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1 Introduction
As tolerated Tverberg partitions have not been studied in the context of al-
gorithmics so far, this thesis focuses on the development of algorithms that
compute such partitions.

Tolerated Tverberg partitions are of interest due to their relationship with
a generalization of the median to multi-dimensional data. The median for a
set P ⊂ Rd is a number that divides the set into two parts of equal size. For
this reason, it is often used in divide & conquer algorithms. Especially in the
field of statistics, the median is also well known to have benign properties such
as scale invariance and tolerance against outliers. Several generalizations for
multi-dimensional data exist. One of the most important is the centerpoint
theorem by Radon [10]. Given a set P ⊂ Rd, a point c ∈ Rd is called a
centerpoint if each closed half-space containing c contains at least |P |/(d+ 1)
points of P . Teng proved in his Ph.D. thesis [13] that testing whether a given
point is a centerpoint is coNP-complete if the dimensionality is part of the
input. However, Tverberg [15] proved the existence of a subset of centerpoints
that have polynomial-time checkable witnesses. These witnesses are called
Tverberg partitions. A Tverberg partition T of a point set P ⊂ Rd is a partition
of P into disjoint sets whose convex hulls have a nonempty intersection. The
points within that intersection are called Tverberg points. Each half-space that
contains a point within the intersection has to contain at least one point of
each element of the Tverberg partition. Tverberg’s theorem states that each
point set P ⊂ Rd of size at least (m−1)(d+ 1) + 1 admits the computation of a
Tverberg partition of size m. This implies the existence of a Tverberg partition
of size |P |/(d+ 1) for each point set P ⊂ Rd, which proves each Tverberg point
of that partition to be a centerpoint.
García Colín [5] generalized Tverberg’s theorem to tolerated Tverberg par-

titions. A t-tolerated Tverberg partition for a point set P ⊆ Rd remains a
Tverberg partition even if up to t points are removed from P . She conjectured
the existence of a t-tolerated Tverberg partition of size m for all point sets
P ⊂ Rd of size at least (t+1)(m−1)(d+1)+1. For t = 0, this coincides with the
bound in Tverberg’s theorem. This conjecture was restated by Montejano and
Oliveros [8] along with proofs of several other tolerated versions of Helly-type
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1 Introduction

theorems and finally proved by Soberón and Strausz [12]. Soberón and Strausz
also conjectured this bound to be tight. Besides the naive algorithm, which
checks all possible partitions of an input set, no algorithm is currently known
that computes a tolerated Tverberg partition.
As said in the beginning, medians or more generally centerpoints, are ap-

preciated for their “robustness” with respect to outliers. While the meaning
of robustness is a rather intuitive one, meaning the value changes not “much”
by changing “some” parts of the input, tolerated Tverberg partitions define
robustness formally with respect to the number of changed points.

In contrast to tolerated Tverberg partitions, several algorithms are known
that compute centerpoints and Tverberg partitions. The best known algorithm
to compute a centerpoint has expected running time O(|P |d−1) [2]. For the
case of Tverberg partitions, the best known exact algorithm runs in |P |O(d2)

time [1]. Miller & Sheehy [7] published the first approximation algorithm for
Tverberg partitions in arbitrary dimensions by derandomizing a Monte-Carlo
approximation algorithm for centerpoints by Clarkson et al. [3]. This algorithm
computes a Tverberg partition of size |P |/(d + 1)2 in nO(log d) time. Later,
Mulzer and Werner [9] developed an algorithm with linear running time in the
size of P , which returns a Tverberg partition of size |P |/4(d+ 1)3 in dO(log d)n
time.

Related decision problems of the centerpoint theorem and Tverberg’s theorem
were studied by Teng [13] and Werner [18]. Although those decision problems
could be proved to be hard, these results shed only little light on the complexity
of actually computing a centerpoint or a Tverberg partition. The complexity
for these problems is still unknown if the dimensionality is part of the input. It
is widely believed, that these problems cannot be solved in polynomial time.
As tolerated Tverberg partitions are a generalization of Tverberg partitions, all
complexity results about the problem to compute Tverberg partitions can also
be applied to the problem to compute tolerated Tverberg partitions. However,
there a currently no complexity results known outside the special case of untol-
erated Tverberg partitions.

This thesis starts by presenting fundamental definitions and theorems in
the context of Tverberg partitions and revisit both approximation algorithms
for the untolerated Tverberg problem, with the aim to adapt the techniques
developed by Miller & Sheehy as well as by Mulzer & Werner in the following
parts. To get a better understanding of the problem, in chapter 3 we study
the special case of computing t-tolerated Tverberg partitions of size 2 in one
dimension, then try to extend the results to t-tolerated Tverberg partitions
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of arbitrary size in one dimension and later to multiple dimensions. We also
study the implications of these results on the bound by Soberón and Strausz
to find arguments that support or reject the tightness-conjecture.

In the second part of the thesis, we are interested in reusing the approximation
algorithms for the untolerated Tverberg problem that were presented in chap-
ter 2. To achieve this, we focus on the development of approximation preserving
reductions that lead for every approximation algorithm for the untolerated
Tverberg problem to an approximation algorithm for the tolerated Tverberg
problem and compare concrete results by applying them to the algorithm by
Miller & Sheehy as well as to the algorithm by Mulzer & Werner. Although at
the moment there is no algorithm known that computes t′-tolerated Tverberg
partitions for some constant t′ > 0, in this context it is also worth exploring if
it is possible to benefit from such algorithms.

