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Abstract

Let C1, ..., Cd+1 be d+ 1 point sets in Rd, each containing the origin in its convex hull. A subset C of
⋃d+1

i=1 Ci

is called a colorful choice (or rainbow) for C1, . . . , Cd+1, if it contains exactly one point from each set Ci. The
colorful Carathéodory theorem states that there always exists a colorful choice for C1, . . . , Cd+1 that has the
origin in its convex hull. This theorem is very general and can be used to prove several other existence theorems
in high-dimensional discrete geometry, such as the centerpoint theorem or Tverberg’s theorem. The colorful
Carathéodory problem (ColorfulCarathéodory) is the computational problem of finding such a colorful
choice. Despite several efforts in the past, the computational complexity of ColorfulCarathéodory in
arbitrary dimension is still open.

We show that ColorfulCarathéodory lies in the intersection of the complexity classes PPAD and
PLS. This makes it one of the few geometric problems in PPAD and PLS that are not known to be solvable
in polynomial time. Moreover, it implies that the problem of computing centerpoints, computing Tverberg
partitions, and computing points with large simplicial depth is contained in PPAD ∩ PLS. This is the first
nontrivial upper bound on the complexity of these problems.

Finally, we show that our PPAD formulation leads to a polynomial-time algorithm for a special case of
ColorfulCarathéodory in which we have only two color classes C1 and C2 in d dimensions, each with
the origin in its convex hull, and we would like to find a set with half the points from each color class that
contains the origin in its convex hull.

1 Introduction

Let P ⊂ Rd be a d-dimensional point set. We say P embraces a point p ∈ Rd or P is p-embracing
if p ∈ conv(P ), and we say P ray-embraces p if p ∈ pos(C), where pos(P ) =

{∑
p∈P αpp | αp ≥

0 for all p ∈ P
}
. Carathéodory’s theorem [16, Theorem 1.2.3] states that if P embraces the origin,

then there exists a subset P ′ ⊆ P of size d+ 1 that also embraces the origin. This was generalized
by Bárány [4] to the colorful setting: let C1, . . . , Cd+1 ⊂ Rd be point sets that each embrace
the origin. We call a set C = {c1, . . . , cd+1} a colorful choice (or rainbow) for C1, . . . , Cd+1, if
ci ∈ Ci, for i = 1, . . . , d + 1. The colorful Carathéodory theorem states that there always exists
a 0-embracing colorful choice that contains the origin in its convex hull. Bárány also gave the
following generalization.
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Fig. 1: (a) Example of the convex version of Theorem 1.1 in two dimensions. (b) Example of the
cone version of Theorem 1.1 in two dimensions.

Theorem 1.1 (Colorful Carathéodory Theorem, Cone Version [4]). Let C1, . . . , Cd ⊂ Rd be point
sets and b ∈ Rd a point with b ∈ pos(Ci), for i = 1, . . . , d. Then, there is a colorful choice C for
C1, . . . , Cd that ray-embraces b.

The classic (convex) version of the colorful Carathéodory theorem follows easily from Theorem 1.1:
lift the sets C1, . . . , Cd+1 ⊂ Rd to Rd+1 by appending a 1 to each element, and set b = (0, . . . , 0, 1)T .
See Figure 1 for an example of both versions in two dimensions.

Even though the cone version of the colorful Carathéodory theorem guarantees the existence of
a colorful choice that ray-embraces the point b, it is far from clear how to find it efficiently. We
call this computational problem the colorful Carathéodory problem (ColorfulCarathéodory).
To this day, settling the complexity of ColorfulCarathéodory remains an intriguing open
problem, with a potentially wide range of consequences. We can use linear programming to check in
polynomial time whether a given colorful choice ray-embraces a point, so ColorfulCarathéodory
lies in total function NP (TFNP) [23], the complexity class of total search problems that can be
solved in non-deterministic polynomial time. This implies that ColorfulCarathéodory cannot
be NP-hard unless NP = coNP [12]. However, the complexity landscape inside TFNP is far from
understood, and there exists a rich body of work that studies subclasses of TFNP meant to capture
different aspects of mathematical existence proofs, such as the pigeonhole principle (PPP), potential
function arguments (PLS, CLS), or various parity arguments (PPAD, PPA, PPADS) [10, 12, 23].

While the complexity of ColorfulCarathéodory remains elusive, related problems are
known to be complete for PPAD or for PLS. For example, given d+ 1 point sets C1, . . . , Cd+1 ⊂ Qd

consisting of two points each and a colorful choice C for C1, . . . , Cd+1 that embraces the origin, it is
PPAD-complete to find another colorful choice that embraces the origin [20]. Furthermore, given
d+ 1 point sets C1, . . . , Cd+1 ⊂ Qd, we call a colorful choice C for C1, . . . , Cd+1 locally optimal if
the L1-distance of conv(C) to the origin cannot be decreased by swapping a point of color i in
C with another point from the same color. Then, computing a locally optimal colorful choice is
PLS-complete [22].

Understanding the complexity of ColorfulCarathéodory becomes even more interesting
in the light of the fact that the colorful Carathéodory theorem plays a crucial role in proving
several other prominent theorems in convex geometry, such as Tverberg’s theorem [25] (and hence
the centerpoint theorem [24]) and the first selection lemma [16, 4]. In fact, these proofs can be
interpreted as polynomial time reductions from the respective computational problems, Tverberg,
Centerpoint, and SimplicialCenter, to ColorfulCarathéodory. See Section A for more
details.

Several approximation algorithms have been proposed for ColorfulCarathéodory. Bárány
and Onn [5] describe an exact algorithm that can be stopped early to find a colorful choice whose
convex hull is “close” to the origin. More precisely, let ε, ρ > 0 be parameters. We call a set ε-close
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if its convex hull has L2-distance at most ε to the origin. Given sets C1, . . . , Cd+1 ⊂ Rd such that
(i) each Ci contains a ball of radius ρ centered at the origin in its convex hull; and (ii) all points
p ∈

⋃d+1
i=1 Ci fulfill 1 ≤ ‖p‖ ≤ 2 and can be encoded using L bits, one can find an ε-close colorful

choice in time O(poly(L, log(1/ε), 1/ρ)) on the Word-Ram with logarithmic costs. For ε = 0,
the algorithm actually finds a solution to ColorfulCarathéodory in finite time, and, more
interestingly, if 1/ρ = O(poly(L)), the algorithm finds a solution to ColorfulCarathéodory
in polynomial time. In the same spirit, Barman [6] showed that if the points have constant norm,
an ε-close colorful choice can be found by solving dO(1/ε2) convex programs. Mulzer and Stein [22]
considered a different notion of approximation: a set is called m-colorful if it contains at most m
points from each Ci. They showed that for all fixed ε > 0, an dεde-colorful choice that contains the
origin in its convex hull can be found in polynomial time.

Our Results. We provide a new upper bound on the complexity of ColorfulCarathéodory by
showing that the problem is contained in PPAD∩ PLS, implying the first nontrivial upper bound on
the computational complexity of computing centerpoints or finding Tverberg partitions.

The traditional proofs of the colorful Carathéodory theorem all proceed through a potential
function argument. Thus, it may not be surprising that ColorfulCarathéodory lies in PLS, even
though a detailed proof that can deal with degenerate instances requires some care (see Section C).
On the other hand, showing that ColorfulCarathéodory lies in PPAD calls for a completely new
approach. Even though there are proofs of the colorful Carathéodory theorem that use topological
methods usually associated with PPAD (such as certain variants of Sperner’s lemma) [11, 13], these
proofs involve existential arguments that have no clear algorithmic interpretation. Thus, we present
a new proof of the colorful Carathéodory theorem that proceeds similarly as the usual proof for
Sperner’s lemma [8]. This new proof has an algorithmic interpretation that leads to a formulation
of ColorfulCarathéodory as a PPAD-problem.

Finally, we consider the special case of ColorfulCarathéodory that we are given two color
classes C1, C2 ⊂ Rd of d points each and a vector b ∈ Rd such that both C1 and C2 ray-embrace b.
We describe an algorithm that solves the following problem in polynomial time: given k ∈ [d], find
a set C ⊆ C1 ∪ C2 with |C ∩ C1| = k and |C ∩ C2| = d− k such that C ray-embraces b. Note that
this is a special case of ColorfulCarathéodory since we can just take k copies of C1 and d− k
copies of C2 in a problem instance for ColorfulCarathéodory.

2 Preliminaries

The Complexity Class PPAD. The complexity class polynomial parity argument in a directed
graph (PPAD) [23] is a subclass of TFNP that contains search problems that can be modeled as
follows: let G = (V,E) be a directed graph in which each node has indegree and outdegree at most
one. That is, G consists of paths and cycles. We call a node v ∈ V a source if v has indegree 0 and
we call v a sink if it has outdegree 0. Given a source in G, we want to find another source or sink.
By a parity argument, there is an even number of sources and sinks in G and hence another source
or sink must exist. However, finding this sink or source is nontrivial since G is defined implicitly
and the total number of nodes may be exponential.

More formally, a problem in PPAD is a relation R between a set I ⊆ {0, 1}? of problem instances
and a set S ⊂ {0, 1}? of candidate solutions. Assume further the following.

• The set I is polynomial-time verifiable. Furthermore, there is an algorithm that on input
I ∈ I and s ∈ S decides in time poly(|I|) whether s is a valid candidate solution for I. We
denote with SI ⊆ S the set of all valid candidate solutions for a fixed instance I.
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• There exist two polynomial-time computable functions pred and succ that define the edge set
of G as follows: on input I ∈ I and s ∈ SI , pred and succ return a valid candidate solution
from SI or ⊥. Here, ⊥ means that v has no predecessor/successor.

• There is a polynomial-time algorithm that returns for each instance I a valid candidate
solution s ∈ SI with pred(s) = ⊥. We call s the standard source.

Now, each instance I ∈ I defines a graph GI = (V,E) as follows. The set of nodes V is the set of
all valid candidate solutions SI and there is a directed edge from u to v if and only if v = succ(u)
and u = pred(v). Clearly, each node in GI has indegree and outdegree at most one. The relation R
consists of all tuples (I, s) such that s is a sink or source other than the standard source in GI .

The definition of a PPAD-problem suggests a simple algorithm, called the standard algorithm:
start at the standard source and follow the path until a sink is reached. This algorithm always finds
a solution but the length of the traversed path may be exponential in the size of the input instance.

Polyhedral Complexes and Subdivisions. We call a finite set of polyhedra P in Rd a polyhedral
complex if and only if (i) for all polyhedra f ∈ P, all faces of f are contained in P; and (ii) for all
f, f ′ ∈ P , the intersection f ∩f ′ is a face of both. Note that the first requirement implies that ∅ ∈ P .
Furthermore, we say P has dimension k if there exists some polyhedron f ∈ P with dim f = k
and all other polyhedra in P have dimension at most k. We call P a polytopal complex if it is a
polyhedral complex and all elements are polytopes. Similarly, we say P is a simplicial complex if it
is a polytopal complex whose elements are simplices. Finally, we say P subdivides a set Q ⊆ Rd if⋃
f∈P f = Q. For more details, see [27, Section 5.1].

Linear Programming. Let A ∈ Rd×n be a matrix and F a set of column vectors from A. Then,
we denote with ind (F ) ⊆ [n] the set of column indices in F and for an index set I ⊆ [n], we denote
with AI the submatrix of A that consists of the columns indexed by I. Similarly, for a vector c ∈ Rn
and an index set I ⊂ [n], we denote with cI the subvector of c with the coordinates indexed by I.
Now, let L′ denote a system of linear equations

L′ : Ax = b,

where A ∈ Qd×n, b ∈ Qd and rank(A) = k. By multiplying with the least common denominator, we
may assume in the following that A ∈ Zd×n and b ∈ Zd. We call a set of k linearly independent
column vectors B of A a basis and we say that A is non-degenerate if k = d and for all bases B of
A, no coordinate of the corresponding solution xind(B) is 0. In particular, if L′ is non-degenerate,
then b is not contained in the linear span of any set of d′ < d column vectors from A and hence if
d > n, the linear system L′ has no solution. In the following, we assume that L′ is non-degenerate
and that d ≤ n.

We denote with L the linear program obtained by extending the linear system L′ with the
constraints x ≥ 0 and with a cost vector c ∈ Qn:

L : min cTx subject to Ax = b, x ≥ 0.

We say a set of column vectors B is a basis for L if B is a basis for L′. Let x ∈ Rn be the
corresponding solution, i.e., let x be such that Ax = b and xi = 0 for i ∈ [n] \ ind (B). We call x a
basic feasible solution, and B a feasible basis, if x ≥ 0. Furthermore, we say L is non-degenerate if
for all feasible bases B, the corresponding basic feasible solutions have strictly positive values in
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the coordinates of B. Now, let R = [n] \ ind (B) be the column indices not in B. The reduced cost
vector rB,c ∈ Qn−d with respect to B and c is then defined as

rB,c = cR −
(
A−1

ind(B)AR
)T
cind(B). (1)

It is well-known that B is optimal for c if and only if rB,c is non-negative in all coordinates [18].
For technical reasons, we consider in the following the extended reduced cost vector r̂B,c ∈ Qn that
has a 0 in dimensions ind (B) and otherwise equals rB,c to align the coordinates of the reduced cost
vector with the column indices in A. More formally, we set

(r̂B,c)j =
{

0 if j ∈ ind (B), and
(rB,c)j′ otherwise,

where j′ is the rank of j in R, that is, (rB,c)j′ is the coordinate of rB,c that corresponds to the j′th
non-basis column with column index j in A.

Geometrically, the feasible solutions for the linear program L define an (n − d)-dimensional
polyhedron P in Rn. Since L is non-degenerate, P is simple. Let f ⊆ P be a k-face of P. Then, f
has an associated set supp (f) ⊆ [n] of k column indices such that f consists precisely of the feasible
solutions for the linear program Asupp(f)x

′ = b, x′ ≥ 0, lifted to Rn by setting the coordinates with
indices not in supp (f) to 0. We call supp (f) the support of f and we say the columns in Asupp(f)

define f . Furthermore, for all subfaces f̌ ⊆ f , we have supp
(
f̌
)
⊆ supp (f) and in particular, all

bases that define vertices of f are d-subsets of columns from Asupp(f).
Moreover, we say a nonempty face f ⊆ P is optimal for a cost vector c if all points in f are

optimal for c. We can express this condition using the reduced cost vector. Let B be a basis for a
vertex in f . Then f is optimal for c if and only if

(r̂B,c)j = 0 for j ∈ supp (f), and (r̂B,c)j ≤ 0 otherwise.

3 Overview of the PPAD-Formulation

We give a new constructive proof of the cone version of the colorful Carathéodory theorem based on
Sperner’s lemma. Using this, we can obtain a PPAD-formulation of ColorfulCarathéodory, by
adapting Papadimitriou’s formulation of Sperner’s lemma as a PPAD problem.

Recall the statement of Sperner’s lemma: let S be a simplicial subdivision of the d-dimensional
standard simplex ∆d = conv(e1, . . . , ed+1) ⊂ Rd+1, where ei is the ith canonical basis vector. We call
a function λ that assigns to each vertex in S a label from [d+1] a Sperner labeling if for each vertex v of
S contained in conv(ei1 , . . . , eik), we have λ(v) ∈ {i1, . . . , ik}, for all {i1, . . . , ik} ⊆ [d+1], k ∈ [d+1].
For a simplex σ ∈ S, we set λ(σ) to be the set of labels of the vertices of σ. We call σ fully-labeled
if λ(σ) = [d+ 1].

Theorem 3.1 (Strong Sperner’s Lemma [8]). The number of fully-labeled simplices is odd.

Now suppose we are given an instance I = (C1, . . . , Cd, b) of (the cone version of) Colorful-
Carathéodory, where b ∈ Rd, b 6= 0, and each Ci ⊂ Qd, i ∈ [d], ray-embraces b. In Section B,
we show that we can assume w.l.o.g. that each set Ci has size d. We now describe how to define a
simplicial complex S and a Sperner labeling λ for I such that a fully labeled simplex will encode a
colorful choice that contains the vector b in its positive span.

