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Abstract

Let k be a nonnegative integer. In the approximate k-flat nearest neighbor (k-ANN) problem, we are
given a set P ⊂ Rd of n points in d-dimensional space and a fixed approximation factor c > 1. Our goal
is to preprocess P so that we can efficiently answer approximate k-flat nearest neighbor queries: given
a k-flat F , find a point in P whose distance to F is within a factor c of the distance between F and
the closest point in P . The case k = 0 corresponds to the well-studied approximate nearest neighbor
problem, for which a plethora of results are known, both in low and high dimensions. The case k = 1 is
called approximate line nearest neighbor. In this case, we are aware of only one provably efficient data
structure, due to Andoni, Indyk, Krauthgamer, and Nguyễn (AIKN) [2]. For k ≥ 2, we know of no
previous results.

We present the first efficient data structure that can handle approximate nearest neighbor queries for
arbitrary k. We use a data structure for 0-ANN-queries as a black box, and the performance depends on
the parameters of the 0-ANN solution: suppose we have an 0-ANN structure with query time O(nρ) and
space requirement O(n1+σ), for ρ, σ > 0. Then we can answer k-ANN queries in time O(nk/(k+1−ρ)+t)

and space O(n1+σk/(k+1−ρ) + n logO(1/t) n). Here, t > 0 is an arbitrary constant and the O-notation
hides exponential factors in k, 1/t, and c and polynomials in d.

Our approach generalizes the techniques of AIKN for 1-ANN: we partition P into clusters of increas-
ing radius, and we build a low-dimensional data structure for a random projection of P . Given a query
flat F , the query can be answered directly in clusters whose radius is “small” compared to d(F, P ) using
a grid. For the remaining points, the low dimensional approximation turns out to be precise enough.
Our new data structures also give an improvement in the space requirement over the previous result
for 1-ANN: we can achieve near-linear space and sublinear query time, a further step towards practical
applications where space constitutes the bottleneck.
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1 Introduction

Nearest neighbor search is a fundamental problem in computational geometry, with countless
applications in databases, information retrieval, computer vision, machine learning, signal pro-
cessing, etc. [10]. Given a set P ⊂ Rd of n points in d-dimensional space, we would like to
preprocess P so that for any query point q ∈ Rd, we can quickly find the point in P that is
closest to q.

There are efficient algorithms if the dimension d is “small” [7, 18]. However, as d increases,
these algorithms quickly become inefficient: either the query time approaches linear or the space
grows exponentially with d. This phenomenon is usually called the “curse of dimensionality”.
Nonetheless, if one is satisfied with just an approximate nearest neighbor whose distance to the
query point q lies within some factor c = 1 + ε, ε > 0, of the distance between q and the actual
nearest neighbor, there are efficient solutions even for high dimensions. Several methods are
known, offering trade-offs between the approximation factor, the space requirement, and the
query time (see, e.g., [1, 3] and the references therein).

From a practical perspective, it is important to keep both the query time and the space
small. Ideally, we would like algorithms with almost linear (or at least sub-quadratic) space
requirement and sub-linear query time. Fortunately, there are solutions with these guarantees.
These methods include locality sensitive hashing (LSH) [11,12] and a more recent approach that
improves upon LSH [3]. Specifically, the latter algorithm achieves query time n7/(8c2)+O(1/c3)

and space n1+7/(8c2)+O(1/c3), where c is the approximation factor.
Often, however, the query object is more complex than a single point. Here, the complexity

of the problem is much less understood. Perhaps the simplest such scenario occurs when the
query object is a k-dimensional flat, for some small constant k. This is called the approximate k-
flat nearest neighbor problem [2]. It constitutes a natural generalization of approximate nearest
neighbors, which corresponds to k = 0. In practice, low-dimensional flats are used to model
data subject to linear variations. For example, one could capture the appearance of a physical
object under different lighting conditions or under different viewpoints (see [4] and the references
therein).

So far, the only known algorithm with worst-case guarantees is for k = 1, the approximate
line nearest neighbor problem. For this case, Andoni, Indyk, Krauthgamer, and Nguyễn (AIKN)
achieve sub-linear query time dO(1)n1/2+t and space dO(1)nO(1/ε2+1/t2), for arbitrarily small t > 0.
For the “dual” version of the problem, where the query is a point but the data set consists of
k-flats, three results are known [4,14,15]. The first algorithm is essentially a heuristic with some
control of the quality of approximation [4]. The second algorithm provides provable guarantees
and a very fast query time of (d + log n + 1/ε)O(1) [14]. The third result, due to Mahabadi,
is very recent and improves the space requirement of Magen’s result [15]. Unfortunately, these
algorithms all suffer from very high space requirements, thus limiting their applicability in
practice. In fact, even the basic LSH approach for k = 0 is already too expensive for large
datasets and additional theoretical work and heuristics are required to reduce the memory usage
and make LSH suitable for this setting [13, 19]. For k ≥ 2, we know of no results in the theory
literature.
Our results. We present the first efficient data structure for general approximate k-flat nearest
neighbor search. Suppose we have a data structure for approximate point nearest neighbor
search with query time O(nρ+d log n) and space O(n1+σ +d log n), for some constants ρ, σ > 0.
Then our algorithm achieves query time O(dO(1)nk/(k+1−ρ)+t) and space O(dO(1)n1+σk/(k+1−ρ) +
n logO(1/t) n), where t > 0 can be made arbitrarily small. The constant factors for the query
time depend on k, c, and 1/t. Our main result is as follows.

Theorem 1.1. Fix an integer k ≥ 1 and an approximation factor c > 1. Suppose we have a data
structure for approximate point nearest neighbor search with query time O(nρ+d log n) and space
O(n1+σ + d log n), for some constants ρ, σ > 0. Let P ⊂ Rd be a d-dimensional n-point set. For
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any parameter t > 0, we can construct a data structure with O(dO(1)n1+kσ/(k+1−ρ)+n logO(1/t) n)
space that can answer the following queries in expected time O(dO(1)nk/(k+1−ρ)+t): given a k-flat
F ⊂ Rd, find a point p ∈ P with d(p, F ) ≤ cd(P, F ).

Algorithm ρ σ

AINR [3] 7/8c2 +O(1/c3) 7/8c2 +O(1/c3)
LSH1 [1, Theorem 3.2.1] 1/c2 1/c2

LSH2 [1, Theorem 3.4.1] O(1/c2) 0

The table above gives an overview of some approximate point nearest neighbor structures that
can be used in Theorem 1.1. The result by AINR gives the current best query performance for
large enough values of c. For smaller c, an approach using locality sensitive hashing (LSH1)
may be preferable. With another variant of locality sensitive hashing (LSH2), the space can be
made almost linear, at the expense of a slightly higher query time. The last result (and related
practical results, e.g., [13]) is of particular interest in applications as the memory consumption
is a major bottleneck in practice. It also improves over the previous algorithm by AIKN for line
queries.

Along the way towards Theorem 1.1, we present a novel data structure for k-flat near
neighbor reporting when the dimension d is constant. The space requirement in this case is
Od(n logO(d) n) and the query time is Od(nk/(k+1) logd−k−1 n+ |R|), where R is the answer set.
We believe that this data structure may be of independent interest and may lead to further
applications. Our results provide a vast generalization of the result in AIKN and shows for
the first time that it is possible to achieve provably efficient nearest neighbor search for higher-
dimensional query objects.
Our techniques. Our general strategy is similar to the approach by AIKN. The data struc-
ture consists of two main structures: the projection structure and the clusters. The projection
structure works by projecting the point set to a space of constant dimension and by answering
the nearest neighbor query in that space. As we will see, this suffices to obtain a rough estimate
for the distance, and it can be used to obtain an exact answer if the point set is “spread out”.

Unfortunately, this does not need to be the case. Therefore, we partition the point set into
a sequence of clusters. A cluster consists of m points and a k-flat K such that all points in the
cluster are “close” to K, where m is a parameter to be optimized. Using a rough estimate from
the projection structure, we can classify the clusters as small and large. The points in the large
clusters are spread out and can be handled through projection. The points in the small clusters
are well behaved and can be handled directly in high dimensions using grids and discretization.
Organization. In order to provide the curious reader with quick gratification, we will give the
main data structure together with the properties of the cluster and the projection structure in
Section 2. Considering these structures as black boxes, this already proves Theorem 1.1.

In the remainder of the paper, we describe the details of the helper structures. The necessary
tools are introduced in Section 3. Section 4 gives the approximate nearest neighbor algorithm
for small clusters. In Section 5, we consider approximate near neighbor reporting for k-flats in
constant dimension. This data structure is then used for the projection structures in Section 6.

2 Main Data Structure and Algorithm Overview

We describe our main data structure for approximate k-flat nearest neighbor search. It relies on
various substructures that will be described in the following sections. Throughout, P denotes a
d-dimensional n-point set, and c > 1 is the desired approximation factor.

Let K be a k-flat in d dimensions. The flat-cluster C (or cluster for short) of K with radius
α is the set of all points with distance at most α to K, i.e., C = {p ∈ Rd | d(p,K) ≤ α}. A
cluster is full if it contains at least m points from P , where m is a parameter to be determined.
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We call P α-cluster-free if there is no full cluster with radius α. Let t > 0 be an arbitrarily
small parameter. Our data structure requires the following three subqueries.

Q1: Given a query flat F , find a point p ∈ P with d(p, F ) ≤ ntd(P, F ).

Q2: Assume P is contained in a flat-cluster with radius α. Given a query flat F with d(P, F ) ≥
α/n2t, return a point p ∈ P with d(p, F ) ≤ cd(P, F ).

Q3: Assume P is αn2t/(2k + 1)-cluster free. Given a query flat F with d(P, F ) ≤ α, find the
nearest neighbor p∗ ∈ P to F .

Briefly, our strategy is as follows: during the preprocessing phase, we partition the point set
into a set of full clusters of increasing radii. To answer a query F , we first perform a query of
type Q1 to obtain an nt-approximate estimate r̃ for d(P, F ). Using r̃, we identify the “small”
clusters. These clusters can be processed using a query of type Q2. The remaining point set
contains no “small” full cluster, so we can process it with a query of type Q3.

