [p(µ!σ)!σNEµ!σ]
T3 [!̇∃̇Xµ gµ!σX] D1,C,T2,D3,A5 K CSA —/— —/— 3.8/6.2

A1,A2,D1,A3,A4,D2,D3,A5 K CSA —/— —/— 8.2/7.5
D1,C,T2,D3,A5 KB THM 0.0/0.1 0.1/5.3 —/—
A1,A2,D1,A3,A4,D2,D3,A5 KB THM —/— —/— —/—

MC [sσ ⊃̇ !̇sσ] D2,T2,T3 KB THM 17.9/— 3.3/3.2 —/—
A1,A2,D1,A3,A4,D2,D3,A5 KB THM —/— —/— —/—

FG [∀̇φµ!σ ∀̇Xµ (gµ!σX ⊃̇ (¬̇(p(µ!σ)!σφ) ⊃̇ ¬̇(φX)))] A1,D1 KB THM 16.5/— 0.0/0.0 —/—
A1,A2,D1,A3,A4,D2,D3,A5 KB THM 12.8/15.1 0.0/5.4 —/—

MT [∀̇Xµ ∀̇Yµ (gµ!σX ⊃̇ (gµ!σY ⊃̇ X =̇ Y))] D1, FG KB THM —/— 0.0/3.3 —/—
A1,A2,D1,A3,A4,D2,D3,A5 KB THM —/— —/— —/—

CO ∅ (no goal, check for consistency) A1,A2,D1,A3,A4,D2,D3,A5 KB SAT —/— —/— 7.3/7.4
D2’ ess(µ!σ)!µ!σ = λφµ!σ λXµ ∀̇ψµ!σ (ψX ⊃̇ !̇∀̇Yµ (φY ⊃̇ψY))
CO’ ∅ (no goal, check for consistency) A1(⊃),A2,D2’,D3,A5 KB UNS 7.5/7.8 —/— —/—

A1,A2,D1,A3,A4,D2’,D3,A5 KB UNS —/— —/— —/—

Figure 2. HOL encodings and experiment results for Scott’s version of Gödel’s ontological argument from Fig. 1.

4 MAIN FINDINGS
Several interesting and partly novel findings have been contributed
by the HOL-ATPs, including:

1. The axioms and definitions from Fig. 1 are consistent (cf. CO in
Fig. 2).

2. Logic K is sufficient for proving T1, C and T2.
3. For proving the final theorem T3, logic KB is sufficient (and for K

a countermodel is reported). This is highly relevant since several
philosophers have criticized Gödel’s argument for the use of logic
S5. This criticism is thus provably pointless.

4. Only for T3 the HOL-ATPs still fail to produce a proof directly
from the axioms; thus, T3 remains an interesting benchmark prob-
lem; T1, C, and T2 are rather trivial for HOL-ATPs.

5. Gödel’s original version of the proof [23], which omits conjunct
φ(x) in the definition of essence (cf. D2’), seems inconsistent
(cf. the failed consistency check for CO’ in Fig. 2). As far as we
are aware of, this is a new result.

6. Gödel’s axioms imply what is called the modal collapse (cf. MC
in Fig. 2) φ ⊃ !φ, that is, contingent truth implies necessary truth
(which can even be interpreted as an argument against free will;
cf. [31]). MC is probably the most fundamental criticism put for-
ward against Gödel’s argument.

7. For proving T1, only the ⊃-direction of A1 is needed. How-

ever, the ⊂-direction of A1 is required for proving T2. Some
philosophers (e.g. [3]) try to avoid MC by eluding/replacing the
⊃-direction of A1.

8. Gödel’s axioms imply a ‘flawless God’, that is, an entity that can
only have ‘positive’ properties (cf. FG in Fig. 2). However, a com-
ment by Gödel in [23] explains that ‘positive’ is to be interpreted
in a moral aesthetic sense only.

9. Another implication of Gödel’s axioms is monotheism (see MT in
Fig. 2). MT can easily be proved by Satallax from FG and D1. It
remains non-trivial to prove it directly from Gödel’s axioms.

10. All of the above findings hold for both constant domain semantics
and varying domain semantics (for the domain of individuals).

The above findings, in particular (10), well illustrate that the the-
ory framework from Sec. 2 has a great potential towards a flexi-
ble support system for computational theoretical philosophy. In fact,
Gödel’s ontological argument has been verified and even automated
not only for one particular setting of logic parameters, but these logic
parameters have been varied and the validity of the argument has
been reconfirmed (or falsified, cf. D2’ and CO’) for the modified
setting. Moreover, our framework is not restricted to a particular the-
orem proving system, but has been fruitfully employed with some of
the most prominent automated and interactive theorem provers avail-
able to date.
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5 RELATED AND FUTURE WORK
We are pioneering the computer-supported automation of modern
versions of the ontological argument. There are two related papers
[27, 28]. Both focus on the comparably simpler argument by Anselm.
[27] encodes (a variant) of Anselm’s argument in first-order logic and
employs the theorem prover PROVER9 in experiments; this work has
been criticized in [22]. The work in [28], which has evolved in par-
allel to ours, interactively verifies Anselm’s argument in the higher-
order proof assistant PVS. Note in particular, that both formalizations
do not achieve the close correspondence between the original formu-
lations and the formal encodings that can be found in our approach.

A particular strength of our universal logic framework is that it
can be easily adapted for logic variations and even supports flexible
combinations of logics (cf. [6]). In ongoing and future work we will
therefore investigate further logic parameters for Gödel’s argument,
including varying domains at higher types and non-rigid terms. We
plan to make the entire landscape of results available to the interested
communities. This is relevant, since philosophers are sometimes im-
precise about the very details of the logics they employ.

6 CONCLUSION
While computers can now calculate, play games, translate, plan,
learn and classify data much better than we humans do, tasks involv-
ing philosophical and theological inquiries have remained mostly un-
touched by our technological progress up to now. Due to the abstract
and sophisticated types of reasoning they require, they can be con-
sidered a challenging frontier for automated reasoning.

We accepted this challenge and decided to tackle, with auto-
mated reasoning techniques, a philosophical problem that is almost
1000 years old: the ontological argument for God’s existence, firstly
proposed by St. Anselm of Canterbury and greatly improved by
Descartes, Leibniz, Gödel and many others throughout the centuries.
So far, there was no AI system capable of dealing with such complex
problems. We created a prototypical infrastructure extending widely
used systems such as LEO-II, Satallax, and Nitpick (and Isabelle and
Coq) to allow them to cope with modalities; and using the extended
systems we were able to automatically reconstruct and verify Gödel’s
argument, as well as discover new facts and confirm controversial
claims about it. This is a landmark result, with media repercussion in
a global scale, and yet it is only a glimpse of what can be achieved
by combining computer science, philosophy and theology.

Our work, in this sense, offers new perspectives for a computa-
tional theoretical philosophy. The critical discussion of the underly-
ing concepts, definitions and axioms remains a human responsibil-
ity, but the computer can assist in building and checking rigorously
correct logical arguments. In case of logico-philosophical disputes,
the computer can check the disputing arguments and partially fulfill
Leibniz’ dictum: Calculemus — Let us calculate!
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anization and automation of Gödel’s proof of God’s existence’,
arXiv:1308.4526, (2013).

[13] C. Benzmüller and B. Woltzenlogel-Paleo, ‘Gödel’s God in Is-
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