In the following, we call Rd the parameter space and a vector µ ∈ Rd a parameter vector. We
define a family of linear programs {LCC

µ | µ ∈ Rd}, where each linear program LCC
µ has the same
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Fig. 2: An example of Sperner’s lemma in two dimensions. The fully-labeled simplices are marked
yellow.

constraints and differs only in its cost vector cµ. The cost vector cµ is defined by a linear function
in µ ∈ Rd. Let A = (C1 C2 . . . Cd) ∈ Qd×d2 be the matrix that has the vectors from C1 in the first
d columns, the vectors from C2 in the second d columns, and so on. Then, we denote with LCC

µ the
linear program

LCC
µ : min cTµx, subject to Ax = b,x ≥ 0, (2)

and we denote with PCC ⊂ Rd2 the polyhedron that is defined by the linear system LCC. We can
think of the ith coordinate of the parameter vector µ ∈ Rd as the weight of color i, i.e., the costs
of columns from A with color i decrease if (µ)i increases. To each face f of P , we assign the set
of parameter vectors Φ(f) ⊂ Rd such that for all µ ∈ Φ(f), the face f is optimal for the linear
program LCC

µ that has LCC as constraints and cµ as cost vector. We call Φ(f) the parameter region
of f . The cost vector is designed to control the colors that appear in the support of optimal faces
for a specific subset of parameter vectors. LetM =

{
µ ∈ Rd

∣∣∣µ ≥ 0, ‖µ‖∞ = 1
}
denote the faces

of the unit cube in which at least one coordinate is set to 1. Then, no face f that is assigned to
a parameter vector µ ∈ M with (µ)i× = 0 has a column from A with color i× in its defining set
Asupp(f). This property will become crucial when we define a Sperner labeling later on. Now, we
define a polyhedral subcomplex F of PCC that consists of all faces f of PCC such that Φ(f)∩M 6= ∅.
Furthermore, the intersections of the parameter regions withM induce a polytopal complex Q that
is in a dual relationship to F . By performing a central projection with the origin as center of Q
onto the standard simplex ∆d−1, we obtain a polytopal subdivision Q∆ of ∆d−1. To get the desired
simplicial subdivision of ∆d−1, we take the barycentric subdivision sdQ∆ of Q∆.

We construct a Sperner labeling λ for sdQ∆ as follows: let v be a vertex in sdQ∆, and let f
be the face of F that corresponds to v. Then, we set λ(v) = i if the ith color appears most often
in the support of f . The color controlling property of the cost function cµ then implies that λ
is a Sperner labeling. Furthermore, using the properties of the barycentric subdivision and the
correspondence between Q∆ and F , we can show that one vertex of a fully-labeled (d−1)-simplex in
sdQ∆ encodes a colorful feasible basis of the ColorfulCarathéodory instance I. This concludes
a new constructive proof of the colorful Carathéodory theorem using Sperner’s lemma.

To show that ColorfulCarathéodory is in PPAD however, we need to be able to traverse
sdQ∆ efficiently. For this, we introduce a combinatorial encoding of the simplices in Q∆ that
represents neighboring simplices in a similar manner. Furthermore, we describe how to generalize
the orientation used in the PPAD formulation of 2D-Sperner [23] to our setting. This finally shows
that ColorfulCarathéodory is in PPAD.

To ensure that the complexes that appear in our algorithms are sufficiently generic, we prove
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several perturbation lemmas that give a deterministic way of achieving this. Our PPAD-formulation
also shows that the special case of ColorfulCarathéodory involving two colors can be solved
in polynomial time. Indeed, we will see that in this case the polytopal complex Q∆ can be made
1-dimensional. Then, binary search can be used to find a fully-labeled simplex in Q∆. In order to
prove that the binary search terminates after a polynomial number of steps, we use methods similar
to our perturbation techniques to obtain a bound on the length of the 1-dimensional fully-labeled
simplex.

4 The Colorful Carathéodory Problem is in PPAD

As before, let I = (C1, . . . , Cd, b) denote an instance for the cone version of ColorfulCarathéodory.
Our formulation of ColorfulCarathéodory as a PPAD-problem requires I to be in general
position. In particular, we assume that (P1) all color classes Ci ⊂ Zd consist of d points and all points
have integer coordinates. Furthermore, we assume that (P2) there exist no subset P ⊂

⋃d
i=1Ci of

size d− 1 that ray-embraces b. We show in Section B how to ensure the properties by an explicit
deterministic perturbation of polynomial bit-complexity.

4.1 The Polytopal Complex
Let N = d!md, where m is the largest absolute value that appears in A and b (see Lemma D.1).
Then, we define cµ ∈ Rd2 as

(cµ)j = 1 + (1− (µ)i) dN2 + εj , (3)

where j ∈ [d2], i is the color of the jth column in A, and 0 < ε ≤ N−3 is a suitable perturbation
that ensures non-degeneracy of the reduced costs (see [7]). As stated in the overview, the cost
function controls the colors in the support of the optimal faces for parameter vectors inM. The
proof of the following lemma can be found in Section D.

Lemma 4.1. Let i× ∈ [d] be a color and let µ ∈M be a parameter vector with µi× = 0. Furthermore,
let B? be an optimal feasible basis for LCC

µ . Then, B? ∩ Ci× = ∅.

We denote for a face f ⊆ PCC, f 6= ∅, with Φ(f) =
{
µ ∈ Rd | f is optimal for Lµ

}
the set of

all parameter vectors for which f is optimal. We call this the parameter region for f . Using the
reduced cost vector, we can express Φ(f) as solution space to the following linear system, where
B is a feasible basis of some vertex of f and the d coordinates of the parameter vector µ are the
variables:

LΦ
B,f : (r̂B,cµ)j = 0 for j ∈ supp (f) \ ind (B) and (r̂B,cµ)j ≤ 0 for

[
d2] \ supp (f). (4)

Then, we define F as the set of all faces that are optimal for some parameter vector inM:

F =
{
f
∣∣∣ f is a face of PCC, Φ(f) ∩M 6= ∅

}
.

By definition, F ∪ {∅} is a polyhedral subcomplex of PCC. The intersections of the parameter
regions with faces ofM induce a subdivision Q ofM:

Q = {Φ(f) ∩ g | f ∈ F , g is a face ofM} .

In Section D, we show that Q is a (d− 1)-dimensional polytopal complex. Next, we construct Q∆
through a central projection with the origin as center of Q onto the (d− 1)-dimensional standard



4 The Colorful Carathéodory Problem is in PPAD 8

simplex ∆ ⊂ Rd. It is easy to see that this projection is a bijection. For a parameter vector µ ∈ Rd,
we denote with ∆(µ) = µ/‖µ‖1 its projection onto ∆. Similarly, we denote withM(µ) = µ/‖µ‖∞
the projection of µ ontoM and we use the same notation to denote the element-wise projection of
sets. Then, we can write the projection Q∆ of Q onto ∆ as Q∆ = {∆(q) | q ∈ Q}. Furthermore,
let S = {∆(g) | g is a face ofM} denote the projections of the faces ofM onto ∆. For f ∈ F , let
Φ∆(f) = ∆(Φ(f) ∩M) denote the projection of all parameter vectors inM for which f is optimal
onto ∆. Please refer to Table 1 on Page 14 for an overview of the current and future notation. The
following results are proved in Section D.

Lemma 4.2. Let q 6= ∅ be an element from Q∆. Then, there exists unique pair (f, g) where f
is a face of F and g is a face of S such that q = Φ∆(f) ∩ g. Moreover, q is a simple polytope of
dimension dim g − dim f and, if dim q > 0, the set of facets of q can be written as{

Φ∆ (f) ∩ ǧ 6= ∅
∣∣∣ ǧ is a facet of g

}
∪
{

Φ∆
(
f̂
)
∩ g 6= ∅

∣∣∣ f is a facet of f̂ ∈ F
}
.

Lemma 4.3. The set Q∆ is a (d− 1)-dimensional polytopal complex that decomposes ∆.

4.2 The Barycentric Subdivision
The barycentric subdivision [17, Definition 1.7.2] is a well-known method to subdivide a polytopal
complex into simplices. We define sdQ∆ as the set of all simplices conv(v0, . . . ,vk), k ∈ [d], such
that there exists a chain q0 ⊂ · · · ⊂ qk of polytopes in Q∆ with dim qi−1 < dim qi and such that
vi is the barycenter of qi for i ∈ [k]. We define the label of a vertex v ∈ sdQ∆ as follows. By
Lemma 4.2, there exists a unique pair f ∈ F and g ∈ S with v = Φ∆(f) ∩ g. Then, the label λ(v)
of v is defined as

λ(v) = arg max
i∈[d]

|ind (C)i ∩ supp (f)| . (5)

In case of a tie, we take the smallest i ∈ [d] that achieves the maximum. Lemma 4.1 implies that λ(·)
is a Sperner labeling of sdQ∆. In fact, λ is a Sperner labeling for any fixed simplicial subdivision of
∆. Now, Theorem 3.1 guarantees the existence of a (d− 1)-simplex σ ∈ sdQ∆ whose vertices have
all d possible labels. The next lemma shows that then one of the vertices of σ defines a solution
to the ColorfulCarathéodory instance. Here, we use specific properties of the barycentric
subdivision.

Lemma 4.4. Let σ ∈ sdQ∆ be a fully-labeled (d− 1)-simplex and let vd−1 denote the vertex of σ
that is the barycenter of a (d− 1)-face qd−1 = Φ∆(fd−1)∩ gd−1 ∈ Q∆, where fd−1 ∈ F and gd−1 ∈ S.
Then, the columns from Asupp(fd−1) are a colorful choice that ray-embraces b.

Our discussion up to now already yields a new Sperner-based proof of the colorful Carathéodory
theorem. However, in order to show that ColorfulCarathéodory ∈ PPAD, we need to replace
the invocation of Theorem 3.1 by a PPAD-problem. Note that it is not possible to use the formulation
of Sperner from [23, Theorem 2] directly, since it is defined for a fixed simplicial subdivision of the
standard simplex. In our case, the simplicial subdivision of ∆ depends on the input instance. In the
following, we generalize the PPAD formulation of Sperner in [23] to Q∆ by mimicking the proof of
Theorem 3.1. For this, we need to be able to find simplices in sdQ∆ that share a given facet. We
begin with a simple encoding of simplices in sdQ∆ that allows us to solve this problem completely
combinatorially.

We first show how to encode a polytope q ∈ Q∆. By Lemma 4.2, there exists a unique pair of
faces f ∈ F and g ∈ S such that q = Φ∆(f) ∩ g. SinceM(g) is a face of the unit cube, the value of
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d− dim g coordinates inM(g) is fixed to either 0 or 1. Let Ij ⊆ [d], j = 0, 1, denote the indices of
the coordinates that are fixed to j. Then, the encoding of q is defined as enc (q) = (supp (f), I0, I1).
We use this to define an encoding of the simplices in Q∆ as follows. Let σ ∈ Q∆ be a k-simplex
and let q0 ⊂ · · · ⊂ qk be the corresponding face chain in Q∆ such that the ith vertex of σ is the
barycenter of qi. Then, the encoding enc (σ) is defined as

enc (σ) = (enc (q0), . . . , enc (qk)) . (6)

In the proof of Theorem 3.1, we traverse only a subset of simplices in the simplicial subdivision,
namely (k− 1)-simplices that are contained in the face ∆[k] = conv{ei | i ∈ [k]} of ∆ for k ∈ [d]. Let
Σk =

{
σ ∈ sdQ∆

∣∣∣ dim(σ) = k − 1, σ ⊆ ∆[k]
}
denote the set of (k − 1)-simplices in sdQ∆ that are

contained in the (k−1)-face, where k ∈ [d], and let Σ =
⋃d
k=1 Σk be the collection of all those simplices.

In the following, we give a precise characterization of the encodings of the simplices in Σk. For two
disjoint index sets I0, I1 ⊆ [d], we denote with g(I0, I1) = {µ ∈M| j = 0, 1, (µ)i = j for i ∈ Ij} the
face ofM that we obtain by fixing the coordinates in dimensions I0∪I1. Let now T = (Q0, . . . , Qk−1),
k ∈ [d− 1], be a tuple, where Qi =

(
S(i), I

(i)
0 , I

(i)
1

)
, S(i) ⊂

[
d2], and I(i)

0 , I
(i)
1 are disjoint subsets of

[d] with I(i)
1 6= ∅ for i ∈ [k − 1]0. We say T is valid if and only if T has the following properties.

(i) We have I(k−1)
0 = [d] \ [k],

∣∣∣I(k−1)
1

∣∣∣ = 1, and the columns in AS(k−1) are a feasible basis for a

vertex f . Moreover, the intersection Φ(f) ∩ g
(
I

(k−1)
0 ∪ I(k−1)

1

)
is nonempty.

(ii) For all i ∈ [k − 1], we either have

(ii.a) I(i−1)
0 = I

(i)
0 , I(i−1)

1 = I
(i)
1 , and S(i−1) = S(i) ∪ {ai−1} for some index ai−1 ∈

[
d2] \ S(i),

(ii.b) or S(i−1) = S(i) and there is an index ji−1 ∈ [d]\
(
I

(i)
0 ∪ I

(i)
1

)
such that either I(i−1)

0 = I
(i)
0

and I(i−1)
1 = I

(i)
1 ∪ {ji−1}, or I(i−1)

1 = I
(i)
1 and I(i−1)

0 = I
(i)
0 ∪ {ji−1}.

Lemma 4.5. For k ∈ [d], the function enc (·) restricted to the simplices in Σk is a bijection from
Σk to the set of valid k-tuples.

Using our characterization of encodings as valid tuples, it becomes an easy task to check whether
a given candidate encoding corresponds to a simplex in Σ.

Lemma 4.6. Let T = (Q0, . . . , Qk−1), k ∈ [d−1], be a tuple, where Qi =
(
S(i), I

(i)
0 , I

(i)
1

)
, S(i) ⊂

[
d2],

and I(i)
0 , I

(i)
1 are disjoint subsets of [d] with I(i)

1 6= ∅ for i ∈ [k−1]0. Then, we can check in polynomial
time whether T is a valid k-tuple.

In Section E, we show that simplices in Σ that share a facet have similar encodings that differ only
in one element of the encoding tuples. Using this fact, we can traverse Σ efficiently by manipulating
the respective encodings.

Lemma 4.7. Let σ ∈ Σk be a simplex and let q0 ⊂ · · · ⊂ qk−1 be the corresponding face chain in
Q∆ such that the ith vertex vi of σ is the barycenter of qi, where k ∈ [d] and i ∈ [k − 1]0. Then, we
can solve the following problems in polynomial time: (i) Given enc (σ) and i, compute the encoding
of the simplex σ′ ∈ Σk that shares the facet conv {vj | j ∈ [k − 1]0, j 6= i} with σ or state that there
is none; (ii) Assuming that k < d and given enc (σ), compute the encoding of the simplex σ̂ ∈ Σk+1
that has σ as facet; and (iii) Assuming that k > 1 and given enc (σ), compute the encoding of the
simplex σ̌ ∈ Σk−1 that is a facet of σ or state that there is none.
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4.3 The PPAD graph
Using our tools from the previous sections, we now describe the PPAD graph G = (V,E) for
the ColorfulCarathéodory instance. The definition of G follows mainly the ideas from the
formulation of Sperner as a PPAD-problem [23, Theorem 2] and the proof of Theorem 3.1.

The graph has one node per simplex in Σ that has all labels or all but the largest possible
label. That is, we have one node for each (k − 1)-simplex σ in Σk with [k − 1] ⊆ λ(σ). Two
simplices are connected by an edge if one simplex is the facet of the other or if both simplices
share a facet that has all but the largest possible label. More formally, for k ∈ [d], we set
Vk = {enc (σ) |σ ∈ Σk, [k − 1] ⊆ λ(σ)}, the set of all encodings for (k − 1)-simplices in Σk whose
vertices have all or all but the largest possible label. Then, V is the union of all Vk for k ∈ [d].
There are two types of edges: edges within a set Vk, k ∈ [d], and edges connecting nodes from Vk to
nodes in Vk−1 and Vk+1. Let enc (σ), enc (σ′) be two vertices in Vk for some k ∈ [d]. Then, there
is an edge between enc (σ) and enc (σ′) if the encoded simplices σ, σ′ ∈ Σk share a facet σ̌ with
λ(σ̌) = [k− 1], i.e., both simplices are connected by a facet that has all but the largest possible label.
Now, let enc (σ) ∈ Vk and enc (σ′) ∈ Vk+1 for some k ∈ [d − 1]. Then, there is an edge between
enc (σ) and enc (σ′) if λ(σ) = [k] and σ is a facet of σ′. In the next lemma, we show that G consists
only of paths and cycles. Please see Section F for the proof.