We will now describe the properties of the subqueries and the organization of the data
structure in more detail. The data structure for Q2-queries is called the cluster structure. It is
described in Section 4, and it has the following properties.

Theorem 2.1. Let Q be a d-dimensional m-point set that is contained in a flat-cluster of radius
α. Let c > 1 be an approximation factor. Using space Oc(m1+σ + d log2m), we can build a
data structure with the following property. Given a query k-flat F with d(P, F ) ≥ α/n2t and an
estimate r̃ with d(P, F ) ∈ [r̃/nt, r̃], we can find a c-approximate nearest neighbor for F in Q in
total time Oc((n2tk2)k+1(m1−1/k+ρ/k + (d/k) logm)).

The data structures for Q1 and Q3 are very similar, and we cover them in Section 6. They
are called projection structures, since they are based on projecting P into a low dimensional
subspace. In the projected space, we use a data structure for approximate k-flat near neighbor
search to be described in Section 5. The projection structures have the following properties.

Theorem 2.2. Let P be a d-dimensional n-point set, and let t > 0 be a small enough con-
stant. Using space and time O(n logO(1/t) n), we can obtain a data structure for the follow-
ing query: given a k-flat F , find a point p ∈ P with d(p, F ) ≤ ntd(P, F ). A query needs
O(nk/(k+1) logO(1/t) n) time, and the answer is correct with high probability.

Theorem 2.3. Let P be a d-dimensional n-point set, and let t > 0 be a small enough constant.
Using space and time O(n logO(1/t) n), we can obtain a data structure for the following query:
given a k-flat F and α > 0 such that d(F, P ) ≤ α and such that P is αnt/(2k + 1)-cluster-free,
find an exact nearest neighbor for F in P . A query needs O(nk/(k+1) logO(1/t) n+m) time, and
the answer is correct with high probability. Here, m denotes the size of a full cluster.

2.1 Constructing the Data Structure

First, we build a projection structure for Q1 queries on P . This needs O(n logO(1/t) n) space,
by Theorem 2.2. Then, we repeatedly find the full flat-cluster C with smallest radius. The m
points in C are removed from P , and we build a cluster structure for Q2 queries on this set. By
Theorem 2.1, this needs Oc(m1+σ + d log2m) space. To find C, we check all flats K spanned
by k + 1 distinct points of P . In Lemma 3.3 below, we prove that this provides a good enough
approximation. In the end, we have n/m point sets Q1, . . . , Qn/m ordered by decreasing radius,
i.e., the cluster for Q1 has the largest radius. The total space occupied by the cluster structures
is O(nmσ + (n/m)d log2 n).

Finally, we build a perfect binary tree T with n/m leaves labeled Q1, . . . , Qn/m, from left
to right. For a node v ∈ T let Qv be the union of all Qi assigned to leaves below v. For each
v ∈ T we build a data structure for Qv to answer Q3 queries. Since each point is contained in
O(log n) data structures, the total size is O(n logO(1/t) n), by Theorem 2.3. For pseudocode, see
Algorithm 1.
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Input: point set P ⊂ Rd, approximation factor c, parameter t > 0
1 Q← P
2 for i← n/m downto 1 do
3 For each V ∈

(
Q
k+1

)
, consider the k-flat KV defined by V . Let αV be the radius of the

smallest flat-cluster of KV with exactly m points of Q.
4 Choose the flat K = KV that minimizes αV and set αi = αV .
5 Remove from Q the set Qi of m points in Q within distance αi from K.
6 Construct a cluster structure Ci for the cluster (K,Qi).
7 Build a perfect binary tree T with n/m leaves, labeled Q1, . . . , Qn/m from left to right.
8 foreach node v ∈ T do
9 Build data structure for Q3 queries as in Theorem 2.3 for the set Qv corresponding to

the leaves below v.
Algorithm 1: Preprocessing algorithm. Compared with AIKN [2], we organize the pro-
jection structure in a tree to save space.

2.2 Performing a Query

Suppose we are given a k-flat F . To find an approximate nearest neighbor for F we proceed
similarly as AIKN [2]. We use Q2 queries on “small” clusters and Q3 queries on the remaining
points; for pseudocode, see Algorithm 2.

Input : query flat F
Output: a c-approximate nearest neighbor for F in P

1 Query the root of T for a nt-approximate nearest neighbor p1 to F . /* type Q1 */
2 r̃ ← d(p1, F )
3 i∗ ← maximum i ∈ {1, . . . , n/m} with αi > r̃nt, or 0 if no such i exists
4 for i← i∗ + 1 to n/m do

/* type Q2; we have d(Qi, F ) ≥ r̃/nt ≥ αi/n2t */
5 Query cluster structure Ci with estimate r̃.
/* type Q3 */

6 Query projection structure for a r̃-thresholded nearest neighbor of F in Q =
⋃j∗

i=1 Ui.
return closest point to F among query results.

Algorithm 2: Algorithm for finding approximate nearest neighbor in high dimensions.

First, we perform a query of type Q1 to get a nt-approximate nearest neighbor p1 for F
in time O(nk/(k+1) logO(1/t) n). Let r̃ = d(p1, F ). We use r̃ as an estimate to distinguish
between “small” and “large” clusters. Let i∗ ∈ {1, . . . , n/m} be the largest integer such that
the cluster assigned with Qi∗ has radius αi∗ > r̃nt. For i = i∗ + 1, . . . , n/m, we use r̃ as an
estimate for a Q2 query on Qi. Since |Qi| = m and by Theorem 2.1, this needs total time
O(n2t(k+1)+1m−1/k+ρ/k + (n/m)d log2m).

It remains to deal with points in “large” clusters. The goal is to perform a type Q3 query on⋃
1≤i≤i∗ Qi. For this, we start at the leaf of T labeled Qi∗ and walk up to the root. Each time

we encounter a new node v from its right child, we perform a Q3 query on Qu, where u denotes
the left child of v. Let L be all the left children we find in this way. Then clearly we have
|L| = O(log n) and

⋃
u∈LQu =

⋃
1≤i≤i∗ Qi. Moreover, by construction, there is no full cluster

with radius less than r̃nt defined by k + 1 vertices of Qu for any u ∈ L. We will see that this
implies every Qu to be r̃nt/(2k+1)-cluster-free, so Theorem 2.3 guarantees a total query time of
O(nk/(k+1) logO(1/t) n+m) for this step. Among all the points we obtained during the queries,
we return the one that is closest to F . A good trade-off point is achieved for m = nm−1/k+ρ/k,
i.e., for m = nk/(k+1−ρ). This gives the bounds claimed in Theorem 1.1.
Correctness. Let p∗ be a point with d(p∗, F ) = d(P, F ). First, suppose that p∗ ∈ Qi, for some
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i > i∗. Then, we have d(p∗, F ) ≥ r̃/nt ≥ αi/n
2t, where αi is the radius of the cluster assigned

to Qi. Since r̃ is a valid nt-approximate estimate for d(F,Qi), a query of type Q2 on Qi gives
a c-approximate nearest neighbor, by Theorem 2.1. Now, suppose that p∗ ∈ Qi for 1 ≤ i ≤ i∗.
Let u be the node of L with p∗ ∈ Qu. Then Theorem 2.3 guarantees that we will find p∗ when
doing a Q3 query on Qu.

3 Preliminaries

Partition Trees. Fix an integer constant r > 0, and let P ⊂ Rd be a d-dimensional n-point
set. A simplicial r-partition Ξ for P is a sequence Ξ = (P1,∆1), . . . , (Pm,∆m) of pairs such that
(i) the sets P1, . . . , Pm form a partition of P with n/r ≤ |Pi| ≤ d2n/re, for i = 1, . . . ,m; (ii)
each ∆i is a relatively open simplex with Pi ⊂ ∆i, for i = 1, . . . ,m; and (iii) every hyperplane
h in Rd crosses O(r1−1/d) simplices ∆i in Ξ. Here, a hyperplane h crosses a simplex ∆ if h
intersects ∆, but does not contain it. In a classic result, Matoušek showed that such a simplicial
partition always exists and that it can be computed efficiently [6, 16].

Theorem 3.1 (Partition theorem, Theorem 3.1 and Lemma 3.4 in [16]). For any d-dimensional
n-point set P ⊂ Rd and for any constant 1 ≤ r ≤ n/2, there exists a simplicial r-partition for
P . Furthermore, if r is bounded by a constant, such a partition can be found in time O(n).

Through repeated application of Theorem 3.1, one can construct a partition tree for P . A
partition tree T is a rooted tree in which each node is associated with a pair (Q,∆), such that
Q is a subset of P and ∆ is a relatively open simplex that contains Q. If |Q| ≥ 2r, the children
of (Q,∆) constitute a simplicial r-partition of Q. Otherwise, the node (Q,∆) has |Q| children
where each child corresponds to a point in Q. A partition tree has constant degree, linear size,
and logarithmic depth.

Given a hyperplane h, there is a straightforward query algorithm to find the highest nodes
in T whose associated simplex does not cross h: start at the root and recurse on all children
whose associated simplex crosses h; repeat until there are no more crossings or until a leaf is
reached. The children of the traversed nodes whose simplices do not cross h constitute the desired
answer. A direct application of Theorem 3.1 yields a partition tree for which this query takes
time O(n1−1/d+γ), where γ > 0 is a constant that can be made arbitrarily small by increasing
r. In 2012, Chan [5] described a more global construction that eliminates the nγ factor.

Theorem 3.2 (Optimal Partition Trees [5]). For any d-dimensional n-point set P ⊂ Rd, and
for any large enough constant r, there is a partition tree T with the following properties: (i) the
tree T has degree O(r) and depth logr n; (ii) each node is of the form (Q,∆), where Q is a subset
of P and ∆ a relatively open simplex that contains Q; (iii) for each node (Q,∆), the simplices
of the children of Q are contained in ∆ and are pairwise disjoint; (iv) the point set associated
with a node of depth ` has size at most n/r`; (v) for any hyperplane h in Rd, the number m` of
simplices in T that h intersects at level ` obeys the recurrence

m` = O(r`(d−1)/d + r`(d−2)/(d−1)m`−1 + r` log r log n).