Lemma 4.8. Let enc (σ) ∈ V be a node. If enc (σ) ∈ V1 or enc (σ) ∈ Vd with λ(σ) = [d], then
deg enc (σ) = 1. Otherwise, deg enc (σ) = 2.

This already shows that ColorfulCarathéodory ∈ PPA. By generalizing the orientation
from [23] to our setting, we obtain a function dir that orients the edges of G such that only vertices
with degree one in G are sinks or sources in the oriented graph. In Section F, we show how to
compute this function in polynomial time. This finally yields our main result.

Theorem 4.9. ColorfulCarathéodory, Centerpoint, Tverberg, and SimplicialCenter
are in PPAD ∩ PLS.

Proof. We give a formulation of ColorfulCarathéodory as PPAD-problem. See Section C for a
formulation of ColorfulCarathéodory as PLS-problem. Using the classic proofs discussed in
Section A, this then also implies the statement for the other problems.

The set of problem instances I consists of all tuples I = (C1, . . . , Cd, b), where d ∈ N, the
set Ci ⊂ Qd ray-embraces b ∈ Qd and b 6= 0. Let I≈ = (C≈1 , . . . , C≈d , b

≈) denote then the
ColorfulCarathéodory instance that we obtain by applying our perturbation techniques to I
(see Section B). Then, I≈ has the general position properties (P1) and (P2). The set of candidate
solutions S consists of all tuples (Q0, . . . , Qk−1), where k ∈ N and Qi is a tuple

(
S(i), I

(i)
0 , I

(i)
1

)
with

S(i), I
(i)
0 , I

(i)
1 ⊂ N. Furthermore, S contains all d-subsets C ⊂ Qd for d ∈ N. We define the set of

valid candidate solutions SI for the instance I to be the set of all valid k-tuples with respect to the
instance I≈ and the set of all colorful choices with respect to I that ray-embrace b, where k ∈ [d].
Let s ∈ S be a candidate solution. If it is a tuple, we first use the algorithm from Lemma 4.6
to check in polynomial time in the length of I≈ and hence in the length of I whether s ∈ SI . If
affirmative, we check whether the simplex has all or all but the largest possible label. Using the
encoding, this can be carried out in polynomial time. If s is a set of points, we can determine in
polynomial time with linear programming whether the points in s ray-embrace b.

We set as standard source the 0-simplex {e1}. We can assume without loss of generality that
{e1} is a source (otherwise we invert the orientation).

Given a valid candidate solution s ∈ SI , we compute its predecessor and successor with the
algorithms from Lemma 4.7 and the orientation function discussed above, with one modification:
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if a node s ∈ V is a source different from the standard source in the graph G, it encodes by the
above discussion a colorful choice C≈ that ray-embraces b≈. Let C be the corresponding colorful
choice for I that ray-embraces b. Then, we set the predecessor of s to C. The properties of our
perturbation ensure that we can compute C in polynomial time. Similarly, if s is a sink in G, we
set its successor to the corresponding solution for the instance I.

5 A Polynomial-Time Case

We show that for a special case of ColorfulCarathéodory, our formulation of Colorful-
Carathéodory as a PPAD problem has algorithmic implications. Let C1, C2 ∈ Rd be two color
classes and let C ⊆ C1 ∪ C2 be a set. We call C an (k, d − k)-colorful choice for C1 and C2 if
there are two subsets C ′1 ⊆ C1, C ′2 ⊆ C2 with |C ′1| ≤ k and |C ′2| ≤ d − k. Now, given two color
classes C1, C2 that each ray-embrace a point b ∈ Rd and a number k ∈ [d]0, we want to find an
(k, d− k)-colorful choice that ray-embraces b. It is a straightforward consequence of the colorful
Carathéodory theorem that such a colorful choice always exists.

Using our techniques from Section 4, we present a weakly polynomial-time algorithm for this
case. As described in Section 4.1, we construct implicitly a 1-dimensional polytopal complex, where
at least one edge corresponds to a solution. Then, we apply binary search to find this edge. Since
the length of the edges can be exponentially small in the length of the input, this results in a weakly
polynomial-time algorithm.

Theorem 5.1. Let b ∈ Qd be a point and let C1, C2 ⊂ Qd be two sets of size d that ray-embrace
b. Furthermore, let k ∈ [d − 1] be a parameter. Then, there is an algorithm that computes a
(k, d− k)-colorful choice C that ray-embraces b in weakly-polynomial time.

For Sperner’s lemma, it is well-known that a fully-labeled simplex can be found if there are only
two labels by binary search. Essentially, this is also what the presented algorithm does: reducing the
problem to Sperner’s lemma and then applying binary search to find the right simplex. Since the
computational problem Sperner is PPAD-complete even for d = 2, a polynomial-time generalization
of this approach to three colors must use specific properties of the colorful Carathéodory instance
under the assumption that no PPAD-complete problem can be solved in polynomial time.

6 Conclusion

We have shown that ColorfulCarathéodory lies in the intersection of PPAD and PLS. This also
immediately implies that several illustrious problems associated with ColorfulCarathéodory,
such as finding centerpoints or Tverberg partitions, belong to PPAD ∩ PLS.

Previously, the intersection PPAD ∩ PLS has been studied in the context of continuous local
search: Daskalakis and Papadimitriou [10] define a subclass CLS ⊆ PPAD ∩ PLS that “captures
a particularly benign kind of local optimization”. Daskalakis and Papadimitriou describe several
interesting problems that lie in CLS but are not known to be solvable in polynomial time. Unfor-
tunately, our results do not show that ColorfulCarathéodory lies in CLS, since we reduce
ColorfulCarathéodory in d dimensions to Sperner in d − 1 dimensions, and since Sperner
is not known to be in CLS. Indeed, if Sperner’s lemma could be shown to be in CLS, this would
imply that PPAD = CLS ⊆ PLS, solving a major open problem. Thus, showing that Colorful-
Carathéodory lies in CLS would require fundamentally new ideas, maybe exploiting the special
structure of the resulting Sperner instance. On the other hand, it appears that Sperner is a more
difficult problem than ColorfulCarathéodory, since Sperner is PPAD-complete for every fixed
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dimension larger than 1, whereas ColorfulCarathéodory becomes hard only in unbounded
dimension. On the positive side, our perturbation results show that a polynomial-time algorithm
for ColorfulCarathéodory, even under strong general position assumptions, would lead to
polynomial-time algorithms for several well-studied problems in high-dimensional computational
geometry.

Finally, it would also be interesting to find further special cases of ColorfulCarathéodory
that are amenable to polynomial-time solutions. For example, can we extend our algorithm for
two color classes to three color classes? We expect this to be difficult, due to an analogy between
1D-Sperner, which is in P, and 2D-Sperner, which is PPAD-complete. However, there seems to be
no formal justification for this intuition.
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Symbol Definition

Ci The ith color class. The d-set Ci ⊂ Rd ray-embraces b.
A The (d× d2)-matrix with C1 as first d columns, C2 as second d columns, and so on.
cµ The cost vector parameterized by a parameter vector µ ∈ Rd. See (3).

LCC; LCC
µ LCC refers to the linear system Ax = b, x ≥ 0 (see 2). LCC

µ denotes the linear
program max cT

µx s.t. LCC.
PCC The polytope defined by LCC.

f ; supp (f); ind (B) For a face f ⊆ PCC, we denote with supp (f) the indices of the columns in A that
define it. For a set of columns B of A, we denote with ind (B) the indices of these
columns.

Φ(f); LΦ
B,f For a face f of PCC, Φ(f) denotes the set of parameter vectors µ ∈ Rd such that

f is optimal for LCC
µ . The set Φ(f) can be described as the solution space to the

linear system LΦ
B,f , where B is a feasible basis of a vertex of f .

M The setM contains all faces from the unit cube in Rd that set at least one coordinate
to 1. Parameters fromM control the colors of the defining columns of optimal faces
(see Lemma 4.1).

F The set of faces f of PCC of that are optimal for some parameter vector in M,
i.e., the set of faces f with Φ(f) ∩M 6= ∅. F is a (d− 1)-dimensional polyhedral
complex.

Q The (d−1)-dimensional polytopal complex that consists of all elements q = Φ(f)∩g,
where f ∈ F and g is a face ofM.

∆; ∆[k] ∆ denotes the (d − 1)-dimensional standard simplex and ∆[k] denotes the face
conv{ei | i ∈ [k]} of ∆.

S The set S contains the central projections of the faces ofM onto ∆ with the origin
as center.

Φ∆; Q∆ Φ∆(f) denotes the central projection of Φ(f) ∩M onto ∆ with center 0. The
(d−1)-dimensional polytopal complex Q∆ consists of the projections of the elements
in Q onto ∆. Each element q of Q∆ can be uniquely written as q = Φ∆(f) ∩ g,
where f ∈ F and g ∈ S.

λ The labeling function, see (5).
Σ; Σk; enc (σ) The set Σk, k ∈ [d], consists of all (k − 1)-simplices in sdQ∆ that are contained

in the face ∆[k] of ∆. The set Σ is the union of all Σk. For a simplex σ ∈ Σ, we
denote with enc (σ) its combinatorial encoding (see (6)).

Tab. 1: Notation reference.
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A Polynomial-Time Reductions to the Colorful Carathéodory Problem

We begin by presenting the proofs of the centerpoint theorem, Tverberg’s theorem, and the first
selection lemma that use the colorful Carathéodory theorem. Afterwards, we show that these proofs
can be interpreted as polynomial-time reductions to the corresponding computational problems.

Let P ⊂ Rd be a point set. We say a point c ∈ Rd has Tukey depth τ with respect to P if and
only if all closed halfspaces that contain c also contain at least τ points from P . The centerpoint
theorem guarantees that there always exist points with large Tukey depth.

Theorem A.1 (Centerpoint theorem [24, Theorem 1]). Let P ⊂ Rd be a point set. Then, there
exists a point q ∈ Rd with Tukey depth τ ≥

⌈
|P |
d+1

⌉
.

We call a partition of P intom sets T1, . . . , Tm a Tverbergm-partition if and only if
⋂m
i=1 conv(Ti) 6=

∅. Tverberg’s theorem guarantees that there are always large Tverberg partitions.

Theorem A.2 (Tverberg’s theorem [26]). Let P ⊂ Rd be a point set of size n. Then, there always
exists a Tverberg

⌈
|P |
d+1

⌉
-partition for P . Equivalently, let P be of size (m− 1)(d+ 1) + 1 with m ∈ N.

Then, there exists a Tverberg m-partition for P .

Note that Theorem A.2 directly implies Theorem A.1. A point c in the intersection of a Tverberg⌈
|P |
d+1

⌉
-partition has Tukey depth at least

⌈
|P |
d+1

⌉
since every halfspace that contains c must contain

at least one point from each set in the Tverberg partition. We present Sarkaria’s proof of Tverberg’s
theorem [25] with further simplifications by Bárány and Onn [5] and Arocha et al. [3]. The main
tool is the following lemma that establishes a notion of duality between the intersection of convex
hulls of low-dimensional point sets and the embrace of the origin of corresponding high-dimensional
point sets. It was extracted from Sarkaria’s proof by Arocha et al. [3]. In the following, we denote
with ⊗ the tensor product.

In the following, we denote with ⊗ the binary function that maps two points p ∈ Rd, q ∈ Rm to
the point

p⊗ q =


(q)1p
(q)2p

...
(q)mp

 ∈ Rdm.

It is easy to verify that ⊗ is bilinear, i.e., for all p1,p2 ∈ Rd, q ∈ Rm, and α1, α2 ∈ R, we have

(α1p1 + α2p2)⊗ q = α1 (p1 ⊗ q) + α2 (p2 ⊗ q)

and similarly, for all p ∈ Rd, q1, q2 ∈ Rm, and α1, α2 ∈ R, we have

p⊗ (α1q1 + α2q2) = α1 (p⊗ q1) + α2 (p⊗ q2) .

Lemma A.3 (Sarkaria’s lemma [25], [3, Lemma 2]). Let P1, . . . , Pm ⊂ Rd be m point sets and let
q1, . . . , qm ⊂ Rm−1 be m vectors with qi = ei for i ∈ [m− 1] and qm = −1. For i ∈ [m], we define

P̂i =
{(
p
1

)
⊗ qi

∣∣∣∣∣p ∈ Pi
}
⊂ R(d+1)(m−1).

Then, the intersection of convex hulls
⋂m
i=1 conv (Pi) is nonempty if and only if

⋃m
i=1 P̂i embraces

the origin.
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Proof. Assume there is a point p? ∈
⋂m
i=1 conv (Pi). For i ∈ [m] and p ∈ Pi, there then exist

coefficients λi,p ∈ R+ that sum to 1 such that p? =
∑
p∈Pi

λi,p. Consider the points p̂i ∈ conv
(
P̂i
)
,

i ∈ [m], that we obtain by using the same convex coefficients for the points in P̂i, i.e., set

p̂i =
∑
p∈Pi

λi,p

((
p
1

)
⊗ qi

)
∈ conv

(
P̂i
)
.

We claim that
∑m
i=1 p̂i = 0 and thus 0 ∈ conv

(⋃m
i=1 P̂i

)
. Indeed, we have

m∑
i=1
p̂i =

m∑
i=1

∑
p∈Pi

λi,p

((
p
1

)
⊗ qi

)
=

m∑
i=1

∑
p∈Pi

λi,p

(
p
1

)⊗ qi =
m∑
i=1

(
p?

1

)
⊗ qi

=
(
p?

1

)
⊗
(

m∑
i=1
qi

)
=
(
p?

1

)
⊗ 0 = 0,

where we use the fact that ⊗ is bilinear.
Assume now that

⋃m
i=1 P̂i embraces the origin and we want to show that

⋂m
i=1 conv (Pi) is

nonempty. Then, we can express the origin as a convex combination
∑m
i=1

∑
p̂∈P̂i

λi,p̂p̂ with
λi,p̂ ∈ R+ for i ∈ [m] and p̂ ∈ P̂i, and

∑m
i=1

∑
p̂∈P̂i

λi,p̂ = 1. Hence, we have

0 =
m∑
i=1

∑
p̂∈P̂i

λi,p̂

((
p
1

)
⊗ qi

)
=

m∑
i=1

∑
p̂∈P̂i

λi,p̂

(
p
1

)⊗ qi,
where we use again the fact that ⊗ is bilinear. By the choice of q1, . . . , qm, there is (up to
multiplication with a scalar) exactly one linear dependency: 0 =

∑m
i=1 qi. Thus,

∑
p̂∈P̂1

λ1,p̂

(
p
1

)
= · · · =

∑
p̂∈P̂m

λm,p̂

(
p
1

)
=
(
p?

c

)
,

where p? ∈ Rd and c ∈ R. In particular, the last equality implies that∑
p̂∈P̂1

λ1,p̂ = · · · =
∑
p̂∈P̂m

λm,p̂ = c.

Now, since for all i ∈ [m] and p̂ ∈ P̂i, the coefficient λi,p̂ is nonnegative and since the sum∑
i∈[m]

∑
p̂∈P̂i

λi,p̂ is 1, we must have c = 1/m ∈ (0, 1]. Hence, the point mp? is common to all
convex hulls conv (P1) , . . . , conv (Pm).

Little work is now left to obtain Tverberg’s theorem from Lemma A.3 and the colorful
Carathéodory theorem.