Thus, h intersects O(n1−1/d) simplices in total. The tree T can be build in expected time
O(n log n).

k-flat Discretization. For our cluster structure we must find k-flats that are close to many
points. The following lemma shows that it suffices to check “few” k-flats for this.

Lemma 3.3. Let P ⊂ Rd be a finite point set with |P | ≥ k+1, and let F ⊂ Rd be a k-flat. There
is a k-flat F ′ such that F ′ is the affine hull of k + 1 points in P and δF ′(P ) ≤ (2k + 1)δF (P ),
where δF ′(P ) = maxp∈P d(p, F ′) and δF (P ) = maxp∈P d(p, F ).
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Proof. This proof generalizes the proof of Lemma 2.3 by AIKN [2].
Let Q be the orthogonal projection of P onto F . We may assume that F is the affine hull

of Q, since otherwise we could replace F by aff(Q) without affecting δF (P ). We choose an
orthonormal basis for Rd such that F is the linear subspace spanned by the first k coordinates.
An affine basis for F ′ is constructed as follows: first, take a point p0 ∈ P whose x1-coordinate
is minimum. Let q0 be the projection of p0 onto F , and translate the coordinate system such
that q0 is the origin. Next, choose k additional points p1, . . . , pk ∈ P such that |det(q1, . . . , qk)|
is maximum, where qi is the projection of pi onto F , for i = 1, . . . , k. That is, we choose k
additional points such that the volume of the k-dimensional parallelogram spanned by their
projections onto F is maximized. The set {q1, . . . , qk} is a basis for F , since the maximum
determinant cannot be 0 by our assumption that F is spanned by Q.

Now fix some point p ∈ P and let q be its projection onto F . We write q =
∑k

i=1 µiqi. Then,
the point r =

∑k
i=1 µipi + (1−

∑k
i=1 µi)p0 lies in F ′. By the triangle inequality, we have

d(p, r) ≤ d(p, q) + d(q, r) ≤ δF (P ) + d(q, r). (1)

To upper-bound d(q, r) we first show that all coefficients µi lie in [−1, 1].

Claim 3.4. Take p ∈ P , q ∈ Q and q1, . . . , qk as above. Write q =
∑k

i=1 µiqi. Then for
i = 1, . . . , k, we have µi ∈ [−1, 1], and µj ≥ 0 for at least one j ∈ {1, . . . , k}.

Proof. We first prove that all coefficients µi lie in the interval [−1, 1]. Suppose that |µi| > 1 for
some i ∈ {1, . . . , k}. We may assume that i = 1. Using the linearity of the determinant,

|det(q, q2, . . . , qk)| = | det(µ1q1, q2, . . . , qk)| = |µ1|·|det(q1, q2, . . . , qk)| > | det(q1, q2, . . . , qk)|,

contradicting the choice of q1, . . . , qk.
Furthermore, by our choice of the origin, all points in Q have a non-negative x1-coordinate.

Thus, at least one coefficient µj , j ∈ {1, . . . , k}, has to be non-negative.

Using Claim 3.4, we can now bound d(q, r). For i = 1, . . . , k, we write pi = qi + q⊥i , where
q⊥i is orthogonal to F . Then,

d(q, r) =

∥∥∥∥∥
k∑
i=1

µiqi −
k∑
i=1

µi(qi + q⊥i )−

(
1−

k∑
i=1

µi

)
p0

∥∥∥∥∥
=

∥∥∥∥∥
k∑
i=1

µiq
⊥
i +

(
1−

k∑
i=1

µi

)
p0

∥∥∥∥∥ ≤
(

k∑
i=1

|µi|+

∣∣∣∣∣1−
k∑
i=1

µi

∣∣∣∣∣
)
δF (P ) ≤ 2kδF (P ), (2)

since ‖q⊥1 ‖, . . . , ‖q⊥k ‖, ‖p0‖ ≤ δF (P ), and since
∣∣∣1−∑k

i=1 µi

∣∣∣ ≤ k follows from fact that at least
one µi is non-negative. By (1) and (2), we get d(p, F ′) ≤ (2k + 1)δF (P ).

Remark 3.5. For k = 1, the proof of Lemma 3.3 coincides with the proof of Lemma 2.3 by
AIKN [2]. In this case, one can obtain a better bound on d(q, r) since q is a convex combination
of q0 and q1. This gives δF ′(P ) ≤ 2δF (P ).

4 Cluster Structure

A k-flat cluster structure consists of a k-flat K and a set Q of m points with d(q,K) ≤ α, for
all q ∈ Q. Let K : u 7→ A′u + a be a parametrization of K, with A′ ∈ Rd×k and a ∈ Rd such
that the columns of A′ constitute an orthonormal basis for K and such that a is orthogonal to
K. We are also given an approximation parameter c > 1. The cluster structure uses a data
structure for approximate point nearest neighbor search as a black box. We assume that we
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have such a structure available that can answer c-approximate point nearest neighbor queries
in d dimensions with query time Oc(nρ + d log n) and space requirement Oc(n1+σ + d log n) for
some constants ρ, σ > 0. As mentioned in the introduction, the literature offers several data
structures for us to choose from.

The cluster structure distinguishes two cases: if the query flat F is close to K, we can
approximate F by few “patches” that are parallel to K, such that a good nearest neighbor for
the patches is also good for K. Since the patches are parallel to K, they can be handled through
0-ANN queries in the orthogonal space K⊥ and low-dimensional queries inside K. If the query
flat is far from K, we can approximate Q by its projection onto K and handle the query with a
low-dimensional data structure.

4.1 Preprocessing

Let K⊥ be the linear subspace of Rd that is orthogonal to K. Let Qa be the projection of Q
onto K, and let Qb be the projection of Q onto K⊥. We compute a k-dimensional partition tree
T for Qa. As stated in Theorem 3.2, the tree T has O(m) nodes, and it can be computed in
time O(m logm).

For each node (Sa,∆) of T , we do the following: we determine the set S ⊆ Q whose
projection onto K gives Sa, and we take the projection Sb of S onto K⊥. Then, we build a d−k
dimensional c′-ANN data structure for Sb, as given by the assumption, where c′ = (1−1/ log n)c.
See Algorithm 3 for pseudocode.

Input: k-flat K ⊆ Rd, point set Q ⊂ Rd with d(q,K) ≤ α for all q ∈ Q, approximation
parameter c > 1

1 Qa ← projection of Q onto K
2 Qb ← projection of Q onto K⊥

3 Build a k-dimensional partition tree T for Qa as in Theorem 3.2.
4 c′ ← (1− 1/ log n)c
5 foreach node (Sa,∆) ∈ T do
6 Sb ← projection of the points in Q corresponding to Sa onto K⊥

7 Build a (d− k)-dimensional c′-ANN structure for Sb as given by the assumption.
Algorithm 3: CreateClusterStructure

Lemma 4.1. The cluster structure can be constructed in total time Oc(m2+ρ +md log2m), and
it requires Oc(m1+σ + d log2m) space.

Proof. By Theorem 3.2, the partition tree can be built in O(m logm) time. Thus, the prepro-
cessing time is dominated by the time to construct the c′-ANN data structures at the nodes of
the partition tree T . Since the sets on each level of T constitute a partition of Q, and since
the sizes of the sets decrease geometrically, the bounds on the preprocessing time and space
requirement follow directly from our assumption. Note that by our choice of c′ = (1−1/ log n)c,
the space requirement and query time for the ANN data structure change only by a constant
factor.

4.2 Processing a Query

We set ε = 1/100 log n. Let F be the query k-flat, given as F : v 7→ B′v + b, with B′ ∈ Rd×k
and b ∈ Rd such that the columns of B′ are an orthonormal basis for F and b is orthogonal
to F . Our first task is to find bases for the flats K and F that provide us with information
about the relative position of K and F . For this, we take the matrix M = A′TB′ ∈ Rk×k, and
we compute a singular value decomposition M = UΣV T of M [9, Chapter 7.3]. Recall that U
and V are orthogonal k × k matrices and that Σ = diag(σ1, . . . , σk) is a k × k diagonal matrix
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with σ1 ≥ · · · ≥ σk ≥ 0. We call σ1, . . . , σk the singular values of M . The following lemma
summarizes the properties of the SVD that are relevant to us.

Lemma 4.2. Let M = A′TB′, and let M = UΣV T be a singular value decomposition for M .
Let u1, . . . , uk be the columns of U and v1, . . . , vk be the columns of V . Then, (i) u1, . . . , uk
is an orthonormal basis for K (in the coordinate system induced by A′); (ii) v1, . . . , vk is an
orthonormal basis for F (in the coordinate system induced by B′): and (iii) for i = 1, . . . , k, the
projection of vi onto K is σiui and the projection of ui onto F is σivi (again in the coordinate
systems induced by A′ and B′). In particular, we have σ1 ≤ 1.

Proof. Properties (i) and (ii) follow since U and V are orthogonal matrices. Property (iii) holds
because M = A′TB′ describes the projection from F onto K (in the coordinate systems induced
by A′ and B′) and because MT = B′TA′ = V ΣUT describes the projection from K onto F .

We reparametrize K according to U and F according to V . More precisely, we set A = A′U
and B = B′V , and we write K : u 7→ Au+ a and F : v 7→ Bv + b. The new coordinate system
provides a simple representation for the distances between F and K. We begin with a technical
lemma that is a simple corollary of Lemma 4.2.

Lemma 4.3. Let a1, . . . , ak be the columns of the matrix A; let a‖1, . . . , a
‖
k be the columns of

the matrix BBTA, and a⊥1 , . . . , a
⊥
k the columns of the matrix A − BBTA. Then, (i) for i =

1, . . . , k, the vector a‖i is the projection of ai onto F and the vector a⊥i is the projection of ai
onto F⊥; (ii) for i = 1, . . . , k, we have ‖a‖i ‖ = σi and ‖a⊥i ‖ =

√
1− σi; and (iii) the vectors

a
‖
1, . . . , a

‖
k, a
⊥
1 , . . . , a

⊥
k are pairwise orthogonal. An analogous statement holds for the matrices

B, AATB, and B −AATB.