Proof of Theorem A.2. Let P = {p1, . . . ,pn} ⊂ Rd be a point set of size n = (d+ 1)(m− 1) + 1 and
let P1, . . . , Pm denote m copies of P . For each set Pj ⊂ Rd, j ∈ [m], we construct a ((d+ 1)(m− 1))-
dimensional set P̂j as in Lemma A.3, i.e.,

P̂j =
{
p̂i,j = pi ⊗ qj

∣∣∣pi ∈ P} ⊂ R(d+1)(m−1) = Rn−1.
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For i ∈ [n], we denote with Ĉi ⊆
⋃m
j=1 P̂j the set of points

{
p̂i,j

∣∣∣ j ∈ [m]
}
that correspond to pi ∈ P

and we color these points with color i. For i ∈ [n], note that Lemma A.3 applied to m copies of the
singleton set {pi} ⊆ P guarantees that the color class Ĉi ∈ Rn−1 embraces the origin. Hence, we
have n color classes Ĉ1, . . . , Ĉn that embrace the origin in Rn−1. Now, by Theorem 1.1, there is a
colorful choice Ĉ = {ĉ1, . . . , ĉn} ⊆

⋃n
i=1 Ĉi with ĉi ∈ Ĉi that embraces the origin, too. Because Ĉ

embraces the origin, Lemma A.3 guarantees that the convex hulls of the sets Tj =
{
pi ∈ P

∣∣∣ p̂i,j ∈ Ĉ},
j ∈ [m], have a point in common. Moreover, since all points in

⋃m
j=1 P̂j that correspond to the same

point in P have the same color, each point pi ∈ P appears in exactly one set Tj , j ∈ [m]. Thus,
T = {T1, . . . , Tj} is a Tverberg m-partition of P .

Similar to the Tukey depth, the simplicial depth is a further notion of data depth. Let again be
P ⊂ Rd be a point set and q ∈ Rd a point. Then, the simplicial depth δP (q) of q with respect to P
is the number of distinct d-simplices that contain q with vertices in P . The first selection lemma
states that for fixed d, there is always a point with asymptotic optimal simplicial depth.

Theorem A.4 (First selection lemma [4, Theorem 5.1]). Let P ⊂ Rd be a set of points and consider
d constant. Then, there exists a point q ∈ Rd with δP (q) = Ω

(
|P |d+1

)
.

The main argument of Bárány’s proof of the first selection lemma is the following lemma.

Lemma A.5. Let P ⊂ Rd be a point set and let T be a Tverberg m-partition of P , where m ∈ N.
Then any point c ∈

⋂
T∈T conv (T ) has simplicial depth σP (c) at least

⌈
md+1

(d+1)d+1

⌉
.

Proof. Let Ti denote the ith element of T and color it with color i. Now by Theorem 1.1, there
exists for every (d+ 1)-subset I ⊆ [m] a colorful choice CI with respect to the color classes Ti, i ∈ I,
that embraces c. Furthermore, each index set I induces a unique colorful choice CI . Thus, there
are at least

( m
d+1
)
≥ md+1

(d+1)d+1 distinct c-embracing d-simplices with vertices in P .

The first selection lemma is now an immediate consequence of Lemma A.5 and Theorem A.2.
We define the computational problems that correspond to the centerpoint theorem, Tverberg’s

theorem, and the first selection lemma as follows.

Definition A.6. We define the following search problems:

• Centerpoint

Given a set P ⊂ Qd of size n,
Find a centerpoint.

• Tverberg

Given a set P ⊂ Qd of size n,
Find a Tverberg d n

d+1e-partition.

• SimplicialCenter

Given a set P ⊂ Qd of size n,
Find a point q ∈ Qd with σP (q) ≥ f(d)nd+1, where f : N 7→ R+ is an arbitrary but fixed

function.

Finally, interpreting the presented proofs as algorithms, we obtain the following result.
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Lemma A.7. Given access to an oracle for ColorfulCarathéodory, Tverberg can be solved
in O

(
n3) time. Furthermore, Centerpoint and SimplicialCenter can be solved in O

(
Ln3)

time, where L is the length of the input.

Proof. As show in the proof of Theorem A.2, to compute a Tverberg partition, it suffices to lift
m =

⌈
n
d+1

⌉
copies of the input point set P ⊂ Qd with Lemma A.3 and then query the oracle for

ColorfulCarathéodory. Lifting one point needs O (dm) = O (n) time and hence we need
O
(
n3) time in total. Then, any point in the intersection of the computed Tverberg m-partition

T = {T1, . . . , Tm} is a solution to Centerpoint and SimplicialCenter. Using the algorithm
from [2], we can compute a Tverberg point in time O

(
Ln3) by solving the linear program

−1

T1 0 . . .
−1

1 . . . 1 0 . . . 0
. . . ...

−1

0 Tm
. . .

−1
1 . . . 1 0 . . . 0



x =



0
...
0
1
...
0
...
0
1



s.t. x ≥ 0,

where L is the length of the input.

B Equivalent Instances of the Colorful Carathéodory Problem in General Position

The application of Sarkaria’s lemma in the reductions to ColorfulCarathéodory creates color
classes whose positive span does not have full dimension. To be able to transfer upper bounds
on the complexity of ColorfulCarathéodory to its descendants, we need to be able to deal
with degenerate position. In this chapter, we show how to ensure general position of Colorful-
Carathéodory instances by extending known perturbation techniques for linear programming to
our setting. More formally, let I = (C1, . . . , Cd, b) be a ColorfulCarathéodory instance, where
b ∈ Qd \ {0} and each color class Ci ⊂ Qd, i ∈ [d], ray-embraces b. Then, we want to construct in
polynomial time d sets C≈1 , . . . , C≈d ⊂ Zd and a point b≈ ∈ Zd that have the following properties:

(P1) Valid instance with integer coordinates: The points {b≈}∪
(⋃d

i=1C
≈
i

)
⊂ Zd have integer

coordinates. Furthermore, the point b≈ is not the origin and each color class C≈i , i ∈ [d],
ray-embraces b≈ and has size d.

(P2) b avoids linear subspaces: The point b≈ is not contained in the linear span of any (d− 1)-
subset of

⋃d
i=1C

≈
i .

(P3) Polynomial-time equivalent solutions: Given a colorful choice C≈ ⊆
⋃d
i=1C

≈
i that

ray-embraces b≈, we can compute in polynomial time a colorful choice C ⊆
⋃d
i=1Ci that

ray-embraces b.

Note that by (P2), if P ⊂
⋃d
i=1C

≈
i ray-embraces b≈, then |P | ≥ d and thus b≈ ∈ int pos (P ). In

particular by (P1), b≈ is contained in the interior of pos(C≈i ) for i ∈ [d].
In the next section, we develop tools to ensure non-degeneracy of linear systems by a small

deterministic perturbation of polynomial bit-complexity. The approach is similar to already existing
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perturbation techniques for linear programming as in [9, Section 10-2] and [19] but extends to a
more general setting in which the matrix is also perturbed. Based on these results, we then show in
Section B.2 how to construct ColorfulCarathéodory instances with properties (P1)–(P3).

B.1 Polynomials with Bounded Integer Coefficients
In the following, we consider equation systems

Lε : Ax = b, (7)

where A is a (d× n)-matrix with n ≥ d and b is a d-dimensional vector. Furthermore, the entries of
both A and b are polynomials in ε with integer coefficients. For a fixed τ ∈ R, we denote with A(τ)
and b(τ) the matrix A and the vector b that we obtain by setting ε to τ in A and b, respectively.
Similarly, we denote with Lτ the linear system Lτ : A(τ)x = b(τ). We show that for any fixed τ > 0
that is sufficiently small in the size of the coefficients in the polynomials, the linear system Lτ is
non-degenerate.

For m ∈ N, we denote with

P[m] =
{
p(ε) =

k∑
i=0

αiε
i

∣∣∣∣∣ k ∈ N0, and |αi| ∈ [m]0 for i ∈ [k]0

}

the set of polynomials with integer coefficients that have absolute value at most m. The following
lemma guarantees that no polynomial in P[m] has a root in a specific interval whose length is inverse
proportional to m.

Lemma B.1. Let p ∈ P[m] be a nontrivial polynomial with m ∈ N. Then, for all ε ∈
(
0, 1

2m

)
, we

have p(ε) 6= 0.

Proof. We write p(ε) =
∑k
i=0 αiε

i. Let j = min{i ∈ [k]0 | αi 6= 0}. Since p is nontrivial, j
exists. Without loss of generality, we assume αj > 0 (otherwise, we multiply p(ε) by −1). For all
ε ∈

(
0, 1

2m

)
, we have

p(ε) =
k∑
i=0

αiε
i ≥ εj − 2mεj+1 = εj (1− 2mε) > 0

since ε < 1
2m and hence p(ε) 6= 0 for all ε ∈

(
0, 1

2m

)
.

We now use Lemma B.1 to prove non-degeneracy of the linear system Lε if ε is fixed but small
enough and the degrees of the monomials in Lε are sufficiently separated. We say d polynomials
p1, . . . , pd ∈ P[m] are (k1, . . . , kd)-separated with gap g if pi has a nontrivial monomial of degree ki
and pi has no nontrivial monomial of a degree in {kj−g, . . . , kj+g | j ∈ [d]\{i}}∪{ki−g, . . . , ki−1}.

Lemma B.2. Let Lε : Ax = b be a system of equations as defined in (7) such that the entries of A
and b are polynomials in P[m], where m ∈ N. Furthermore, suppose that the polynomials in A have
degree at most k0 and (b)1, . . . , (b)d are (k1, . . . , kd)-separated with gap (d− 1)k0. Set

M = d!(k0 + 1)d−1(k + 1)md,

where k is the maximum degree of (b)1, . . . , (b)d. Then, for all ε ∈
(
0, 1

2M

)
, the linear system Lε is

non-degenerate.
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Proof. We show that for all fixed τ ∈
(
0, 1

2M

)
, the vector b(τ) is not contained in the linear span of

any d− 1 columns from A(τ). We can ensure that A(τ) has rank d for all fixed τ ≥ 0 by extending
A with the canonical basis of Rd. Then, the entries of the extended matrix are still polynomials
from P[m] and their degrees are at most k0. Moreover, if for some fixed τ ∈

(
0, 1

2M

)
, there are

d− 1 columns from the original matrix whose linear span contains b(τ), then the same holds for the
extended matrix.

Let now τ ∈
(
0, 1

2M

)
be fixed and let A′ be a submatrix of A such that A′(τ) is a basis of A(τ).

Then, the linear system
L′ : A′(τ)x = b(τ)

has a unique solution x?. By Cramer’s rule, we have

(x?)j =
detA′j(τ)
detA′(τ) ,

where j ∈ [d] and A′j is obtained from the matrix A′ by replacing the jth column with b. Using
Laplace expansion, we can express detA′j as

detA′j =
d∑
i=1

(−1)i+jbi detCi,j ,

where bi = (b)i and Ci,j is the matrix that we obtain by omitting the ith row and the jth column
from A′j . Next, we apply the Leibniz formula and write detCi,j as

detCi,j =
∑

σ∈Sd−1

sgn(σ)
d−1∏
i=1

(Ci,j)i,σ(i) = ci,j(ε),

where ci,j(ε) is a polynomial in ε. Since the polynomials in A′ have degree at most k0, the degree of
ci,j is at most (d− 1)k0. Because the polynomials in A′ have integer coefficients with absolute value
at most m, the coefficients of ci,j are integers, and the sum of their absolute values can be bounded
by M ′ = (d− 1)!

(
(k0 + 1)m

)d−1. Hence, ci,j ∈ P[M ′]. Now, since detA′(τ) 6= 0, at least one of the
polynomials c1,j , . . . , cd,j , say ci?,j , is nontrivial. Let k′i? ≤ (d− 1)k0 be the minimum degree of a
nontrivial monomial in ci?,j . First, we observe that since bi? has a nontrivial monomial of degree ki?
and no nontrivial monomial of degree ki? − (d− 1)k0, . . . , ki? − 1, the polynomial (−1)i?+jbi?ci?,j
has a nontrivial monomial of degree k′ = ki? + k′i? . Second, for i ∈ [d], i 6= i?, the polynomial
(−1)i+jbici,j has no monomial of degree k′ since ci,j has degree at most (d−1)k0 and the polynomials
b1, . . . , bd are (k1, . . . , kd)-separated with gap (d − 1)k0. Thus, detA′j is a nontrivial polynomial.
Moreover, since the polynomials bi and ci,j have integer coefficients for i ∈ [d], so does detA′j . Using
that the sum of absolute values of the coefficients of ci,j is bounded by M ′, we can bound the sum
of absolute values of coefficients in detA′j by M = d(k + 1)mM ′ and hence detA′j ∈ P[M ], where
k = max {deg bi | i ∈ [d]}. Then, Lemma B.1 guarantees that detA′j has no root in the interval(
0, 1

2M

)
. In particular, detA′j(τ) 6= 0 and hence (x?)j 6= 0 for all j ∈ [d]. This means that b(τ) is

not contained in the linear span of any d− 1 columns from A(τ). Since τ ∈
(
0, 1

2M

)
was arbitrary,

the claim follows.

B.2 Construction
Let C ′1, . . . , C ′d ⊂ Qd be d sets that ray-embrace b′ ∈ Qd. By applying Carathéodory’s theorem, we
can ensure that |C ′i| ≤ d for i ∈ [d]. First, we rescale the points to the integer grid. For a point
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p′ ∈ Qd, we set z(p′) = |ψ|p′, where ψ ∈ Z is the absolute value of the least common multiple of the
denominators of (p′)1, . . . , (p′)d. Clearly, z(p′) has integer coordinates and can be represented with a
number of bits polynomial in the number of bits needed for p′. For i ∈ [d], let Ci = {z(p′) |p′ ∈ C ′i}
be the rescaling of C ′i, and set b = z(b′). Then, the bit complexity of the ColorfulCarathéodory
instance C1, . . . , Cd, b is polynomial in the bit-complexity of the original instance. Moreover, since
pos (p′) = pos (z(p′)) for all p′ ∈ Qd, the rescaled color classes Ci, i ∈ [d], ray-embrace b and if a
colorful choice C ⊆

⋃d
i=1Ci ray-embraces b, then the original points C ′ ⊂

⋃d
i=1C

′
i ray-embrace b′.

By a similar rescaling, we can further assume that ‖b‖1 ≥ ‖p‖1 for all p ∈
⋃d
i=1Ci.

We now sketch how the remaining construction of the equivalent instance C≈1 , . . . , C≈d , b
≈ in

general position proceeds. First, we ensure for i ∈ [d] that b lies in the interior of pos (Ci) by
replacing each point p in Ci by a set Pε(p) of slightly perturbed points that contain p in the interior
of their convex hull. Second, we perturb b. Lemma B.2 then shows that in both steps a perturbation
of polynomial bit-complexity suffices to ensure properties (P2) and (P3).

For a point p ∈ Rd, we denote with

Pε(p) = {p+ εei,p− εei | i ∈ [d]}

the vertices of the `1-sphere around p with radius ε. Let Ci(ε) =
⋃
p∈Ci

Pε(p), i ∈ [d], denote the
ith color class in which all points p have been replaced by the corresponding set Pε(p). Since for
i ∈ [d], we have b ∈ pos (Ci) and since each point p ∈ Ci is contained in the interior of pos (Pε(p)),
it follows that b ∈ int pos (Ci(ε)) for ε > 0. Next, we denote with

b(ε) = b+


εd

ε2d

...
εd

2

 ∈ Rd

the vector b that is perturbed by a vector from the moment curve. The following lemma shows
that for ε small enough, Property (P2) holds for C1(ε), . . . , Cd(ε) and b(ε). Let m be the largest
absolute value of a coordinate in C1, . . . , Cd, b and set N = d!md.

Lemma B.3. For all ε ∈
(
0, N−2], there is no (d− 1)-subset P ⊂

⋃d
i=1Ci(ε) with b(ε) ∈ spanP .

Proof. Let A denote the matrix
(
C1(ε) . . . Cd(ε)

)
. Then, there exists a subset P ⊂

⋃d
i=1Ci(ε) with

|P | < d that contains b(ε) in its linear span if and only if the linear system Lε : Ax = b(ε) is
degenerate. The polynomials in A all have degree at most 1 and the polynomials (b(ε))i, i ∈ [d],
are

(
d, 2d, . . . , d2)-separated with gap d− 1. Setting k0 = 1 and k = d2 in Lemma B.2 implies that

Lε is non-degenerate for all ε ∈
(
0, 1

2M

)
, where M = d!2d−1(d2 + 1)md. Assuming that m ≥ 2 and

that d ≥ 4, we can upper bound 2d by md and (d2 + 1) by d!. Hence, we have

2M = d!2d(d2 + 1)md <
(
d!md

)2
= N2,

and thus the claim follows.

In the following, we set ε0 to N−2. Note that Lemma B.3 holds in particular for ε = ε0, and
thus a deterministic perturbation of polynomial bit-complexity suffices. In the next lemma, we show
that the perturbed color classes still ray-embrace the perturbed b.

Lemma B.4. For i ∈ [d], the set Ci(ε0) ray-embraces b(ε0).
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Proof. Fix some color class Ci and let mε0 = b(ε)− b be the perturbation vector for b. Since Ci
ray-embraces b, we can express b as a positive combination

∑
p∈Ci

ψpp, where ψp ≥ 0 for all p ∈ Ci.
Then,

b(ε0) = b+mε0 =

∑
p∈Ci

ψpp

+mε0 =
∑
p∈Ci

ψp

(
p+ 1

s
mε0

)
,

where s =
∑
p∈Ci

ψp. We show that p+ 1
smε0 ∈ pos (Pε0(p)) for all p ∈ Ci. Since Pε0(p) ⊆ Ci(ε0)

for all p ∈ Ci, this then implies b(ε0) ∈ pos (Ci(ε0)). First, we claim that s ≥ 1. Indeed, we have

‖b‖1 =

∥∥∥∥∥∥
∑
p∈Ci

ψpp

∥∥∥∥∥∥
1

≤
∑
p∈Ci

ψp ‖p‖1 ≤ s‖b‖1,

where the last inequality is due to our assumption ‖b‖1 ≥ ‖p‖1, for p ∈ Ci. Now,∥∥∥∥1
s
mε0

∥∥∥∥
1
< dεd0 ≤ ε0,

for ε0 ≤ 1/2, and thus p+ 1
smε0 lies in the `1-sphere around p with radius ε0 for all p ∈ Ci. By

construction of Pε0(p), we then have p+ 1
smε0 ∈ conv (Pε0(p)) ⊂ pos (Pε0(p)), as claimed.

As a consequence of Lemma B.3, we can show that colorful choices for the perturbed instance
that ray-embrace b(ε0), ray-embrace b if the perturbation is removed.

Lemma B.5. Let C = {c1, . . . , cd} be set such that ci ∈ Ci(ε0) for i ∈ [d] and such that b(ε0) ∈
pos(C). Then, the set C ′ = {p | i ∈ [d], ci ∈ Pε0(p)} ray-embraces b.

Proof. We prove the statement by letting ε go continuously from ε0 to 0. This corresponds to
moving the points in C and b(ε) continuously from their perturbed positions back to their original
positions. We argue that throughout this motion, b(ε) cannot escape the embrace of the colorful
choice.

The coordinates of the points in C are defined by polynomials in the parameter ε, and we
write C(ε) for the parametrized points. Then, C = C(ε0) and C ′ = C(0). By Lemma B.3, for all
ε ∈ (0, ε0], the point b(ε) does not lie in any linear subspace spanned by d− 1 points from C(ε).
It follows that initially b(ε0) ∈ int pos (C(ε0)) and therefore b(ε) ∈ int pos (C(ε)) for all ε ∈ (0, ε0].
Assume now that b(0) /∈ pos (C(0)). Then, there exists a hyperplane h through 0 that strictly
separates b(0) from C(0). Because the `2-distance between h and any point in C(0) ∪ {b(0)} is
positive, there is a τ ∈ (0, ε0) such that h separates b(τ) from C(τ), and hence also from pos (C(τ)).
This is impossible, since we showed that b(ε) ∈ int pos (C(ε)) for all ε ∈ (0, ε0].

We can now combine the previous lemmas to obtain our desired result on equivalent instances
for ColorfulCarathéodory.

Lemma B.6. Let I =
(
C ′1, . . . , C

′
d, b
′) be an instance of ColorfulCarathéodory, where C ′i ⊂ Qd

ray-embraces the point b′ ∈ Qd for all i ∈ [d]. Then, we can construct in polynomial time an instance
I≈ = (C≈1 , . . . , C≈d , b

≈) of ColorfulCarathéodory with properties (P1)–(P3).

Proof. We construct the point sets C1(ε0), . . . , Cd(ε0) and the point b(ε0) as discussed above. Since
log ε−1

0 is polynomial in the size of I, this needs polynomial time. By Lemma B.4, each color class
Ci(ε0) ray-embraces b(ε0), so we can apply Carathéodory’s theorem to reduce the size of Ci(ε0)
to d while maintaining the property that b(ε0) is ray-embraced. Again, we need only polynomial



C The Colorful Carathéodory Theorem is in PLS 23

time for this step. Finally, as described at the beginning of this section, we rescale the points to
lie on the integer grid in polynomial time. Let C≈i denote the resulting point set for Ci(ε0), where
i ∈ [d], and let b≈ be the point b(ε0) scaled to the integer grid. Then, properties (P1)–(P3) are
direct consequences of this construction and Lemmas B.3, B.4, and B.5.

C The Colorful Carathéodory Theorem is in PLS

C.1 The Complexity Class PLS
The complexity class polynomial-time local search (PLS) [12, 1, 21] captures the complexity of
local-search problems that can be solved by a local-improvement algorithm, where each improvement
step can be carried out in polynomial time, however the number of necessary improvement steps
until a local optimum is reached may be exponential. The existence of a local optimum is guaranteed
as the progress of the algorithm can be measured using a potential function that strictly decreases
with each improvement step.

More formally, a problem in PLS is a relation R between a set of problem instances I ⊆ {0, 1}?
and a set of candidate solutions S ⊆ {0, 1}?. Assume further the following.

• The set I is polynomial-time verifiable. Furthermore, there exists an algorithm that, given an
instance I ∈ I and a candidate solution s ∈ S, decides in time poly(|I|) whether s is a valid
candidate solution for I. In the following, we denote with SI ⊆ S the set of valid candidate
solutions for a fixed instance I.

• There exists a polynomial-time algorithm that on input I ∈ I returns a valid candidate
solution s ∈ SI . We call s the standard solution.

• There exists a polynomial-time algorithm that on input I ∈ I and s ∈ SI returns a set
NI,s ⊆ SI of valid candidate solutions for I. We call NI,s the neighborhood of s.

• There exists a polynomial-time algorithm that on input I ∈ I and s ∈ SI returns a number
cI,s ∈ Q. We call cI,s the cost of s.

We say a candidate solution s ∈ S is a local optimum for an instance I ∈ I if s ∈ SI and for
all s′ ∈ NI,s, we have cI,s ≤ cI,s′ in case of a minimization problem, and cI,s ≥ cI,s′ in case of a
maximization problem. The relation R then consists of all pairs (I, s) such that s is a local optimum
for I. This formulation implies a simple algorithm, that we call the standard algorithm: begin
with the standard solution, and then repeatedly invoke the neighborhood-algorithm to improve the
current solution until this is not possible anymore. Although each iteration of this algorithm can
be carried out in polynomial time, the total number of iterations may be exponential. There are
straightforward examples in which this algorithm takes exponential time and even more, there are
PLS-problems for which it is PSPACE-complete to compute the solution that is returned by the
standard algorithm [1, Lemma 15].

Similar to PPAD, each problem instance I of a PLS-problem can be seen as a simple graph
searching problem on a graph GI = (V,E). The set of nodes is the set of valid candidate solutions
for I and there is a directed edge from u ∈ SI to v ∈ SI if v ∈ NI,u and cI,v < cI,u if it is a
minimization problem, and otherwise if cI,v > cI,u. Then, the set of local optima for I is precisely
the set of sinks in GI . Because the costs induce a topological ordering of the graph, at least one
sinks exists.
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C.2 A PLS Formulation of the Colorful Carathéodory Problem
The proof of the colorful Carathéodory theorem by Bárány [4] admits a straightforward formulation
of ColorfulCarathéodory as a PLS-problem. The only difficulty resides in the computation of
the potential function: given a set of d points C ⊂ Qd and a point b ∈ Qd, we need to be able to
compute the point p? ∈ pos(C) with minimum `2-distance to b in polynomial time. This problem
can be solved with convex quadratic programming.

We say a matrix B ∈ Rn×n is positive semidefinite if B is symmetric and for all x ∈ Rn, we have
xTBx ≥ 0. Then, a convex quadratic program is given by

Q : min c(x)
s.t.Ax = b,

x ≥ 0,

where x ∈ Rn, b ∈ Qd, A ∈ Qd×n, and the cost function c : Rn 7→ R is defined as

c(x) = 1
2x

TBx+ qTx,

where the matrix B ∈ Qn×n is positive semidefinite and q ∈ Qn. We say a vector x ∈ Rn is a
feasible solution for Q if Ax = b and x ≥ 0. Furthermore, we say feasible solution x ∈ Rn is optimal
for Q if there is no feasible solution x′ ∈ Rn such that c(x′) < c(x). Convex quadratic programs
are known to be solvable in O (poly(d, n)L) time, where L is the length of the quadratic program in
binary [15, 14].

Lemma C.1. Let C ⊂ Qd be a set of size d and let b ∈ Qd be a point such that C and b can be
encoded with L bits. Then, we can compute the point p? ∈ pos(C) with minimum `2-distance to b
in O (poly(d)L) time.

Proof. First, we observe that it is sufficient to compute the point p? ∈ pos(C) such that

‖p? − b‖22 =
d∑
i=1

(p? − b)2
i

is minimum. Let A be the matrix

A =


1 −1 0

1 −1 C −b
. . .

0 1 −1
0 · · · 0 1

 ∈ Q(d+1)×(3d+1)

and let b′ denote the vector

b′ =


0
...
0
1

 ∈ Qd+1.

Furthermore, let x ∈ R3d+1 be a feasible solution to the linear system

Ax = b′, x ≥ 0 (8)
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and let c1, . . . , cd denote the points in C ordered according to their respective column indices in A.
Write x as

x =
(
x+

1 x−1 x+
2 x−2 . . . x+

d x−d ψ1 . . . ψd xb
)T
∈ R3d+1,

where x+
i , x

−
i ∈ R+ for i ∈ [d], ψi ∈ R+ for i ∈ [d], and xb ∈ R+. Since x ≥ 0, the point

p =
d∑
i=1

ψici

is contained in the positive span of C. Furthermore, by the last equality of (8), we have xb = 1 and
thus for i ∈ [d], the ith equality of (8) is equivalent to

x+
i − x

−
i = (p)i − (b)i. (9)

Now, let B′ denote the matrix

B′ =



1 −1 0
−1 1

1 −1
−1 1

. . .
1 −1

0 −1 1


∈ Q(2d)×(2d)

and set
B =

(
2B′ Z(2d)×(d+1)
Z(d+1)×(3d+1)

)
∈ Q(3d+1)×(3d+1),

where Za×b ∈ Qa×b denotes the all-0 matrix with a rows and b columns. We claim that 1
2x

TBx =
‖p− b‖22. Indeed, by definition of B and using (9), we have

1
2x

TBx =
d∑
i=1

x+
i

(
x+
i − x

−
i

)
+ x−i

(
x−i − x

+
i

)
=

d∑
i=1

(
x+
i − x

−
i

)2
=

d∑
i=1

((p)i − (b)i)2 = ‖p− b‖22 .

Because B is symmetric, this further implies that B is positive semidefinite.
Let now x? be an optimal solution to the convex quadratic program

min 1
2x

TBx

s.t.Ax = b,

x ≥ 0.

Then, the point

p? =
3d∑

i=2d+1
(x?)i ci ∈ Qd

is contained in the positive span of C. Moreover, since 1
2(x?)TBx? = ‖p? − b‖22 is minimum over all

feasible solutions and hence over all points in the positive span of C, p? is the point in pos(C) with
minimum `2-distance to b. Using the algorithm from [14] or [15], we can compute p? in O (poly(d)L)
time.
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Having an algorithm to compute the potential function in polynomial time, we only need to
translate the above proof of the colorful Carathéodory theorem to the language of PLS.

Theorem C.2. The problems ColorfulCarathéodory, Centerpoint, Tverberg, and Sim-
plicialCenter are in PPAD ∩ PLS.

Proof. By Theorem 4.9, ColorfulCarathéodory is in PPAD. We now give a formulation of
ColorfulCarathéodory as a PLS-problem. Then statement is then implied by Lemma A.7.

The set of problem instances I consists of all tuples (C1, . . . , Cd, b), where d ∈ N, b ∈ Qd, b 6= 0,
and for all i ∈ [d], we have Ci ⊂ Qd and Ci ray-embraces b. The set of candidate solutions S then
consists of all d-sets C ⊂ Qd, where d ∈ N. Furthermore, for a given instance I = (C1, . . . , Cd, b),
we define the set of valid candidate solutions SI as the set of all colorful choices with respect to
C1, . . . , Cd. Using linear programming, we can check whether a given tuple I = (C1, . . . , Cd, b) is
contained in I and clearly, we can check in polynomial time whether a set C ⊂ Qd is a colorful
choice with respect to I and hence whether C ∈ SI .

Let now I ∈ I be a fixed instance and s ∈ SI a valid candidate solution. We then define the
neighborhood NI,s of s as the set of all colorful choices that can be obtained by swapping one point
in s with another point of the same color. The set NI,s can be constructed in polynomial time.

We define the cost cI,s of a colorful choice s as the minimum `2-distance of a point in pos(s) to
b. Using the algorithm from Lemma C.1, we can compute cI,s in polynomial time. Finally, we set
the standard solution the colorful choice that consists of the first point from each color class.

D The Polytopal Complex

We begin with the following standard lemma that bounds the bit-complexity of basic feasible
solutions for a linear program.

Lemma D.1. Let L : Ax = b be a linear system, where A ∈ Zd×n and b ∈ Zd. Furthermore, let
B be a feasible basis for L and let x be the corresponding basic feasible solution. Let m denote
the largest absolute value of the entries in A and b, and set N = d!md. Then for i ∈ ind (B), we
have |(x)i| = ni

| detAind(B)|
, where ni ∈ [N ]0 and

∣∣∣detAind(B)

∣∣∣ ∈ [N ]. For i ∈ [n] \ ind (B), we have
(x)i = 0.

Proof. Set A′ = Aind(B). By definition of a feasible basis, we have detA′ 6= 0, and by definition of
a basic feasible solution x, we have A′xind(B) = b with x ≥ 0 and (x)j = 0 for j ∈ [n] \ ind (B).
Applying Cramer’s rule [18], we can express the ith coordinate of xind(B) as detA′i/ detA′, where
i ∈ [d] and A′i is the matrix that we obtain by replacing the ith column of A′ with b. Using the
Leibniz formula, we can bound the determinant:

∣∣detA′
∣∣ =

∣∣∣∣∣ ∑
σ∈Sd

sgn(σ)
d∏
i=1

(
A′
)
i,σ(i)

∣∣∣∣∣ ≤ d!md = N.

And similarly, |detA′i| ≤ N can be obtained. Because x is a basic feasible solution, we have

detA′i
detA′ = (x)i ≥ 0.

Moreover, since A′ and b contain only integer entries, the determinants detA′ and detA′i are integers.
The implies the statement.
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Next, using the techniques from Section B, we can show that a deterministic perturbation of
polynomial bit-complexity ensures a non-degenerate intersection of the parameter regions withM.

Lemma D.2. There exists a constant c ∈ N with c ≥ 3 such that for ε = N−cd the following holds.
Let B be an arbitrary but fixed feasible basis of LCC. Let hj ⊂ Rd denote the hyperplane

hj =
{
µ ∈ Rd

∣∣∣ (r̂B,cµ

)
j

= 0
}
,

and set HΦ =
{
hj | j ∈

[
d2] \ ind (B)

}
. Furthermore, let H� denote the set of supporting hyperplanes

for the facets of the unit cube in Rd. Then, for all k-subsets H ′ of HΦ∪H�, the intersection
⋂
h∈H′ h

is either empty or has dimension d− k. In particular, if k > d, the intersection must be empty.