Proof. Properties (i) and (ii) are an immediate consequence of the definition of A and B and
of Lemma 4.2. The set a‖1, . . . , a

‖
k is orthogonal by Lemma 4.2(ii). Furthermore, since for any

i, j ∈ {1, . . . , k}, the vector a‖i lies in F and the vector a⊥i lies in F⊥, a‖i and a
⊥
j are orthogonal.

Finally, let 1 ≤ i < j ≤ k. Then,

〈a⊥i , a⊥j 〉 = 〈a⊥i , a⊥j 〉+ 〈a⊥i , a
‖
j 〉+ 〈a‖i , a

⊥
j 〉+ 〈a‖i , a

‖
j 〉 = 〈ai, aj〉 = 0,

since we already saw that 〈a⊥i , a
‖
j 〉 = 〈a‖i , a⊥j 〉 = 〈a‖i , a

‖
j 〉 = 〈ai, aj〉 = 0. The argument for the

other matrices is completely analogous.

The next lemma shows how our choice of bases gives a convenient representation of the
distances between F and K.

Lemma 4.4. Take two points xF ∈ K and yK ∈ F such that d(F,K) = d(yK , xF ). Write
xF = AuF + a and yK = BvK + b. Then, for any point x ∈ K with x = Au+ a, we have

d(F, x)2 =
k∑
i=1

(
1− σ2

i

)
(u− uF )2

i + d(F,K)2,

and for any point y ∈ F with y = Bv + b, we have

d(y,K)2 =
k∑
i=1

(
1− σ2

i

)
(v − vK)2

i + d(F,K)2.

Proof. We show the calculation for d(F, x). The calculation for d(y,K) is symmetric. Let x ∈ K
with x = Au+ a be given. Let yx ∈ F be the projection of x onto F . Then,

d(F, x)2 = ‖x−yx‖2 = ‖(x−xF )+(xF−yK)+(yK−yx)‖2 = ‖(x−xF )−(yx−yK)‖2+‖xF−yK‖2,
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where the last equality is due to Pythagoras, since x − xF lies in K, yx − yK lies in F , and
xF − yK is orthogonal to both K and F . Now, we have yx = BBTx+ b. Similarly, since yK is
the projection of xF onto F , we have yK = BBTxF + b. Thus,

d(F, x)2 =
∥∥(x− xF )−BBT (x− xF )

∥∥2
+ d(F,K)2 =

∥∥(A−BBTA
)

(u− uF )
∥∥2

+ d(F,K)2,

using the definition of x and xF . By Lemma 4.3, the columns a⊥1 , . . . , a⊥k of the matrix A−BBTA′

are pairwise orthogonal and for i = 1, . . . , k, we have ‖a⊥i ‖2 = 1− σ2
i . Pythagoras gives

d(F, x)2 =
k∑
i=1

‖a⊥i ‖2(u− uF )2
i + d(F,K)2 =

k∑
i=1

(
1− σ2

i

)
(u− uF )2

i + d(F,K)2.

Input: query k-flat F ⊆ Rd; an estimate r̃ with d(F,Q) ∈ [r̃/nt, r̃].
1 M ← A′TB′.
2 Compute an SVD M = UΣV T of M with singular values 1 ≥ σ1 ≥ · · · ≥ σk ≥ 0.
3 if σk = 1 then
4 f ←projection of F onto K⊥ ; /* F and K are parallel; f is a point */
5 r ← c′-ANN for f in Qb
6 return r

7 Reparametrize K according to U and F according to V .
/* Near case */

8 G ← set of approximate patches obtained by combining Lemma 4.6 and 4.7
9 R← ∅

10 foreach G← G do
11 R← R ∪ result of approximate nearest-neighbor query for G as in Lemma 4.8

/* Far case */
12 R← R ∪ result of approximate nearest-neighbor for G as in Lemma 4.11
13 return point in R that minimizes the distance to F

Algorithm 4: QueryClusterStructure

We now give a brief overview of the query algorithm, refer to Algorithm 4 for pseudocode.
First, we check for the special case that F and K are parallel, i.e., that σ1 = · · · = σk = 1. In
this case, we need to perform only a single c′-ANN query in Qb to obtain the desired result. If
F and K are not parallel, we distinguish two scenarios: if F is far from Q, we can approximate
Q by its projection Qa onto K. Thus, we take the closest point xF in K to F , and we return
an approximate nearest neighbor for xF in Qa according to an appropriate metric derived from
Lemma 4.4. Details can be found in Section 4.2.2. If F is close to Q, we use Lemma 4.4 to
discretize the relevant part of F into patches, such that each patch is parallel to K and such
that the best nearest neighbor in Q for the patches provides an approximate nearest neighbor
for F . Each patch can then be handled essentially by an appropriate nearest neighbor query
in K⊥. Details follow in Section 4.2.1. We say F and Q are close if d(F,Q) ≤ α/ε, and far if
d(F,Q) > α/ε. Recall that we chose ε = 1/100 log n.

4.2.1 Near: d(F,Q) ≤ α/ε

We use our reparametrization of F and K to split the coordinates as follows: recall that 1 ≥
σ1 ≥ · · · ≥ σk ≥ 0 are the singular values of M = A′TB′. Pick l ∈ {0, . . . , k} such that
1 ≥ σi ≥

√
1− ε, for i = 1, . . . , l, and

√
1− ε > σi ≥ 0, for i = l + 1, . . . , k. For a d× k matrix

X, let X[i] denote the d× i matrix with the first i columns of X, and X−[i] the d× (k− i) matrix
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with the remaining k − i columns of X. Similarly, for a vector v ∈ Rk, let v[i] be the vector
in Ri with the first i coordinates of v, and v−[i] the vector in Rk−i with the remaining k − i
coordinates of v.

The following lemma is an immediate consequence of Lemma 4.4. It tells us that we can
partition the directions in F into those that are almost parallel to K and those that are almost
orthogonal to K. Along the orthogonal directions, we discretize F into few lower-dimensional
flats that are almost parallel to K. After that, we approximate these flats by few patches that
are actually parallel to K. These patches are then used to perform the query.

Lemma 4.5. Let y ∈ F be a point and yK ∈ F with d(F,K) = d(yK ,K). Write yK = BvK + b
and y = Bv + b. Then,

∥∥(v − vK)−[l]

∥∥ ≤ d(y,K)/
√
ε.

Proof. By Lemma 4.4 and the choice of l,

d(y,K)2 =
k∑
i=1

(
1− σ2

i

)
(v − vK)2

i + d(F,K)2 ≥
k∑

i=l+1

(
1− σ2

i

)
(v − vK)2

i ≥ ε
∥∥(v − vK)−[l]

∥∥2
.

Using Lemma 4.5, we can discretize the query F into a set of l-flats that are almost parallel
to the cluster flat K.

Lemma 4.6. There is a set L of O((n2tk1/2ε−5/2)k−l) l-flats such that the following holds: (i)
for every L ∈ L, we have L ⊆ F ; (ii) for every L ∈ L and for every unit vector u ∈ L, the
projection of u onto K has length at least

√
1− ε; and (iii) if d(F,Q) ∈ [α/n2t, α/ε], then there

is an l-flat L ∈ L with d(L,Q) ≤ (1 + ε)d(F,Q).

Proof. Let yK = BvK + b ∈ F be a point in F with d(F,K) = d(yK ,K). Furthermore, let

τ =
αε

n2t
√
k

and oτ =

⌈
n2t
√
k

ε5/2

⌉
.

Using τ and στ , we define a set I of index vectors with I = {−oττ, (−oτ + 1)τ, . . . , oττ}k−l and
|I| = O(ok−lτ ) = O((n2tk1/2ε−5/2)k−l). For each i ∈ I, we define the l-flat Li as

Li : w 7→ B[l]w +B−[l]

(
(vK)−[l] + i

)
+ b.

Our desired set of approximate query l-flats is now L = {Li | i ∈ I}.
The set L meets properties (i) and (ii) by construction, so it remains to verify (iii). For

this, we take a point yQ ∈ F with d(F,Q) = d(yQ, Q). We write yQ = BvQ + b, and we define
s = (vQ−vK)−[l]. We assumed that d(yQ,K) ≤ α/ε, so Lemma 4.5 gives ‖s‖ ≤ α/ε3/2. It follows
that by rounding each coordinate of s to the nearest multiple of τ , we obtain an index vector
iQ ∈ I with ‖iQ − s‖ ≤ τ

√
k = εα/n2t. Hence, considering the point in LiQ with w = (vQ)[l],

we get

d(LiQ , Q) ≤ d(LiQ , yQ) + d(yQ, Q)

≤
∥∥B[l](vQ)[l] +B−[l]

(
(vK)−[l] + iQ

)
+ b−BvQ − b

∥∥+ d(F,Q)

=
∥∥B−[l]

(
(vK)−[l] + iQ − (vQ)−[l]

)∥∥+ d(F,Q)

= ‖(vK − vQ)−[l] + iQ‖+ d(F,Q) (*)

= ‖iQ − s‖+ d(F,Q)

≤ εα/n2t + d(F,Q)

≤ (1 + ε)d(F,Q), (**)

where in (*) we used that the columns of B−[l] are orthonormal and in (**) we used the assump-
tion d(F,Q) ≥ α/n2t.
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From now on, we focus on an approximate query l-flat L : w 7→ B1w + b1 with B1 = B[l].
Our next goal is to approximate L by a set of patches such that each is parallel to K.

Lemma 4.7. There is a set G of O((n2tk1/2ε−2)l) patches such that the following holds: (i)
every G ∈ G is an l-dimensional polytope, given by O(l) inequalities; (ii) for every G ∈ G, the
affine hull of G is parallel to K; (iii) if d(L,Q) ∈ [α/n2t, 2α/ε], then there exists G ∈ G with
d(G,Q) ≤ (1 + ε)d(L,Q); (iv) for all G ∈ G and for all q ∈ Q, we have d(G, q) ≥ (1− ε)d(L, q).