Proof. Let H ′ be a k-subset of HΦ ∪H�, and suppose that
⋂
h∈H′ h 6= ∅. We denote with H ′Φ =

H ′∩HΦ the hyperplanes from HΦ and similarly, we denote with H ′� = H ′∩H� the hyperplanes from
H�. Set R =

[
d2]\ ind (B) and let φ1 < · · · < φn ∈ R be the indices such that H ′Φ = {hφ1 , . . . , hφn},

where n = |H ′Φ|. Then the intersection
⋂n
i=1 hφi

is the solution space to the system of linear equations(
(cµ)R −

(
A−1

ind(B)AR
)T

(cµ)ind(B)

)
rankR(φi)

= 0 for i ∈ [n], (10)

where rankR(φi) denotes the rank of φi in R. We write ind (B) = {β1, . . . , βd}, with β1 < · · · < βd

and ai =
(
A−1

ind(B)AR
)

rankR(φi)
, for i ∈ [n]. Then, (10) is equivalent to

−dN2(µ)col(φi) + dN2aTi


(µ)col(β1)

...
(µ)col(βd)

 = −1− dN2 − εφi + aTi

1 + dN2 + εβ1

...
1 + dN2 + εβd

 for i ∈ [n], (11)

where col (φi) and col (βi) denote the colors of the columns with indices φi and βi, respectively.
Thus, (11) is of the form

AΦµ = bΦ, (12)

where AΦ ∈ Qn×d and the polynomials (bΦ)i, i ∈ [n], are (φ1, φ2, . . . , φn)-separated with gap 0.
The entries of AΦ are not necessarily integers due to the occurrence of A−1

ind(B) in the vectors ai.
By Lemma D.1, the fractions in A−1

ind(B) all have the same denominator: detAind(B) ∈ Z. We set
A′Φ =

(
detAind(B)

)
AΦ and b′Φ =

(
detAind(B)

)
bΦ. Then, the linear system

A′Φµ = b′Φ (13)

is equivalent to (12), where A′Φ ∈ Zn×d and
(
b′Φ
)
i is a polynomial in ε with integer coefficients and

a nontrivial monomial of degree φi for i ∈ [n]. Let m′ denote the maximum absolute value of the
coefficients of ε-polynomials in A′Φ and b′Φ. Since the absolute value of the entries of AR is at most
N and since by Lemma D.1 the absolute value of the entries in A−1

ind(B) is at most N , there exists a
constant c′ ∈ N such that m′ ≤ N c′ and c′ is independent of the choice of B.

Set n′ = |H ′�|. Since we assume that the hyperplanes in H ′ have a point in common and since
H ′� ⊆ H ′, the hyperplanes in H ′� fix the values of exactly n′ coordinates (µ)j to either 0 or 1. Let
J be the indices of the fixed coordinates and let Ji ⊆ J be the indices of the (µ)j that are set to i
for i = 0, 1. Combining this with (13), we can express the intersection of hyperplanes in H ′ as(

A′Φ
)
[d]\J (µ)[d]\J = b′Φ −

∑
j∈J1

(A′Φ)j . (14)
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The matrix (A′Φ)J is an n × (d − n′) integer matrix, whose entries have absolute value at most
N c′ and the polynomials pi = (b′Φ −

∑
j∈J1(A′Φ)j)i, i ∈ [n], are (φ1, φ2, . . . , φn)-separated with gap

0. Then, Lemma B.2 implies that for all ε ∈
(
0, 1

2M

)
, the right hand vector of (14) cannot lie

in the span of n − 1 columns of the left hand matrix, where M = d!(d2 + 1)
(
N c′

)d. Thus, for
c = max(3, 2c′), we have N−cd ∈

(
0, 1

2M

)
. Since we know that (14) has a solution, it follows that

the rank of (14) must be n and thus the intersection
⋂
h∈H′ h has dimension d− n− n′ = d− k.

Note that since c is a constant, the number of bits needed to represent ε is polynomial in the
size of the ColorfulCarathéodory instance. We continue by showing that the elements from Q
are indeed polytopes and by characterizing precisely their dimension and their facets.

Lemma D.3. Let q = Φ(f) ∩ g 6= ∅ be an element from Q, where f ∈ F and g is a face of M.
Then, q is a simple polytope of dimension dim g − dim f . Moreover, if dim q > 0, the set of facets
of q can be written as{

Φ (f) ∩ ǧ 6= ∅
∣∣∣ ǧ is a facet of g

}
∪
{

Φ
(
f̂
)
∩ g 6= ∅

∣∣∣ f is a facet of f̂ ∈ F
}
.

Proof. Let B be a feasible basis for a vertex of f . As discussed above, the solution space to the
linear system LΦ

B,f is Φ(f). We denote with H=
Φ(f) the set of hyperplanes that are given by the

equality constraints
(r̂B,µ)j = 0, for j ∈ supp (f) \ ind (B),

and we denote with H−Φ(f) the set of halfspaces that are given by the d2 − (d+ dim f) inequalities

(r̂B,µ)j ≤ 0, for j ∈
[
d2
]
\ supp (f)

in LΦ
B,f .
Because g is a face ofM and hence of the unit cube, we can write it as the intersection of a set

H=
g of d− dim g hyperplanes and a set of halfspaces H−g , where H=

g and the boundary hyperplanes
from the halfspaces in H−g are supporting hyperplanes of facets of the unit cube.

We set H= = H=
g ∪H=

Φ(f) and H− = H−g ∪H−Φ(f). Now, q is the intersection of the affine space
S= =

⋂
h∈H= h with the polyhedron S− =

⋂
h−∈H− h

−. Hence, q is a polyhedron and moreover, as
q ⊆M, it is a polytope. By Lemma D.2, the hyperplanes in H= and the boundary hyperplanes of
H− are in general position, so q is simple.

We now prove dim q = dim g − dim f . Because |H=
g | = d − dim g, |H=

Φ(f)| = dim f , and
by Lemma D.2, we have H=

g ∩ H=
Φ(f) = ∅, the set H= contains d − dim g + dim f hyperplanes.

Again by Lemma D.2, the hyperplanes from H= are in general position, and therefore dimS= =
max(dim g − dim f,−1), where we set dim ∅ = −1. Since we assume that q 6= ∅, it follows that
dimS= ≥ 0, so in particular dim f ≤ dim g. We show that the dimension does not decrease by
intersecting S= with the halfspaces in H−. Fix an arbitrary ordering h−1 , . . . , h

−
m, m = |H−|,

of the halfspaces in H−. For j = 0, 1, . . . ,m, let Ψj denote the polyhedron that we obtain by
intersecting S= with the first j halfspaces h−1 , . . . , h

−
j from H−. In particular, we have Ψ0 = S=

and Ψm = q. Assume for the sake of contradiction that dim q < dimS=, and let j? be such that
dim Ψj?−1 = dimS= and dim Ψj? = dj? < dimS=. There are three possibilities: (i) Ψj?−1∩h−j? = ∅;
(ii) h−j? intersects the relative interior of Ψj?−1; or (iii) h−j? intersects only the boundary of Ψj?−1.
Now, since q 6= ∅, Case (i) is impossible. Since by our assumption, dj? < dim Ψj?−1, Case (ii) also
cannot occur. Hence, Ψj? is a proper face of Ψj?−1. Then, Ψj? is contained in the intersection of the
d− dim g+ dim f hyperplanes from H= with at least dimS=− dj? = dim g− dim f − dj? boundary
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hyperplanes of h−1 , . . . , h
−
j?−1, and with the boundary hyperplane of h−j? . Thus, the dj?-dimensional

polyhedron Ψj? lies in the intersection of at least d− dj? + 1 hyperplanes from H= and bounding
hyperplanes from H−. Hence, the hyperplanes from H= together with the bounding hyperplanes
from H− are not in general position, a contradiction to Lemma D.2.

We now prove the second part of the statement. Let q̌ be a facet of q. Since dim q > 0, the facet
q̌ is nontrivial. Then, q̌ is the intersection of q with a hyperplane h? that is a boundary hyperplane
of some halfspace in H−. Let h− be the halfspace that generates h?. If h− ∈ H−g , then ǧ = g ∩ h
is a facet of g and we have q̌ = Φ(f) ∩ ǧ. Assume now h− ∈ H−Φ(f) and let h be defined by the
equation (r̂B,cµ)j = 0 for some j ∈ supp (f) \ ind (B). Let f̂ ⊆ PCC be the face that is defined by
the columns from A with indices supp (f)∪ {j}, and note that f is a facet of f̂ . Then, we can write
q̌ as

q̌ = h? ∩ q = h? ∩

 ⋂
h∈H=

Φ(f)

h ∩
⋂

h−∈H−Φ(f)

h− ∩ g

 =

h? ∩ ⋂
h∈H=

Φ(f)

h ∩
⋂

h−∈H−Φ(f)

h−

 ∩ g
and thus q̌ contains all parameter vectors in g for which f̂ is optimal.

Now, let ǧ be a facet of g with q̌ = Φ(f) ∩ ǧ 6= ∅. Then, there exists a boundary hyperplane
h? from a halfspace in H−g such that q̌ = h? ∩ (

⋂
h∈H= h) ∩ (

⋂
h−∈H− h

−). Clearly, q̌ is a face of q.
Furthermore, since q̌ 6= ∅ the first part of the lemma implies

dim q̌ = dim ǧ − dim f = (dim g − 1)− dim f = dim q − 1 ≥ 0.

Hence q̌ is a facet of q. Let now f̂ ∈ F be a face that has f as a facet with q̌ = Φ(f̂)∩g 6= ∅. Then there
exists a boundary hyperplane h? of a halfspace in H−Φ(f) such that q̌ = h?∩(

⋂
h∈H= h)∩(

⋂
h−∈H− h

−).
As before, q̌ is a face of q and since q̌ 6= ∅, we get

dim q̌ = dim g − dim f̂ = dim g − (dim f + 1) = dim q − 1 ≥ 0.

Thus, q̌ is a facet of q.

In particular, Lemma D.3 implies that within each k-face ofM, the set of parameter vectors
that are optimal for some vertex v ∈ F is either empty or a k-dimensional polytope and the set of
parameter vectors that are optimal for a k-face f ∈ F is either empty or a single point. Furthermore,
Lemma D.3 immediately bounds the maximum dimensions of faces in F .

The next lemma shows that the intersection of any two polytopes in Q is again an element in Q.

Lemma D.4. Let q1 = Φ(f1) ∩ g1 ∈ Q and q2 = Φ(f2) ∩ g2 ∈ Q be two polytopes with q1 ∩ q2 6= ∅,
where f1, f2 ∈ F and g1, g2 are faces ofM. Then,

q1 ∩ q2 = Φ
(
f̂
)
∩ ǧ,

where f̂ ∈ F is the smallest face of PCC that contains f1 and f2, and ǧ = g1 ∩ g2.

Proof. We begin with showing that Φ(f1) ∩ Φ(f2) = Φ
(
f̂
)
. Let µ ∈ Φ(f1) ∩ Φ(f2) be a vector.

Since f̂ is the smallest face of PCC that contains f1 and f2, the face f̂ is optimal for LCC
µ and

thus Φ(f1) ∩ Φ(f2) ⊆ Φ
(
f̂
)
. Let now µ be a parameter vector from Φ

(
f̂
)
. Since f1 and f2 are



D The Polytopal Complex 30

subfaces of f̂ , the faces f1 and f2 are optimal for µ and thus we have µ ∈ Φ(f1) ∩ Φ(f2). Hence,
Φ
(
f̂
)

= Φ(f1) ∩ Φ(f2). Then, we can express q1 ∩ q2 as

q1 ∩ q2 = (Φ(f1) ∩ g1) ∩ (Φ(f2) ∩ g2) = Φ
(
f̂
)
∩ ǧ,

where ǧ = g1∩ g2. Moreover, since q1∩ q2 6= ∅ and ǧ is a face ofM, the face f̂ is contained in F .

Equipped with Lemmas D.3 and D.4, we are now ready to show that Q is a polytopal complex.

Lemma D.5. The set Q is a (d− 1)-dimensional polytopal complex that decomposesM.

Proof. Lemma D.3 guarantees that every element q ∈ Q is a polytope in Rd of dimension at most
d − 1. By the second part of Lemma D.3, if dim q > 0, all facets of q and hence inductively all
nonempty faces of q are contained in Q. Furthermore, since ∅ is a face ofM, it is contained in Q as
well.

Now, let q1, q2 ∈ Q be two polytopes. If q1 ∩ q2 = ∅, then clearly q1 ∩ q2 is a face of both
polytopes q1 and q2, so assume q1 ∩ q2 6= ∅. By definition of Q, there are faces f1, f2 ∈ F and
faces g1, g2 ofM such that q1 = Φ(f1) ∩ g1 and q2 = Φ(f2) ∩ g2. Then, we can apply Lemma D.4
to express the intersection of q1 and q2 as Φ

(
f̂
)
∩ ǧ. Since f̂ ∈ F and since ǧ is a face of M,

q1 ∩ q2 ∈ Q. Moreover, as f̂ is a superface of f1 and ǧ is a face of g1, a repeated application of
Lemma D.3 shows that q1 ∩ q2 is a face of q1. Similarly, because f̂ is a superface of f2 and ǧ is a
face of g2, a repeated application of Lemma D.3 proves that q1 ∩ q2 is a face of q2, as desired.

A further implication of Lemmas D.3 and D.4 is that each polytope in Q can be represented
uniquely as the intersection of a parameter region of a face of PCC and a face ofM.

Lemma D.6. Let q ∈ Q be a polytope. Then, there exists unique pair of faces f, g, where f ∈ F
and g is a face ofM, such that q = Φ(f) ∩ g.

Proof. Let f1, f2 be two faces of PCC and let g1, g2 be two faces ofM such that

q = Φ(f1) ∩ g1 = Φ(f2) ∩ g2.

Then, by Lemma D.4, we can write q as Φ
(
f̂
)
∩ ǧ, where f̂ ∈ F is the smallest face in PCC that

contains f1 and f2 and ǧ is a face of g1 and of g2. If f̂ 6= f1 or ǧ 6= g1, then by Lemma D.3,

dim q = dim ǧ − dim f̂ < dim g1 − dim f1 = dim q,

a contradiction. Hence, we must have f̂ = f1 and ǧ = g1. Similarly, we must have f̂ = f2 and
ǧ = g2, and thus f1 = f2 and g1 = g2.

Lemmas 4.2 and 4.3 are now immediate consequences from Lemmas D.4, D.6, and D.4.
We conclude with the proof of Lemma 4.1. For this, we need the following observation that is a

direct consequence of Property (P2) of the ColorfulCarathéodory instance.

Observation D.7. For any feasible basis B of LCC, the coordinates for B in the corresponding
basic feasible solution are strictly positive. Equivalently, PCC is simple.
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Proof of Lemma 4.1. Let x? be the basic feasible solution for B? with respect to LCC
µ . For the

sake of contradiction, suppose that B? contains some vector of Ci× , and let k be the index of the
corresponding coordinate in x?. By Observation D.7 and Lemma D.1, we have (x?)k ≥ 1/N . Hence,

cTµx
? ≥ (cµ)k (x?)k ≥

(
1 + dN2

)
(x?)k ≥ dN + 1

N

since cµ ≥ 1 and x? ≥ 0. By construction, there is a color i? ∈ [d] such that (cµ)j = 1 + εj for all
columns j with color i?. Let x(i?) be the basic feasible solution for the basis Ci? . By Lemma D.1,(
x(i?)

)
j
is upper bounded by N for all j ∈ ind (Ci?), so we can lower bound the costs of x(i?) as

follows:

cTµx
(i?) =

∑
j∈ind(Ci? )

(cµ)j
(
x(i?)

)
j
≤

∑
j∈ind(Ci? )

(
1 + 1

N3

)(
x(i?)

)
j
≤ dN + d

N2 < dN + 1
N
,

where we use that 0 < ε ≤ N−3. This contradicts the optimality of B?.