Proof. Let C = AATB1 be the d× l matrix whose columns b‖1, . . . , b
‖
l constitute the projections

of the columns of B onto K. By Lemma 4.3, the vectors b‖i are orthogonal with ‖b‖i ‖ = σi, for
i = 1, . . . , l, and the columns b⊥1 , . . . , b⊥l of the matrix B1−C also constitute an orthogonal set,
with ‖b⊥i ‖2 = 1− σ2

i , for i = 1, . . . , l. Let zK be a point in L that minimizes the distance to K,
and write zK = B1wK + b1. Furthermore, let

τi =
αε

n2t
√
l(1− σ2

i )
, for i = 1, . . . , l, and oτ =

⌈
2n2t
√
l

ε2

⌉
.

We use the τi and oτ to define a set I of index vectors as I =
∏l
i=1{−oττi, (−oτ +1)τi, . . . , oττi}.

We have |I| = O(olτ ) = O((n2tk1/2ε−2)l). For each index vector i ∈ I, we define the patch Gi as

Gi : w 7→ Cw +B1(wK + i) + b1, subject to w ∈
l∏

i=1

[0, τi] .

Our desired set of approximate query patches is now G = {Gi | i ∈ I}. The set G fulfills
properties (i) and (ii) by construction, so it remains to check (iii). Fix a point z ∈ L. Since
L ⊆ F , we can write z = B1w + b1 = Bv + b, where the vector w represents the coordinates of
z in L and the vector v represents the coordinates of z in F . By Lemma 4.4,

d(z,K)2 =
k∑
i=1

(1− σ2
i )(v − vK)2

i + d(F,K)2,

where the vector vK represents the coordinates of a point in F that is closest to K. By definition
of L, the last k − l coordinates v−[l] in F are the same for all points z ∈ L, so we can conclude
that the coordinates for a closest point to K in L are given by wK = (vK)[l] and that

d(z,K)2 =
l∑

i=1

(1− σ2
i )(w − wK)2

i + d(L,K)2. (3)

Now take a point zQ in L with d(zQ, Q) = d(L,Q) and write zQ = B1wQ+b1. Since we assumed

d(L,Q) ≤ 2α/ε, (3) implies that for i = 1, . . . , l, we have |(wQ−wK)i| ≤ 2α/
(
ε
√

1 + σ2
i

)
. Thus,

if for i = 1, . . . , l, we round (wQ − wK)i down to the next multiple of τi, we obtain an index
vector iQ ∈ I with (wQ − wK) − iQ ∈

∏l
i=1 [0, τi]. We set sQ = (wQ − wK) − iQ. Considering

the point CsQ +B1(uK + iQ) + b1 in GiQ , we see that

d(GiQ , zQ)2 ≤ ‖CsQ +B1(wK + iQ) + b1 −B1wQ − b1‖2 = ‖CsQ −B1((wQ − wK)− iQ)‖2

= ‖(C −B1)sQ‖2 =

l∑
i=1

(1− σ2
i )(sQ)2

i ≤
l∑

i=1

(1− σ2
i )τ

2
i = ε2α2/n4t,

using the properties of the matrix B1 − C stated above. It follows that

d(GiQ , Q) ≤ d(GiQ , zQ) + d(zQ, Q) ≤ εα/n2t + d(L,Q) ≤ (1 + ε)d(L,Q),
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since we assumed d(L,Q) ≥ α/n2t. This proves (iii). Property (iv) is obtained similarly. Let
Gi ∈ G, q ∈ Q and let z be a point in Gi. Write z = Cw+B1(wK+i)+b1, where w ∈

∏t
i=1 [0, σi].

Considering the point zx = B1(w + wK + i) + b1 in L, we see that

d(Gi, rx)2 ≤ ‖z − zx‖2 = ‖(C −B1)w‖ ≤ ε2α2/n4t.

Thus,
d(Gi, q) ≥ d(zx, q)− d(Gi, zx) ≥ d(L, q)− εα/n2t ≥ (1− ε)d(L, q).

Finally, we have a patch G : w 7→ Cw + b2, and we are looking for an approximate nearest
neighbor for G in Q. The next lemma states how this can be done.

Lemma 4.8. Suppose that d(G,Q) ∈ [α/2n2t, 3α/ε]. We can find a point q̃ ∈ Q with d(G, q̃) ≤
(1− 1/2 log n)cd(G,Q) in total time Oc((k2n2t/ε2)(m1−1/k+ρ/k + (d/k) logm)).

Proof. Let Ga be the projection of G onto K, and let g be the projection of G onto K⊥. Since
G and K are parallel, g is a point, and Ga is of the form Ga : w 7→ Cw + a2, with a2 ∈ K
and w ∈

∏t
i=1[0, τi]. Let G+

a = {x ∈ K | d∞(x,Ga) ≤ 3α
√
k/ε}, where d∞(·, ·) denotes the

`∞-distance with respect to the coordinate system induced by A. We subdivide the set G+
a \Ga,

into a collection C of axis-parallel cubes, each with diameter εα/2n2t. The cubes in C have side
length εα/2n2t

√
k, the total number of cubes is O((kn2t/ε2)k), and the boundaries of the cubes

lie on O(k2n2t/ε2) hyperplanes.
We now search the partition tree T to find the highest nodes (∆, Q) in T whose simplices

∆ are completely contained in a single cube of C. This is done as follows: we begin at the root
of T , and we check for all children (∆, Q) and for all boundary hyperplanes h of C whether the
simplex ∆ crosses the boundary h. If a child (∆, Q) crosses no hyperplane, we label it with the
corresponding cube in C (or with Ga). Otherwise, we recurse on (∆, Q) with all the boundary
hyperplanes that it crosses.

In the end, we have obtained a set D of simplices such that each simplex in D is completely
contained in a cube of C. The total number of simplices in D is s = O((k2n2t/ε2)m1−1/k),
by Theorem 3.2. For each simplex in D, we query the corresponding c′-ANN structure. Let
R ⊆ Qb be the set of the query results. For each point qb ∈ R, we take the corresponding point
q ∈ Q, and we compute the distance d(q,G). We return a point q̃ that minimizes d(q,G). The
query time is dominated by the time for the ANN queries. For each ∆ ∈ D, let m∆ be the
number of points in the corresponding ANN structure. By assumption, an ANN-query takes
time Oc(m

ρ
∆ + d logm∆), so the total query time is proportional to

∑
∆∈D

mρ
∆ + d logm∆ ≤ s

(∑
∆∈D

m∆/s

)ρ
+ sd log

(∑
∆∈D

m∆/s

)
≤ Oc

(
(k2n2t/ε2)(m1−1/k+ρ/k + (d/k) logm)

)
,

using the fact that m 7→ mρ + d logm is concave and that
∑

∆∈Dm∆ ≤ m.
It remains to prove that approximation bound. Take a point q∗ in Q with d(q∗, Q) = d(Q,G).

Since we assumed that d(Q,G) ≤ 3α/ε, the projection q∗a of q∗ onto K lies in G+
a . Let ∆∗ be the

simplex in D with q∗a ∈ ∆∗. Suppose that the ANN-query for ∆∗ returns a point q̂ ∈ Q. Thus,
in K⊥, we have d(q̂b, g) ≤ c′d(Qb∆∗ , g) ≤ c′d(q∗b , g), where q̂b and q∗b are the projections of q̂ and
q∗ onto K⊥ and Qb∆∗ is the point set stored in the ANN-structure of ∆∗. By the definition
of C, in K, we have d(q̂a, Ga) ≤ d(q∗a, Ga) + εα/2n2t ≤ d(q∗a, Ga) + εd(q∗, G), where q̂a is the
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projection of q̂ onto K. By Pythagoras,

d(q̂, G)2 = d(q̂b, g)2 + d(q̂a, Ga)
2

≤ c′2d(q∗b , g)2 + (d(q∗a, Ga) + εd(q∗, G))2

≤ c′2d(q∗b , g)2 + d(q∗a, Ga)
2 + (2ε+ ε2)d(q∗, G)2

≤ (c′2 + 3ε)(q∗, G)2

≤
(
(1− 1/ log n)2c2 + 3/100 log n

)
(q∗, G)2

≤ (1− 1/2 log n)2c2(q∗, G)2,

recalling that c′ = (1 − 1/ log n)c and ε = 1/100 log n. Since d(q̃, G) ≤ d(q̂, G), the result
follows.

Of all the candidate points obtained through querying patches, we return the one closest to F .
The following lemma summarizes the properties of the query algorithm.

Lemma 4.9. Suppose that d(F,Q) ∈ [α/n2t, α/ε]. Then the query procedure returns a point
q̃ ∈ Q with d(F, q̃) ≤ cd(F,Q) in total time Oc((k2n2tε−5/2)k+1(m1−1/k+ρ/k + (d/k) logm)).

Proof. By Lemmas 4.6 and 4.7, there exists a patch G with d(G,Q) ≤ (1 + ε)2d(F,Q). For this
patch, the algorithm from Lemma 4.8 returns a point q̂ with d(q̂, G) ≤ (1 + 1/2 log n)cd(G,Q).
Thus, using Lemma 4.7(iv), we have

(1− ε)d(q̂, L) ≤ d(q̂, G) ≤ (1− 1/2 log n)c(1 + ε)2d(F,Q)

and by our choice of ε = 1/100 log n, we get

(1− 1/2 log n)(1 + ε)2/(1− ε) ≤ (1− 1/2 log n)(1 + 3ε)(1 + 2ε)

≤ (1− 1/2 log n)(1 + 6/100 log n) ≤ 1.

4.2.2 Far: d(F,Q) ≥ α/ε

If d(F,Q) ≥ α/ε, we can approximate Q by its projection Qa onto K without losing too
much. Thus, we can perform the whole algorithm in K. This is done by a procedure simi-
lar to Lemma 4.8.

Lemma 4.10. Suppose we are given an estimate r̃ with d(F,Qa) ∈ [r̃/2nt, 2r̃]. Then, we can
find a point q̃ ∈ Qa with d(F, q̃) ≤ (1 + ε)d(F,Qa) in time O((k3/2nt/ε)m1−1/k).

Proof. Let xF be a point in K with d(F,K) = d(F, xF ). Write xF = AuF + a. Define

C =

k∏
i=1

(
(uF )i +

[
0, 2r̃/

√
1− σ2

i

])
If we take a point x ∈ K with d(x, F ) ∈ [r̃/2nt, 2r̃] and write x = Au+a, then Lemma 4.4 gives

d(F, x)2 =

k∑
i=1

(1− σ2
i )(u− uF )2

i + d(F,K)2,

so u ∈ C. We subdivide C into copies of the hyperrectangle
∏k
i=1[0, εr̃/2nt

√
k(1− σ2

i )]. Let
C be the resulting set of hyperrectangles. The boundaries of the hyperrectangles in C lie on
O(k3/2nt/ε) hyperplanes. We now search the partition tree T in order to find the highest nodes
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(∆, Q) in T whose simplices ∆ are completely contained in a single hyperrectangle of C. This is
done in the same way as in Lemma 4.8.

This gives a set D of simplices such that each simplex in D is completely contained in a
hyperrectangle of C. The total number of simplices in D is O((k3/2nt/ε)m1−1/k), by Theorem 3.2.
For each simplex ∆ ∈ D, we pick an arbitrary point q ∈ Qa that lies in ∆, and we compute
d(F, q). We return the point q̃ ∈ Qa that minimizes the distance to F . The total query time is
O((k3/2nt/ε)m1−1/k).

Now let q∗ be a point in Qa with d(F,Qa) = d(F, q∗), and let ∆∗ be the simplex D that
contains q∗. Furthermore, let q̂ ∈ Qa be the point that the algorithm examines in ∆∗. Write
q∗ = Au∗+ a and q̂ = Aû+ a. Since q∗ and q̂ lie in the same hyperrectangle and by Lemma 4.4,

d(F, q̂)2 =
k∑
i=1

(1− σ2
i )(û− uF )2

i + d(F,K)2 ≤

k∑
i=1

(1− σ2
i )(u

∗ − uF )2
i + ε2r̃2/4n2t + d(F,K)2 ≤ (1 + ε)2d(F, q∗)2.

Since d(F, q̃) ≤ d(F, q̂), the result follows.

Lemma 4.11. Suppose we are given an estimate r̃ with d(F,Q) ∈ [r̃/nt, r̃]. Suppose further that
d(F,Q) ≥ α/ε. Then we can find a q̃ ∈ Q with d(F, q̃) ≤ cd(F,Q) in time O((k3/2n2t/ε)m1−1/k).

Proof. For any point q ∈ Q, let qa ∈ Q be its projection onto K. Then, d(qa, q) ≤ α ≤ εd(F,Q).
Thus, d(F,Qa) ∈ [(1 − ε)d(F,Q), (1 + ε)d(F,Q)], and we can apply Lemma 4.10. Let q̃a ∈ Qa
be the result of this query, and let q̃ be the corresponding point in Q. We have

d(F, q̃) ≤ d(q̃, q̃a) + d(F, q̃a) ≤ εd(F,Q) + (1 + ε)d(F,Qa)

≤ εd(F,Q) + (1 + ε)2d(F,Q) ≤ (1 + 4ε)d(F,Q) ≤ cd(F,Q),

by our choice of ε.

By combining Lemmas 4.1, 4.9, and 4.11, we obtain Theorem 2.1.

5 Approximate k-flat Range Reporting in Low Dimensions

In this section, we present a data structure for low dimensional k-flat approximate near neighbor
reporting. In Section 6, we will use it as a foundation for our projection structures. The details
of the structure are summarized in Theorem 5.1. Throughout this section, we will think of d as
a constant, and we will suppress factors depending on d in the O-notation.

Theorem 5.1. Let P ⊂ Rd be an n-point set. We can preprocess P into an O(n logd−k−1 n) space
data structure for approximate k-flat near neighbor queries: given a k-flat F and a parameter
α, find a set R ⊆ P that contains all p ∈ P with d(p, F ) ≤ α and no p ∈ P with d(p, F ) >
((4k + 3)(d− k − 1) +

√
k + 1)α. The query time is O(nk/(k+1) logd−k−1 n+ |R|).

5.1 Preprocessing

Let E ⊂ Rd be the (k + 1)-dimensional subspace of Rd spanned by the first k + 1 coordinates,
and let Q be the projection of P onto E.1 We build a (k + 1)-dimensional partition tree T for
Q, as in Theorem 3.2. If d > k + 1, we also build a slab structure for each node of T . Let v be
such a node, and let Ξ be the simplicial partition for the children of v. Let w > 0. A w-slab S
is a closed region in E that is bounded by two parallel hyperplanes of distance w. The median

1 We assume general position: any two distinct points in P have distinct projections in Q.
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hyperplane ĥ of S is the hyperplane inside S that is parallel to the two boundary hyperplanes
and has distance w/2 from both. A w-slab S is full if there are at least r2/3 simplices ∆ in Ξ
with ∆ ⊂ S.

Input: point set P ⊂ Rd
1 if |P | = O(1) then
2 Store P in a list and return.
3 Q← projection of P onto the subspace E spanned by the first k + 1 coordinates.
4 T ← (k + 1)-dimensional partition tree for Q as in Theorem 3.2.
5 if d > k + 1 then
6 foreach node v ∈ T do
7 Ξ1 ← simplicial partition for the children of v
8 for j ← 1 to br1/3c do
9 Dj ← CreateSlabStructure(Ξj)

10 Ξj+1 ← Ξj without all simplices inside the slab for Dj

Algorithm 5: CreateSearchStructure

Input: Ξj = (Q1,∆1), . . . , (Qr′ ,∆r′)
1 Vj ← vertices of the simplices in Ξj
2 For each (k + 1)-subset V ⊂ Vj , find the smallest wV > 0 such that the wV -slab with
median hyperplane aff(V ) is full.

3 Let wj be the smallest wV ; let Sj be the corresponding full wj-slab and ĥj = aff(V ) its
median hyperplane.

4 Find the set Dj of r2/3 simplices in Sj ; let Qj ←
⋃

∆i∈Dj
Qi and let Pj be the

d-dimensional point set corresponding to Qj .
5 hj ← the hyperplane orthogonal to E through ĥj
6 P ′ ← projection of Pj onto hj /* P ′ is (d− 1)-dimensional */
7 CreateSearchStructure(P ′)

Algorithm 6: CreateSlabStructure

The slab structure for v is constructed in several iterations. In iteration j, we have a current
subset Ξj ⊆ Ξ of pairs in the simplicial partition. For each (k + 1)-set v0, . . . , vk of vertices
of simplices in Ξj , we determine the smallest width of a full slab whose median hyperplane
is spanned by v0, . . . , vk. Let Sj be the smallest among those slabs, and let ĥj be its median
hyperplane. Let Dj be the r2/3 simplices that lie completely in Sj . We remove Dj and the
corresponding point set Qj =

⋃
∆i∈Dj

Qi from Ξj to obtain Ξj+1. Let Pj ⊆ P be the d-
dimensional point set corresponding to Qj . We project Pj onto the d-dimensional hyperplane
hj that is orthogonal to E and goes through ĥj . We recursively build a search structure for the
(d − 1)-dimensional projected point set. The jth slab structure Dj at v consists of this search
structure, the hyperplane hj , and the width wj . This process is repeated until less than r2/3

simplices remain; see Algorithms 5 and 6 for details.
Denote by S(n, d) the space for a d-dimensional search structure with n points. The partition

tree T has O(n) nodes, so the overhead for storing the slabs and partitions is linear. Thus,

S(n, d) = O(n) +
∑
D

S(nD, d− 1),

where the sum is over all slab structures D and where nD is the number of points in the slab
structure D. Since every point appears in O(log n) slab structures, and since the recursion stops
for d = k + 1, we get

Lemma 5.2. The search structure for n points in d dimensions needs space O(n logd−k−1 n).
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5.2 Processing a Query

For a query, we are given a distance threshold α > 0 and a k-flat F . For the recursion, we will
need to query the search structure with a k-dimensional polytope. We obtain the initial query
polytope by intersecting the flat F with the bounding box of P extended by α in each direction.
With slight abuse of notation, we still call this polytope F .

A query for F and α is processed by using the slab structures for small enough slabs and by
recursing in the partition tree for the remaining points. Details follow.

Suppose we are at some node v of the partition tree, and let j∗ be the largest integer with
wj∗ ≤ (4k + 2)α. For j = 1, . . . , j∗, we recursively query each slab structure Dj as follows: let
F̃ ⊆ F be the polytope containing the points in F with distance at most α + wj/2 from hj ,
and let Fh be the projection of F̃ onto hj . We query the search structure in Dj with Fh and
α. Next, we project F onto the subspace E spanned by the first k + 1 coordinates. Let D be
the simplices in Ξj∗+1 with distance at most α from the projection. For each simplex in D, we
recursively query the corresponding child in the partition tree. Upon reaching the bottom of the
recursion (i.e., |P | = O(1)), we collect all points within distance α from F in the set R.

Input : polytope F , distance threshold α > 0
Output: point set R ⊆ P

1 R← ∅
2 if |P | = O(1) then
3 R← {p ∈ P | d(p, F ) ≤ α}
4 else if d = k + 1 then
5 Compute polytope F� as described.
6 R← R ∪ all points of P inside F�
7 else
8 j∗ ← the largest integer with wj∗ ≤ (4k + 2)α
9 for j ← 1 to j∗ do

10 Fh ← projection of F̃ onto hj as described
11 R← R ∪Dj .query(Fh, α)
12 F̂ ← projection of F onto the subspace E spanned by the first k + 1 coordinates
13 D ← simplices in Ξj∗+1

14 D′ ← {∆ ∈ D | d(∆, F̂ ) ≤ α}
15 foreach ∆ ∈ D′ do
16 R← R ∪ result of recursive query to partition tree node for ∆.
17 return R
Algorithm 7: Find a superset R of all points in P with distance less than α from a query
polytope F .