E The Barycentric Subdivison – Omitted Proofs

Proof of Lemma 4.4. Let q0 ⊂ · · · ⊂ qd−1 be the chain that corresponds to σ in sdQ∆. By
Lemma 4.2, we can write each polytope qi ∈ Q∆ uniquely as Φ∆(fi) ∩ gi, where i ∈ [d − 1]0,
fi ∈ F , and gi ∈ S. By the definition of the barycentric subdivision and since Q∆ is a (d − 1)-
dimensional polytopal complex, qi−1 is a facet of qi for i ∈ [d− 1]. Then, Lemma 4.2 states that
either gi−1 is a facet of gi or fi is a facet of fi−1 for i ∈ [d − 1]. Because σ is fully-labeled, we
must have fi 6= fj for all i, j ∈ [d − 1]0 with i 6= j. Hence, fi is a facet of fi−1 for i ∈ [d − 1]
and thus g0 = · · · = gd−1. Since dim qd−1 = d − 1, Lemma 4.2 implies that dim fi = d − 1 − i
and hence |supp (fi)| = 2d − 1 − i for i ∈ [d − 1]0. In particular, dim fd−1 = 0 and thus the
columns from Asupp(fd−1) are a feasible basis for LCC. For i ∈ [d − 1], let ai−1 ∈

[
d2] denote

the column index such that supp (fi−1) = supp (fi) ∪ {ai−1}. Since the faces f0, . . . , fd−1 have
pairwise distinct labels and since |supp (fi−1)| = |supp (fi)|+ 1 for i ∈ [d− 1], the column vectors
Aa0 , . . . , Aad−2 have pairwise distinct colors by the definition of λ (see (5)). Now assume for the
sake of contradiction that the columns from Asupp(fd−1) are not a colorful feasible basis. Then, there
is some color i× ∈ [d] that does not appear in Asupp(fd−1) and hence there is some color i? ∈ [d] with
|ind (Ci?) ∩ supp (fd−1)| ≥ 2. Since there is at most one column with color i× among Aa0 , . . . , Aad−2 ,
we have |supp (fi) ∩ ind (Ci×)| ≤ 1 for all i ∈ [d− 1]0. Since supp (fi) ⊇ supp (fd−1) for i ∈ [d− 1]0
and since |ind (Ci?) ∩ supp (fd−1)| ≥ 2, we have λ(fi) 6= i× for all i ∈ [d− 1]0, a contradiction to σ
being fully-labeled.

Proof of Lemma 4.5. We begin by showing that the encoding enc (σ) of a simplex σ ∈ Σk is a valid
k-tuple. Let q0 ⊂ · · · ⊂ qk−1 be the corresponding face chain in Q∆ such that the ith vertex of σ is
the barycenter of qi ∈ Q∆ and qi 6= ∅ for i ∈ [k − 1]0. By Lemma 4.2, for each qi, i ∈ [k − 1]0, there
exists a unique pair of faces fi ∈ F and gi ∈ S such that qi = Φ∆(fi)∩gi. Because qk−1 6= ∅, we have
M(qk−1) = Φ(fi) ∩ g

(
I

(k−1)
0 , I

(k−1)
1

)
6= ∅. We further observe that gi ⊂ ∆[k]. Otherwise we would

have qi = Φ∆(fi) ∩
(
gi ∩∆[k]

)
with gi ∩∆[k] ∈ S, a contradiction to gi, fi being the unique pair.

Since qi ⊂ ∆[k] for i ∈ [k − 1]0 and since dim ∆[k] = k − 1, we must have dim qi = i for i ∈ [k − 1].
Then, Lemma 4.2 implies that dim gk−1 = k − 1 and dim fk−1 = 0. In particular, supp (fk−1) is
the index set of a feasible basis and

∣∣∣I(k−1)
0 ∪ I(k−1)

1

∣∣∣ = d − k + 1. Because gk−1 ⊂ ∆[k], we have
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[d] \ [k] ⊆ I(k−1)
0 and since gk−1 is the projection of a face ofM, the set I(k−1)

1 is nonempty. Thus,
I

(k−1)
0 = [d] \ [k] and

∣∣∣I(k−1)
1

∣∣∣ = 1.

Let now i ∈ [k − 1] be a fixed index and write enc (qi−1) =
(
supp (fi−1), I(i−1)

0 , I
(i−1)
1

)
and

enc (qi) =
(
supp (fi), I(i)

0 , I
(i)
1

)
. Since qi−1 is a facet of qi, Lemma 4.2 implies that either (a) fi

is a facet of fi−1 and gi−1 = gi or (b) fi−1 = fi and gi−1 is a facet of gi. In Case (a), we have
supp (fi−1) = supp (fi)∪{ai−1} and I(i−1)

0 = I
(i)
0 as well as I(i−1)

1 = I
(i)
1 , where ai−1 ∈

[
d2]\supp (fi).

In Case (b), we have supp (fi−1) = supp (fi). Furthermore, sinceM(gi−1) is a facet ofM(gi), we
either have I(i−1)

0 = I
(i)
0 ∪ {ji−1} and I(i−1)

1 = I
(i)
1 , or I(i−1)

1 = I
(i)
1 ∪ {ji−1} and I(i−1)

0 = I
(i)
0 , for an

index ji−1 ∈ [d] \
(
I

(i)
0 ∪ I

(i)
1

)
. Thus, enc (σ) is a valid k-tuple.

We now show that enc is a bijection. Let σ1, σ2 ∈ Σk be two simplices. Since the barycenters of
the polytopes in a polytopal complex are pairwise distinct, the face chains in Q∆ that corresponds
to σ1 and σ2 must differ in at least one face. Then, (6) together with Lemma 4.2 directly implies
that enc (σ1) 6= enc (σ2).

Let now T = (Q0, . . . , Qk−1), k ∈ [d − 1], be a valid k-tuple, where Qi =
(
S(i), I

(i)
0 , I

(i)
1

)
. For

i ∈ [k − 1]0, let g′i = g
(
I

(i)
0 ∪ I

(i)
1

)
be the subset of M that is defined by the index sets I(i)

0 , I
(i)
1 .

Since [d] \ [k] ⊆ I
(i)
0 for all i ∈ [k − 1]0, the projection gi = ∆(g′i) is a subset of ∆[k]. Moreover,

since I(i)
1 6= ∅ for i ∈ [k − 1]0, the set g′i is a face of M and hence gi ∈ S. Furthermore, since

the columns in AS(k−1) are a feasible basis, they define a vertex fk−1. Because S(k−1) ⊆ Si for
i ∈ [k− 1]0, the index set Si is the support of a face fi ∈ F . Set qi = Φ∆(fi)∩ gi ∈ Q for i ∈ [k− 1]0.
Because gi ⊂ ∆[k], the polytope qi is also contained in ∆[k]. By Property (i) of a valid sequence, the
intersection Φ(fk−1) ∩ g′k−1 is nonempty and hence its projection qk−1 onto ∆ is nonempty. Then,
Lemma 4.2 states that dim qk−1 = k − 1. Moreover by Lemma 4.2 and properties (ii.a) and (ii.b) of
T , either gi−1 is a facet of gi or fi is a facet of fi−1 for i ∈ [k − 1]. Thus by Lemma 4.2, qi−1 is a
facet of qi, i ∈ [k − 1]. Then, dim qi = i for all i ∈ [k − 1]0 and hence the face chain q0 ⊂ · · · ⊂ qk−1
defines a (k − 1)-simplex σ ∈ Σk with enc (σ) = T .

Proof of Lemma 4.6. Clearly, we can check if T fulfills all syntactic requirements on valid k-tuples
in polynomial time. Furthermore, we can check in polynomial time whether the columns B from
AS(k−1) are a feasible basis for a vertex f . Finally, we express Φ(f)∩g

(
I

(k−1)
0 , I

(k−1)
1

)
as the solution

space to the linear system LCC
B,f extended by the constraints µ ∈ g

(
I

(k−1)
0 , I

(k−1)
1

)
. Then, we can

check in polynomial time whether this system has a solution.

The key for Lemma 4.7 is the following lemma that guarantees that simplices with facets in
common have a similar encoding.

Lemma E.1. Let σ, σ′ ∈ Σk be two simplices, where k ∈ [d]. Then, σ and σ′ share a facet if and
only if the tuples enc (σ) and enc (σ′) agree in all but one position. Furthermore, let σ ∈ Σk and
σ̂ ∈ Σk+1 be two simplices, where k ∈ [d− 1]0. Write enc (σ) as

enc (σ) =
(
Q0, . . . , Qk−1 =

(
S(k−1), I

(k−1)
0 , I

(k−1)
1

))
.

Then, σ is a facet of σ̂ if and only if

enc (σ̂) =
(
Q0, . . . , Qk−1,

(
S(k−1), I

(k−1)
0 \ {k + 1} , I(k−1)

1

))
.
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Proof. Let σ, σ′ ∈ Σk be two simplices and let q0 ⊂ · · · ⊂ qk−1 and q′0 ⊂ · · · ⊂ q′k−1 be the
corresponding face chains in Q∆. Then σ and σ′ share a facet if and only if the face chains agree on
all but one position and hence if and only if enc (σ) and enc (σ′) agree on all but one position.

Let now σ ∈ Σk and σ̂ ∈ Σk+1 be two simplices. Let q0 ⊂ · · · ⊂ qk−1 be the face chain
in Q∆ that corresponds to σ with dim qi = i for i ∈ [k − 1]0. Similarly, let q̂0 ⊂ · · · ⊂ q̂k be
the face chain in Q∆ that corresponds to σ̂ with dim q̂i = i for i ∈ [k]0. Furthermore, we write
enc (qk−1) =

(
S(k−1), I

(k−1)
0 , I

(k−1)
1

)
and enc (q̂k) =

(
S(k), I

(k)
0 , I

(k)
1

)
. Then, σ is a facet of σ̂ if and

only if the faces q0, . . . , qk−1 appear in the face chain of σ̂ and hence if and only if qi = q′i for
i ∈ [k − 1]0. Moreover, since by Lemma 4.5 the encodings enc (σ) and enc (σ̂) are valid tuples, the
columns of AS(k−1) and AS(k) are feasible bases. Since S(k−1) ⊆ S(k) by Property (ii) of valid tuples,
we must have S(k−1) = S(k). Moreover, by Property (i), we have I(k−1)

0 = [d] \ [k], I(k)
0 = [d] \ [k+ 1],

and
∣∣∣I(k−1)

1

∣∣∣ =
∣∣∣I(k)

1

∣∣∣ = 1. Because of Property (ii), the index set I(k−1)
1 is a subset of I(k)

1 and hence

I
(k−1)
1 = I

(k)
1 . We conclude that

enc (σ̂) =
(
enc (q0), . . . , enc (qk−1),

(
S(k−1), I

(k−1)
0 \ {k + 1} , I(k−1)

1

))
,

as claimed.

Proof of Lemma 4.7. We begin with the first problem. By Lemma E.1, if there is a simplex σ′ ∈ Σk

that shares the facet conv {vj | j ∈ [k − 1]0, j 6= i} with σ, the encodings enc (σ) and enc (σ′) agree
on all but one position. Thus, there are only polynomially many possibilities for the encoding of
enc (σ′) that we can check in polynomial time with the algorithm from Lemma 4.6. Furthermore,
Lemma E.1 directly implies polynomial-time algorithms for the second and third problem.

F The PPAD Graph

We begin by characterizing by showing that the graph consists only of paths and cycles and by
characterizing the degree one nodes.

Proof of Lemma 4.8. Let enc (σ) ∈ Vk be the encoding of a simplex σ ∈ Σk. If σ ∈ Σ1 then
deg enc (σ) = 1 since the only adjacent node is the encoding of the simplex in Σ2 with σ as a facet.
Similarly, if enc (σ) ∈ Vd with λ(σ) = [d], then deg enc (σ) = 1 since the only adjacent node is either
the encoding of the single [d− 1]-labeled facet of σ or the encoding of the simplex in Σd that shares
this facet.

If k > 1 and σ has two [k− 1]-labeled facets, then deg enc (σ) = 2 since each [k− 1]-labeled facet
is either shared with another simplex in Σk or the facet is itself in Σk−1. Otherwise, if k < d and
λ(σ) = [k], then we have again deg enc (σ) = 2 as there exists exactly one simplex in Σk+1 with σ as
a facet and either the single [k − 1]-labeled facet of σ is shared with another simplex in Σk or it is
itself a simplex in Σk−1. Note that actually Lemma 4.5 implies in this case that the [k − 1]-labeled
facet must be shared with another simplex in Σk.

We continue with the orientation of the edges in G. In the following, we assume that given a node
enc (σ) ∈ V , we are able to compute in polynomial time the vertices of the corresponding simplex
σ ∈ Σ. We show afterwards how to implement this step. With this assumption, the orientation can
be defined similarly as in [23].

Let enc (σ), enc (σ′) ∈ Vd be two adjacent nodes. By definition, the encoded simplices σ =
conv(v0, . . . ,vd−1) and σ′ share a facet σ̌ = conv(v1, . . . ,vd−1) with λ(σ̌) = [d− 1]. Let the indices
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be such that λ(vi) = i for i ∈ [d− 1]. Then, the edge between enc (σ) and enc (σ′) is directed from
enc (σ) to enc (σ′) if and only if the function dir(σ, σ′) is positive, where

dir(σ, σ′) = sgn det
(

1 1 . . . 1
v0 v1 . . . vd−1

)
.

Only for the sake of orientation, we define a set of d− 1 vertices w2, . . . ,wd with colors 2, . . . , d to
lift lower-dimensional simplices in order to avoid dealing with simplices of different dimensions. For
i = 2, . . . , d, let wi ∈ Rd denote the parameter vector

(w)j =


2 if j < i,

1− 2(i− 1) if j = i, and
0 otherwise,

where j ∈ [d]. Furthermore, we set λ(wi) = i. Since (wi)i < 0 for i = 2, . . . , d, we have wi /∈ ∆
and for k < i, wi /∈ aff(∆[k]). However, a quick calculation shows that wi ∈ aff(∆[i]) and that
within aff(∆[i]), the hyperplane aff(∆[i−1]) separates ei and wi. Now, let σ = conv(v0, . . . ,vk−1)
denote a simplex that corresponds to some node in G, where k ∈ [d− 1]0. Then, we denote with
σw = conv(v0, . . . ,vk−1,wk+1, . . . ,wd) the (d − 1)-simplex that we obtain by lifting σ with our
additional vertices outside of ∆. Note that σw is non-degenerate by our choice of w2, . . . ,wd.
If σ is already a (d − 1)-simplex, we set σw = σ. Let now enc (σ) and enc (σ′) ∈ V be two
adjacent nodes. Then the two lifted simplices σw and σ′w share a [d − 1]-labeled facet. Now, we
set dir(σ, σ′) = dir(σw, σ′w) and we direct the edge between enc (σ′) and enc (σ) as discussed before.
The following lemma guarantees that the orientation of the edge is the same if seen from either σ
or σ′ and that the only sinks and sources remain the nodes of degree 1 that are characterized by
Lemma 4.8.

Lemma F.1. The orientation of G is well-defined. Furthermore, enc (σ) ∈ V is a sink or a source
if and only if deg enc (σ) = 1 in the underlying undirected graph.

Proof. Let enc (σ), enc (σ′) ∈ V be two adjacent nodes. Assume first that enc (σ), enc (σ′) ∈ Vk for
some k ∈ [d]. Let σ = conv(v0,v1, . . . ,vk−1) and σ′ = conv(v′0,v1, . . . ,vk−1) denote the encoded
simplices with λ(vi) = i for i ∈ [k − 1]. That is, σ and σ′ share the facet σ̌ = conv(v1, . . . ,vk−1).
Because both simplices are contained in Σk, the two vertices v0 and v′0 are separated within the
(k − 1)-dimensional affine space aff(∆[k]) by the (k − 2)-dimensional affine space aff(σ̌). Since
wk+1, . . . ,wd /∈ aff(∆[k]), the two vertices v0 and v′0 are separated in Rd by the hyperplane
aff(v1, . . . ,vk−1,wk+1, . . . ,wd). Then, we have dir(σ, σ′) = −dir(σ′, σ), since

dir(σ, σ′) = dir(σw, σ′w)

= sgn det
(

1 1 . . . 1 1 . . . 1
v0 v1 . . . vk−1 wk+1 . . . wd

)

= − sgn det
(

1 1 . . . 1 1 . . . 1
v′0 v1 . . . vk−1 wk+1 . . . wd

)
= −dir(σ′w, σw)
= −dir(σ′, σ).

Let now enc (σ) ∈ Vk−1 and enc (σ̂) ∈ Vk be two adjacent nodes for some k ∈ [d]. By definition
of E, we then have λ(σ) = [k − 1] and σ is a facet of σ̂. We write σ = conv(v1, . . . ,vk−1) and
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σ̂ = conv(v0,v1, . . . ,vk−1), where the indices are such that λ(vi) = i for i ∈ [k − 1]. Then,

σw = conv(v1, . . . ,vk−1,wk, . . . ,wd) and σ̂w = conv(v0,v1, . . . ,vk−1,wk+1, . . . ,wd).