If d = k+1, we approximate the region of interest by the polytope F� = {x ∈ Rd | d1(x, F ) ≤
α}, where d1(·, ·) denotes the `1-metric in Rd. Then, we query the partition tree T to find all
points of P that lie inside F�. We prove in Lemma 5.4 that F� is a polytope with O(dO(k2))
facets; see Algorithm 7 for details. The following two lemmas analyze the correctness and query
time of the algorithm.

Lemma 5.3. The set R contains all p ∈ P with d(p, F ) ≤ α and no p ∈ P with d(p, F ) > κα,
where κ = (4k + 3)(d− k − 1) +

√
k + 1.

Proof. The proof is by induction on the size n of P and on the dimension d. If n = O(1), we
return all points with distance at most α to F . If d = k + 1, we report the points inside the
polytope F� (lines 4–6) using T . Since ‖x‖2 ≤ ‖x‖1 ≤

√
k + 1‖x‖2 holds for all x ∈ Rk+1, the

polytope F� contains all points with distance at most α from F and no point with distance more
than α

√
k + 1 from F . Thus, correctness also follows in this case.
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Fig. 1: The distance error due to the reduction of the dimension in the slab structure Dj .

In the general case (d > k+ 1 and n not constant), we prove the lemma individually for the
slab structures and for the partition tree. Let Dj be a slab structure and Pj the corresponding
d-dimensional point set. Fix some point p ∈ Pj with d(p, F ) ≤ α. To query Dj , we take the
subpolytope F̃ ⊆ F with distance at most α + wj/2 from the median hyperplane hj , and we
project it onto hj . Let Fh be this projection. Since orthogonal projections can only decrease
distances, we have p ∈ Dj.query(Fh, α) by induction. Now fix a point q ∈ Dj.query(Fh, α).
We must argue that d(q, Fh) ≤ (4k+3)(d−k−1)+

√
k + 1. Let q̄ ∈ Rd−1 be the projection of q

onto hj and q̄F ∈ Fh the closest point to q̄ in Fh. Let qF ∈ F̃ be the corresponding d-dimensional
point (see Fig. 1). By triangle inequality and the induction hypothesis,

d(q, F ) = d(q, F̃ ) ≤ d(q, q̄) + d(q̄, q̄F ) + d(q̄F , qF )

≤ wj/2 + ((4k + 3)(d− k − 2) +
√
k + 1)α+ (α+ wj/2).

By construction, we have wj ≤ (4k + 2)α, so d(q, F ) ≤ ((4k + 3)(d − k − 1) +
√
k + 1)α, as

claimed.
Consider now a child in the partition tree queried in line 16, and let Pj be the corresponding

d-dimensional point set. Since |Pj | < |P |, the claim follows by induction.

Lemma 5.4. The query time is O(nk/(k+1) logd−k−1 n+ |R|).

Proof. Let Q(n, d) be the total query time.
First, let d > k + 1. We bound the time to query the partition tree T . Let F̂ be the

projection of F onto E. Furthermore, let V be the set of nodes in T that are visited during
a query, and let D be the corresponding simplices. By construction, all simplices in D have
distance at most α from F̂ . Consider the 2α-slab S whose median hyperplane contains F̂ . We
partition V into two sets: the nodes VB whose simplices intersect ∂S, and the nodes VC whose
simplices lie completely in S. First, since the simplex for each node in T is contained in the
simplex for its parent node, we observe that VB constitutes a connected subtree of T , starting
at the root. The nodes of VC form several connected subtrees, each hanging off a node in VB.
Furthermore, by construction, each node from V has at most r1/3 children from VB. Let V` be
the set of nodes in V with level `, for ` = 0, . . . , logr n, and let m` = |V`|. By Theorem 3.2, we
have |V` ∩ VB| ≤ O(r`k/(k+1) + r(k−1)/km`−1 + r` log r log n). Since |V` ∩ VC | ≤ r1/3m`−1, we get

m` = |V`| = O
(
r`k/(k+1) + (r(k−1)/k + r1/3)m`−1 + r` log r log n

)
.

For any δ > max(0, 1/3− (k− 1)/k), if we choose r large enough depending on δ, this solves to
m` = O(r`k/(k+1) + r`((k−1)/k+δ) log n). Thus, we get

Q(n, d) =

logr n∑
`=0

O(r`k/(k+1) + r`((k−1)/k+δ) log n)(O(r) +Q(n/r`, d− 1)). (4)

For d = k + 1, we use T directly. Thus, by Theorem 3.2, the query time Q(n, k + 1) is
O(fk+1n

1−1/k + |RF |), where fk+1 is the number of facets of F♦ and RF is the answer set. We
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claim that fk+1 is bounded by ((2k + 2)(5d0 − 2k)k/2)(k+1)/2. Recall that F� is the Minkowski
sum of F and the `1-ball with radius α as in Algorithm 7 line 5. Initially F is the intersection
of the query k-flat with the extended bounding box of P . This intersection can be described by
at most d0 − k + 2d0 = 3d0 − k oriented half-spaces, where d0 denotes the initial dimension. In
each recursive step, we intersect F with the 2 bounding hyperplanes of a slab. Therefore, the
descriptive complexity of F in the base case is at most 5d0 − 2k. By duality and the Upper
Bound theorem [17], the V-description of F consists of at most (5d0 − 2k)k/2 vertices. Using
that the Minkowski sum of two polytopes with v1 and v2 vertices has at most v1v2 vertices, we
deduce that F� has at most (2k + 2)(5d0 − 2k)k/2 vertices. Applying the upper bound theorem
again, it follows that fk+1 = ((2k + 2)(5d0 − 2k)k/2)(k+1)/2, as claimed.

Thus, plugging the base case into (4), we get that the overall query time Q(n, d) is bounded
by O(nk/(k+1) logd−k−1 +|R|).

Theorem 5.1 follows immediately from Lemmas 5.2, 5.3, and 5.4.

5.3 Approximate k-Flat Nearest Neighbor Queries

We now show how to extend our data structure from Section 5.1 for approximate k-flat nearest
neighbor queries with multiplicative error (4k + 3)(d − k − 1) +

√
k + 1. That is, given an

n-point set P ⊂ Rd, we want to find for any given query flat F ⊂ Rd a point p ∈ P with
d(p, F ) ≤ ((4k + 3)(d − k − 1) +

√
k + 1)d(P, F ). We reduce this problem to a near neighbor

query by choosing an appropriate threshold α that ensures |R| = O(
√
n), using random sampling.

For preprocessing we build the data structure D from Theorem 5.1 for P .
Let a query flat F be given. The F -rank of a point p ∈ P is the number of points in P that

are closer to F than p. Let X ⊆ P be a random sample obtained by taking each point in P
independently with probability 1/

√
n. The expected size of X is

√
n, and if x ∈ X is the closest

point to F in X, then the expected F -rank of x is
√
n. Set α = d(x, F )/((4k + 3)(d− k − 1) +√

k + 1). We query D with F and α to obtain a set R. If d(P, F ) ≤ α, then R contains the
nearest neighbor. Otherwise, x is a ((4k+3)(d−k−1)+

√
k + 1)-approximate nearest neighbor

for F . Thus, it suffices to return the nearest neighbor in R∪{x}. Since with high probability all
points in R have F -rank at most O(

√
n log n), we have |R| = O(

√
n log n), and the query time

is O(nk/(k+1) logd−k−1 n). This establishes the following corollary of Theorem 5.1.

Corollary 5.5. Let P ⊂ Rd be an n-point set. We can preprocess P into an O(n logd−k−1 n)
space data structure for approximate k-flat nearest neighbor queries: given a flat F , find a point
p ∈ P with d(p, F ) ≤ ((4k + 3)(d − k − 1) +

√
k + 1)d(P, F ). The expected query time is

O(nk/(k+1) logd−k−1 n).

6 Projection Structures

We now describe how to answer queries of type Q1 and Q3 efficiently. Our approach is to
project the points into random subspace of constant dimension and to solve the problem there
using our data structures from Theorem 5.1 and Corollary 5.5. For this, we need a Johnson-
Lindenstrauss-type lemma that bounds the distortion, see Section 6.1.

Let 0 < t ≤ 2/(2 + 40k) be a parameter and let P ⊂ Rd be a high dimensional n-point
set. Set d′ = 2/t + 2 and let M ∈ Rd′×d be a random projection from Rd to Rd′ , scaled by√
d/4d′. We obtain P̄ ⊂ Rd′ by projecting P using M . We build for P̄ the data structure D1

from Corollary 5.5 to answer Q1 queries and D2 from Theorem 5.1 to answer Q3 queries. This
needs O(n logO(d′) n) = O(n logO(1/t) n) space. For each p ∈ P we write p̄ for the d′-dimensional
point Mp and F̄ for the projected flat MF .
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6.1 Dimension Reduction

We use the following variant of the Johnson-Lindenstrauss-Lemma, as proved by Dasgupta and
Gupta [8, Lemma 2.2].

Lemma 6.1 (JL-Lemma). Let d′ < d, and let M ∈ Rd′×d be the projection matrix onto a
random d′-dimensional subspace, scaled by a factor of

√
d/d′. Then, for every vector x ∈ Rd of

unit length and every β > 1, we have

1. Pr
[
‖Mx‖2 ≥ β

]
≤ exp

(
1
2d
′(1− β + lnβ)

)
, and

2. Pr
[
‖Mx‖2 ≤ 1/β

]
≤ exp

(
1
2d
′(1− 1/β − lnβ)

)
≤ exp

(
1
2d
′(1− lnβ)

)
.

Lemma 6.2. Let p ∈ Rd be a point and let F ⊂ Rd be a k-flat. For d′ ∈ {40k, . . . , d − 1}, let
M ∈ Rd′×d be the projection matrix into a random d′-dimensional subspace, scaled by

√
d/4d′.

Let p̄ = Mp and F̄ = MF be the projections of p and of F , respectively. Then, for any β ≥ 40k,
(i) Pr[d(p̄, F̄ ) ≤ d(p, F )] ≥ 1− e−d′/2; and (ii) Pr[d(p̄, F̄ ) ≥ d(p, F )/β] ≥ 1− β−d′/2.

Proof. Let N = 2M , and set q = Np and K = NF . Defining ∆p = d(p, F ) and ∆q = d(q,K),
we must bound the probabilities Pr[∆q ≤ 2∆p] for (i) and Pr[∆q ≥ 2∆p/β] for (ii).

We begin with (i). Let p‖ be the orthogonal projection of p onto F , and let p⊥ = p−p‖. Let
q⊥ = Np⊥. Then, ∆p = ‖p⊥‖ and ∆q ≤ ‖q⊥‖. By Lemma 6.1(1),

Pr
[
‖q⊥‖ ≥ 2∆p

]
= Pr

[
‖Np⊥‖/‖p⊥‖ ≥ 2

]
= Pr

[
‖N(p⊥/‖p⊥‖)‖2 ≥ 4

]
≤ exp

(
1
2d
′(1− 4 + ln 4)

)
≤ exp(−d′/2).

Thus, Pr[∆q ≤ 2∆p] ≥ Pr[‖q⊥‖ ≤ 2∆p] ≥ 1− exp(−d′/2), as desired.
For (ii), choose k orthonormal vectors e1, . . . , ek such that F =

{
p‖ +

∑k
i=1 λiei | λi ∈ R

}
.

Set ui = ei‖p⊥‖/β2, and consider the lattice L =
{
p‖ +

∑k
i=1 µiui | µi ∈ Z

}
⊂ F . Let L̄ = NL

be the projected lattice. We next argue that with high probability (i) all points in L̄ have
distance at least 3‖p⊥‖/β from q; and (ii) for i = 1, . . . , k, we have ‖Nui‖ < ‖p⊥‖/β

√
k.

To show (i), we partition L into layers: for j ∈ {0, 1, . . . , }, let

Lj =

{
p‖ +

k∑
i=1

µiui | µi ∈ {−j, . . . , j},max
i
|µi| = j

}
⊂ L.

Now for any j ∈ N and r = p‖ +
∑k

i=1 µiui ∈ Lj , Pythagoras gives

‖p− r‖ =

√√√√‖p⊥‖2 +

∥∥∥∥∥
k∑
i=1

µiui

∥∥∥∥∥
2

= ‖p⊥‖

√√√√1 +
k∑
i=1

|µi|2/β4 ≥ ‖p⊥‖
√

1 + j2/β4.

Thus, using Lemma 6.1(2),

Pr
[
‖N(p− r)‖ ≤ 3‖p⊥‖/β

]
= Pr

[
‖N(p− r)‖/‖p− r‖ ≤ 3‖p⊥‖/β‖p− r‖

]
≤ Pr

[
‖N(p− r)/‖p− r‖‖2 ≤ 9/β2(1 + j2/β4)

]
≤ exp(1

2d
′(1 + ln(9/β2(1 + j2/β4))))

≤ (5/β)d
′
(1 + j2/β4)−d

′/2,

as
√

9e ≤ 5. Now we use a union bound to obtain

Pr
[
∃r ∈ L : ‖N(p− r)‖ ≤ 3‖p⊥‖/β

]
=
∞∑
j=0

Pr
[
∃r ∈ Lj : ‖N(p− r)‖ ≤ 3‖p⊥‖/β

]
.
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Grouping the summands into groups of β2 consecutive terms, this is

=

∞∑
l=0

lβ2+β2−1∑
j=lβ2

Pr
[
∃r ∈ Lj : ‖N(p− r)‖ ≤ 3‖p⊥‖/β

]
≤ (5/β)d

′
∞∑
l=0

|L≤(l+1)β2 |(1 + (lβ2)2/β4)−d
′/2,

where L≤a =
⋃a
i=0 Li. Using the rough bound |L≤a| ≤ (3a)k, this is

≤ (5/β)d
′
∞∑
l=0

(3(l + 1)β2)k(1 + l2)−d
′/2

= 5d
′
3kβ2k−d′

∞∑
l=0

(l + 1)k(1 + l2)−d
′/2.

For d′ ≥ 4k, we have (l + 1)k(1 + l2)−d
′/2 ≤ (l + 1)k(1 + l2)−2k ≤ 1/(1 + l2), so we can bound

the sum by
∑∞

l=1 1/(1 + l2) ≤ π2/6. Thus, we have derived

Pr
[
∃r ∈ L : ‖N(p− r)‖ ≤ 3‖p⊥‖/β

]
≤ 5d

′
3kβ2k−d′(π2/6) ≤ 5d

′+kβ2k−d′ , (5)

since π2/6 ≤ 5/3.

To show (ii), we use a union bound with Lemma 6.1(1). Recalling ‖u1‖ = ‖p⊥‖/β2,

Pr
[
∃i = 1, . . . , k : ‖Nui‖ > ‖p⊥‖/

√
kβ
]
≤ kPr

[
‖Nu1‖ > ‖p⊥‖/

√
kβ
]

= kPr[‖N(u1/‖u1‖)‖2 > β2/k]

≤ k exp
(

1
2d
′(1− β2/k + ln(β2/k))

)
≤ k exp

(
−β2d′/4k

)
, (6)

since c2/k ≥ 2(1 + ln(β2/k)) for β2/k ≥ 6. By (5) and (6), and recalling β, d′ ≥ 40k, the
probability that events (i) and (ii) do not both happen is at most

5d
′+kβ2k−d′ + ke−β

2d′/4k ≤ 5(1+1/40)d′β(1/20−1)d′ + (β/40)e−10cd′

≤

(
541/40

409/20

)d′
β−d

′/2 +
1

10
β−d

′/2 ≤ β−d′/2.

Suppose (i) and (ii) happen. Fix a point w ∈ K, and let r̄ ∈ L̄ be the point in the projected
lattice that is closest to w. By (i), d(q, r̄) > 3‖p⊥‖/β. By (ii) and the choice of r̄, the k-
dimensional cube with center r̄ and side length ‖p⊥‖/β

√
k contains w. This cube has diameter

‖p⊥‖/β. By triangle inequality, d(q, w) > d(q, r̄)− d(r̄, w) ≥ (3/β − 1/β)‖p⊥‖ = 2‖p⊥‖/β.

6.2 Queries of Type Q1

Let a query flat F be given. To answer Q1 queries, we compute F̄ and query D1 with F̄ to
obtain a ((4k+ 3)(d′ − k− 1) +

√
k + 1)-nearest neighbor p̄. We return the original point p. To

obtain Theorem 2.2, we argue that if p̄ is a ((4k + 3)(d− k − 1) +
√
k + 1)-nearest neighbor for

F̄ , then p is a nt-nearest neighbor for F with high probability.
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Let p∗ ∈ P be a point with d(p∗, F ) = d(P, F ). Set δp∗ = d(p∗, F ) and δ̄p∗ = d(p̄∗, F̄ ).
Denote by A1 the event that δ̄p∗ ≤ δp∗ . By Lemma 6.2, Pr[A1] ≥ 1− e−d′/2 = 1− e−1/t−1. Let
A2 be the event that for all points p ∈ P with δp = d(p, F ) > ntδp∗ we have δ̄p = d(p̄, F̄ ) >
((4k+3)(d′−k−1)+

√
k + 1)δp∗ . For a fixed p ∈ P , by setting β = nt/((4k+3)(d′−k−1)+

√
k + 1)

in Lemma 6.2, this probability is

Pr[δ̄p > ((4k + 3)(d′ − k − 1) +
√
k + 1)δp∗ ] ≥ 1− (nt/((4k + 3)(d′ − k − 1) +

√
k + 1))−d

′/2

= 1− n−1−t((4k + 3)(2t+ 1− k)
√
k + 1)1/t+1

≥ 1− n−1−t/2,

for n large enough. By the union bound, we get Pr[A2] ≥ 1−n−t/2, so the event A1 ∩A2 occurs
with constant probability. Then, p is a nt-approximate nearest neighbor for F , as desired.

6.3 Queries of Type Q3

To answer a query of type Q3, we compute the projection F̄ and query D2 with parameter α.
We obtain a set R̄ ⊂ P̄ in time O(nk/(k+1) logO(1/t) n + |R̄|). Let R ⊂ P be the corresponding
d-dimensional set. We return a point p ∈ R that minimizes d(p, F ). If δp∗ ≤ α, the event A1

from above implies that p̄∗ ∈ R̄, and we correctly return p∗.
To bound the size of |R̄|, and thus the running time, we use that P is αnt/(2k + 1)-cluster-

free. Let A3 be the event that for all p ∈ P with d(p, F ) > αnt/(2k+1), we have d(p̄, F̄ ) > ((4k+
3)(d′−k−1)+

√
k + 1)α. By the definition of cluster-freeness and the guarantee of Theorem 5.1,

we have |R̄| = m in the case of A3. Using β = nt/((2k + 1)((4k + 3)(d − k − 1) +
√
k + 1))

in Lemma 6.2 and doing a similar calculation as above yields again Pr[A3] ≥ 1 − n−t/2. Thus,
we can answer queries of type Q3 successfully in time O(nk/(k+1) logO(1/t) n+m) with constant
probability, as claimed in Theorem 2.3.

7 Conclusion

We have described the first provably efficient data structure for general k-ANN. Our main
technical contribution consists of two new data structures: the cluster data structure for high-
dimensional k-ANN queries, and the projection data structure for k-ANN queries in constant
dimension. We have only presented the latter structure for a constant approximation factor
(4k + 3)(d − k − 1) +

√
k + 1, but we believe that it is possible to extend it to any fixed

approximation factor c > 1. For this, one would need to subdivide the slab structures by a
sufficiently fine sequence of parallel hyperplanes.

Naturally, the most pressing open question is to improve the query time of our data structure.
Also, a further generalization to more general query or data objects would be of interest.
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