Hence, σw and σ̂w share the facet σ̌w = conv(v1, . . . ,vk−1,wk+1, . . . ,wd). By construction,
both vertices v0 and wk are contained in aff(∆[k]). Within the (k − 1)-dimensional affine space
aff(∆[k]), the vertex wk is separated from ∆[k] by the (k − 2)-dimensional affine space aff(∆[k−1])
and hence it is separated from v0 by aff(∆[k−1]). Since σ ∈ Σk−1, σ is a (k − 2) simplex that is
contained in ∆[k−1] and thus aff(σ) = aff(∆[k−1]) separates v0 and wk in aff(∆[k]). Now, because
wk+1, . . . ,wk /∈ aff(∆[k]), v0 and wk are separated in Rd by the hyperplane aff(σ̌w). Again we have
dir(σ, σ̂) = −dir(σ̂, σ), since

dir(σ, σ̂) = dir(σw, σ̂w)

= sgn det
(

1 1 . . . 1 1 . . . 1
wk v1 . . . vk−1 wk+1 . . . wd

)

= − sgn det
(

1 1 . . . 1 1 . . . 1
v0 v1 . . . vk−1 wk+1 . . . wd

)
= −dir(σ̂w, σw)
= −dir(σ̂, σ).

It remains to show the second part of the statement. Let enc (σ) ∈ V be a node with two adjacent
nodes enc (σ′), enc (σ′′). We want to show that the two incident edges are oriented differently. In
any case, the lifted simplices σw and σ′w share a [d− 1]-labeled facet σ̌′w and similarly, σw and σ′′w
share a [d− 1]-labeled facet σ̌′′w. The facets σ̌′w and σ̌′′w of σw differ in exactly one vertex with the
same label. Thus, the determinants in dir(σ, σ′) and dir(σ, σ′′) differ by exactly one column-swap.
The properties of the determinant now ensure that dir(σ, σ′) = −dir(σ, σ′′), as desired.

Our next lemma shows that for purposes of orientation, we can replace the barycenters by
arbitrary interior points in the corresponding parameter faces.

Lemma F.2. Let q0, . . . , qk−1 ⊂ Rd be k polytopes such that q0 ⊂ · · · ⊂ qk−1 and dim qi = i for
i ∈ [k − 1]0. Furthermore let vi denote the barycenter of qi for i ∈ [k − 1]0 and let v′0, . . . ,v′k−1 be
k − 1 vectors such that v′i ∈ qi and aff(v′0, . . . ,v′i) = aff(qi) for all i ∈ [k − 1]0. Then,

sgn det
(

1 . . . 1 1 . . . 1
v0 . . . vk−1 xk+1 . . . xd

)
= sgn det

(
1 . . . 1 1 . . . 1
v′0 . . . v′k−1 xk+1 . . . xd

)
,

where xi ∈ Rd \ aff qk−1, i ∈ [d] \ [k], is an arbitrary point.

Proof. The prove involves only basic linear algebra, however it is included for completeness. We
show by induction on i that aff(qi) = aff(v′0, . . . ,v′i) and that for all j ∈ [i]0, v′j =

∑j
l=0 αj,lvl is an

affine combination of v0, . . . ,vj with αj,j > 0.
For i = 0 the induction hypothesis trivially holds since dim q0 = 0 and hence q0 = v0 = v′0.

Assume now that i > 0 and that the induction hypothesis holds for all i′ < i. Since qi−1 is a facet
of qi, within the i-dimensional affine space aff(qi), qi lies on one side of the (i − 1)-dimensional
affine space aff(qi−1) and thus it lies on one side of aff(v′0, . . . ,v′i−1). Since both vi and v′i lie on
the same side of aff(v′0, . . . ,v′i−1) in aff(qi), we can write v′i as

∑i−1
l=0 βlv

′
l + αivi with αi > 0. By

our induction hypothesis, v′0, . . . ,v′i−1 ∈ aff(v0, . . . ,vi−1) and hence the hypothesis holds for i. The
claim now follows directly from the properties of the determinant:
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sgn det
(

1 . . . 1 . . . 1 1 . . . 1
v′0 . . . v′i . . . v′k−1 xk+1 . . . xd

)

= sgn det
(

1 . . . 1 . . . 1 1 . . . 1
v0 . . .

∑i
l=0 αi,lvl . . .

∑k−1
l=0 αk−1,lvl xk+1 . . . xd

)

= sgn det
(

1 . . . 1 . . . 1 1 . . . 1
v0 . . . αi,ivl . . . αk−1,k−1vk−1 xk+1 . . . xd

)

= sgn det
(

1 . . . 1 . . . 1 1 . . . 1
v0 . . . vi . . . vk−1 xk+1 . . . xd

)
,

where the last equality holds since αi,i > 0 for i ∈ [k − 1].

As the next lemma shows, computing parameter vectors in the relative interior of faces in Q∆ is
computationally feasible.
Lemma F.3. Let enc (σ) = (enc (q0), . . . , enc (qk−1)) ∈ V be a node of G, where k ∈ [d]. Then,
we can compute in polynomial time k − 1 parameter vectors v0, . . . ,vk−1 such that vi ∈ qi and
aff(v0, . . . ,vi) = aff(qi) for i ∈ [k − 1]0.
Proof. By definition of the encoding, q0 is a vertex and hence we can choose v0 = q0. The algorithm
iteratively computes now incident edges ei = conv(v0,vi) to v0 for i ∈ [k − 1] such that ei is an
edge of qi and no edge of qi−1. The resulting vectors have the desired properties: vi ∈ qi and
aff(v0, . . . ,vi) = aff(qi) for i ∈ [k − 1]0.

We construct these edges as follows. Write enc (q)i =
(
supp (fi), I(i)

0 , I
(i)
1

)
and let gi be the face

g
(
I

(i)
0 , I

(i)
1

)
ofM that is encoded by the index sets I(i)

0 and I(i)
1 . Since enc (σ) is a valid k-tuple,

the columns B from Asupp(fk−1) are a feasible basis and moreover, since supp (fk−1) ⊆ supp (fi)
for i ∈ [k − 1]0, the set B is a feasible basis for all faces fi, i ∈ [k − 1]0. Similar to the proof of
Lemma 4.6, we can express each polytopeM(qi) as the solution to the linear system LΦ

B,fi
extended

by the constraints µ ∈ gi, where i ∈ [k − 1]0. Let Li denote the resulting linear system. Again by
the properties of a valid k-tuple, either supp (fi−1) = supp (fi) ∪ {ai−1}, where ai ∈

[
d2] \ supp (fi).

Or there is an index ji−1 ∈ [d] \
(
I

(i)
0 ∪ I

(i)
1

)
such that I(i−1)

0 = I
(i)
0 ∪ {ji−1} and I(i−1)

1 = I
(i)
1 , or

I
(i−1)
0 = I

(i)
0 and I(i−1)

1 = I
(i)
1 ∪ {ji−1}. This means, that the linear system Li−1 equals the linear

system Li where one inequality becomes tight. In the following we call this inequality ei. Note that
L0 is then the linear system Lk−1 in which all inequalities e1, . . . , ek−1 are tight.

Assume now that we already have computed the vectors v0, . . . ,vi−1 such that vj ∈ qj and
aff(v0, . . . ,vj) = aff(qj) for j ∈ [i− 1]0 and we want to compute vi, where i ∈ [k − 1]. We consider
the linear system L′i that we obtain by relaxing the tight inequality ei in L0. Since the solution
space of L0 is the vertex v0, the solution space to L′i is an edge conv(v0,vi). We can compute the
other endpoint vi of this edge in polynomial time by computing the line that is defined by the
equalities in L′i and intersect this iteratively with the halfspaces that are defined by the inequalities
in L′i while keeping track of the endpoints. Now, we have vi ∈ qi since the solution space of the
linear system L′i is a subset of the solution space of the linear system Li. Moreover, since in Li−1
the inequality ei is tight, vi ∈ qi \ qi−1 and thus aff(v0, . . . ,vi) = aff(qi).

The following lemma is now an immediate consequence of Lemmas F.2 and F.3.
Lemma F.4. Let enc (σ), enc (σ) ∈ V be two adjacent nodes. Then, we can compute dir(σ, σ′) in
polynomial time.
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G A Polynomial-Time Case

In the following, we use the same notation as in Section 3 (see Table 1 on Page 14 for an overview).
Let C1, C2 ⊂ Qd be two color classes, each of size d, let b ∈ Qd, b 6= 0, be a point that is ray-
embraced by C1 and by C2, and let k ∈ [d− 1] be a number. Although not needed in the algorithm,
to comply with the formulations of our results in Section B and Section 3, we introduce d − 2
“dummy” color classes C3, . . . , Cd that trivially ray-embrace b by setting C3 = · · · = Cd = {b}. Let
(C ′1, . . . , C ′d, b

′) be the instance of ColorfulCarathéodory in general position that we obtain by
applying Lemma B.6 to (C1, . . . , Cd, b). Then, let PCC ⊂ Qd2 denote the polyhedron that is defined
by the linear system LCC (see (2) on Page 6) for the instance (C ′1, . . . , C ′d, b

′). Furthermore, let
∆1 = ∆ ∩ conv (e1, e2) denote the edge of the standard simplex ∆d−1 that connects e1 with e2 and
set Q∆1 = {q ∈ Q∆ | q ⊆ ∆1}. Note that by Lemma 4.3, the set Q∆1 is a 1-dimensional polytopal
complex that decomposes ∆1. We begin with the following basic lemma on Q∆1 .

Lemma G.1. Let e, e′ ∈ Q∆1 , e 6= e′, be two adjacent edges with e = Φ∆(f)∩g and e′ = Φ∆(f ′)∩g′,
where f, f ′ ∈ F and g, g′ ∈ S. Then, f and f ′ are vertices of PCC with supp (f), supp (f ′) ⊆
ind (C ′1 ∪ C ′2) and supp (f), supp (f ′) differ in at most one column index.

Proof. By Lemma 4.2, the faces f, f ′ are vertices of PCC. Furthermore, since M(e),M(e′) ⊂
span(e1, e2), Lemma 4.1 implies that supp (f), supp (f ′) ⊆ ind (C ′1 ∪ C ′2). Now, since e and e′ are
adjacent, they share a vertex v = Φ∆(fv) ∩ gv ∈ Q∆1 , where fv ∈ F and gv ∈ S. Then, by
Lemma 4.2, either f is a facet of fv and g = gv, or f = fv and gv is a facet of g. Similarly, either f ′
is a facet of fv and g′ = gv, or f ′ = fv and gv is a facet of g′. Then, Observation D.7 implies the
statement.

Using Lemma G.1, we now present a polynomial-time checkable criterion whether an interval
[µ1,µ2] ⊂ ∆1 intersects an edge e? = Φ∆(f?) ∩ g? ∈ Q∆1 , where f ∈ F and g ∈ S, such that
supp (f?) defines a (k, d− k)-colorful choice that ray-embraces b′.

Corollary G.2. Let k ∈ [d−1], be a number and let e, e′ ∈ Q∆1 be two edges with e = Φ∆(f)∩g and
e′ = Φ∆(f ′)∩g′, where f, f ′ ∈ F and g, g′ ∈ S. If |ind (C1)∩supp (f)| < k and |ind (C1)∩supp (f ′)| >
k, then there exists an edge e? = Φ∆(f?) ∩ g? ⊂ conv(e, e′), e? ∈ Q∆1 , such that supp (f?) defines a
(k, d− k)-colorful choice of C1 and C2 that ray-embraces b′, where f? ∈ F and g? ∈ S.

Proof. By Lemma G.1, the supports of the faces in F that corresponds to two adjacent edges in
Q∆1 differ in at most one column. Since |ind (C1) ∩ supp (f)| < k, |ind (C1) ∩ supp (f ′)| > k, and
since Q∆1 is a polytopal complex, there must be an edge e? = Φ∆(f?) ∩ g? ∈ Q∆1 between e and e′
such that |ind (C1) ∩ supp (f?)| = k. By Lemma 4.2, f? is a vertex and hence |supp (f?)| = d. In
particular, then |ind (C2) ∩ supp (f?)| = d− k.

The algorithm to find this (k, d − k)-colorful choice is now a straightforward application of
binary search. Initially we set µ1 = e1 and µ2 = e2 and we maintain the invariant that the interval
[µ1,µ2] contains an edge e? = Φ∆(f?) ∩ g? ∈ Q∆1 such that supp (f?) defines a (k, d− k)-colorful
choice that ray-embraces b′. The single optimal feasible basis for e1 is C1 and similarly, the single
optimal feasible basis for e2 is C2. Then, Corollary G.2 implies the invariant for the initial interval.
We repeatedly proceed as follows: set µ′ = 1

2(µ1 + µ2) and solve the linear program LCC
M(µ′). Let

supp (f ′) be the support of the maximum face f ′ ∈ F that is optimal for LCC
M(µ′). First assume

that |supp (f ′)| = d, i.e., assume that f ′ is a vertex of PCC. If |ind (C1) ∩ supp (f ′)| = k, we
have found the desired solution. If |ind (C1) ∩ supp (f ′)| < k, we set µ2 = µ′ and otherwise, if
|ind (C1) ∩ supp (f ′)| > k, we set µ1 = µ′. By Corollary G.2, the invariant is maintained. Now,
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assume that |supp (f ′)| = d + 1, i.e., assume that f ′ is an edge of PCC. Then, by Lemma 4.2,
µ′ = Φ∆(f ′) ∩ g is a vertex of Q∆1 and since µ′ ∈ relint ∆1, it is incident to two edges e1, e2 ∈ Q∆1

with e1 = Φ∆(f1) ∩ g and e2 = Φ∆(f2) ∩ g, where f1 and f2 are the two incident vertices to the
edge f ′. We compute both supports supp (f1) and supp (f2) by checking every d-subset of supp (f ′)
whether it constitutes a basis. Then, we check whether one of the two supports is a (k, d−k)-colorful
choice. If not, then by Lemma G.1, either both supports contain less than k columns from C1 or
both contain more than k columns from C1. In the first case, we set µ2 = µ′ and in the second
case, we set µ1 = µ′. Again, Corollary G.2 guarantees that the invariant is maintained.

Clearly, each update of the interval [µ1,µ2] needs weakly polynomial time since O (d) linear
programs are solved. Furthermore, the number of the steps needed before a solution is found is
logarithmic in the length of the shortest edge. The following lemma shows that the minimum length
of an edge in Q∆1 is at least exponentially small in the length of the ColorfulCarathéodory
instance.

Lemma G.3. Let L be the length of the binary encoding of the ColorfulCarathéodory instance
(C ′1, . . . , C ′d, b

′) and let e = [µ1,µ2] ∈ Q∆1 be an edge. Then, − log ‖µ2 − µ1‖ = Ω (polyL).

Proof. We write e as Φ∆(f)∩g and the two incident vertices as µ1 = Φ∆(f1)∩g1 and µ2 = Φ∆(f2)∩g2,
where {f, f1, f2} ⊆ F and {g, g1, g2} ⊆ S. We denote with µ̂1 =M(µ1) and with µ̂1 =M(µ1) the
vertices in Q whose central projections onto ∆ resulted in µ1 and µ2, respectively. Since e is an
edge, µ̂1 6= µ̂2 and hence there is a j ∈ [d] with (µ̂1)j 6= (µ̂2)j . By Lemma 4.2, f is a vertex of PCC

and supp (f) ⊆ supp (fi) for i = 1, 2. Let B denote the columns in Asupp(f). Then, we can express
µ̂i, i = 1, 2, as the unique solution to the linear system LΦ

B,fi
extended by the constraints µ ∈M(gi).

Now, Lemma D.1 guarantees that the logarithm of (µ̂i)j , i ∈ [2], is a polynomial in the size of the
linear system and hence in L. Since (µ1)j 6= (µ2)j , we have = − log ‖µ2 − µ1‖ = Ω (polyL), as
claimed.

The described binary-search algorithm needs therefore only polynomial time in L to compute a
(k, d− k)-colorful choice C ′ for C ′1 and C ′2. Since L is polynomial in the length of the of the original
instance (C1, . . . , Cd, b), the running time is weakly polynomial in the length of the original instance.
Furthermore, we can obtain a (k, d− k)-colorful choice C for C1 and C2 by replacing the perturbed
points in C ′ with the original points in C1 ∪C2. Lemma B.5 then guarantees that C ray-embraces b.