In the last part, we take a look at the complexity of a related decision problem
that is similar to the decision problems studied by Teng [13].
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2 Fundamentals
Before we start to analyze the tolerated Tverberg problem, we revisit basic
terms and theorems that will be used throughout the thesis. We also present
both known deterministic approximation algorithms for the untolerated Tver-
berg problem by Miller & Sheehy [7] and Mulzer & Werner [9]. Although
we can show that both algorithms cannot be used directly as approximation
algorithms for the tolerated Tverberg problem, they provide useful techniques
that can be adapted in our context, as shown in the following chapters.

We omit the proofs for the theorems in the first section since most of them
are well-known results in discrete geometry. For their proofs and more thorough
discussions, we refer the reader to the book by Matoušek [6] or the original
publications.

2.1 Basic Definitions and Theorems
The median is a well-known statistical concept for one-dimensional data. It
splits the upper from the lower half of a set of numbers. In comparison to
the mean, outliers and false data have less impact on the value of the median.
However, “less impact” has no well-defined meaning in a mathematical context.
We will return to this point at the end of this section when we formally define
the concept of tolerance.

Definition 2.1 (Median). Let P ⊂ R be a set of real numbers. A number
m ∈ R is called a median of P if

|{p | p ∈ P, p ≤ m}| ≥ |P |/2 ∧ |{p | p ∈ P, p ≥ m}| ≥ |P |/2

We are interested in an analogue concept for multi-dimensional data. Let
P ⊂ Rd be a point set. In a first attempt, we might take a look at the point
m′ ∈ Rd, where the ith value of m′ is a median for P projected onto the ith
dimension. An example is shown in Figure 2.1. Each point within the dashed
rectangle fulfills our criteria. As we said in the beginning, the median splits
the data into two parts of equal size. In our example, the point m′ only splits
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2 Fundamentals

the data equally for the case of axis parallel hyperplanes. The non-axis parallel
hyperplane h separates m′ completely from P , without containing any point
from P in the same half-space as m′. A better suited criteria to assess the
belonging of a point to the center of a point set is the Tukey depth, as it takes
every hyperplane into consideration and not only axis-parallel ones.

m′

h

Figure 2.1: Median in Each Dimension

Definition 2.2 (Tukey Depth [6]). Let P ⊂ Rd be a point set and c ∈ Rd a
point. We say c has Tukey depth r or just c has depth r with respect to P if
every closed half-space h− containing c contains also at least r points of P .

Applying this criteria to our example, we obtain a depth of 0 for our candidate
point m′. Thus, with regard to the new criteria, m′ is not in the center at all.

In one dimension, we know that for every set of real numbers there exists a
median. It is of interest to develop a similar result for the Tukey depth. That
is, a result that states the existence of a point of some depth k for every point
set P ⊂ Rd, where k is depending only on the size and dimensionality of P .
This result is well known as centerpoint theorem.

Theorem 2.3 (Centerpoint Theorem [10]). Given a point set P ⊂ Rd. Then
there exists a point c ∈ Rd that has depth at least d|P |/(d+ 1)e with respect to
P . The point c is called a centerpoint of P .

The centerpoint theorem is known to be sharp, so in general there exist point
sets that do not admit the computation of points of depth strictly higher than
d|P |/(d+ 1)e.

Teng [13] proved in his Ph.D. thesis that testing whether a given point is a cen-
terpoint is coNP-complete if the dimensionality is part of the input. Especially
in the context of Monte-Carlo algorithms, this result is problematic. However,
Tverberg [15] proved the existence of centerpoints that have polynomial-time
checkable witnesses. These witnesses are called Tverberg partitions.
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2.1 Basic Definitions and Theorems

Definition 2.4 (Tverberg Partition [15]). Given a point set P ⊂ Rd. We
call a partition of P into sets T1, T2, . . . , Tm a Tverberg partition of size m if⋂m

i=1 conv(Ti) 6= ∅. Every point within the intersection is called a Tverberg point
of depth m.

The size m of a Tverberg partition is directly connected to the depth of a
corresponding Tverberg point c: Each half-space h− that contains c has to
intersect the convex hull of each element of the partition, since c is contained
in the intersection of all convex hulls. Therefore, at least one point of each
element of the partition is also contained in h−, so c has depth at least m.

Theorem 2.5 (Tverberg’s Theorem [15, 16, 17, 11]). Given a point set P ⊂ Rd

of size at least (m− 1)(d+ 1) + 1. Then there exists a Tverberg partition of P
of size m.

As in the case of the centerpoint theorem, this theorem was shown to be
tight. If the size of the Tverberg partition T is 2, we call T a Radon partition
and every Tverberg point of this partition a Radon point.
An example is given in Figure 2.2. Each dashed triangle represents an

element of the partition. The point in the intersection of all convex hulls, c, is
a Tverberg point of this partition. Since the size of this partition is 3 and the
number of points is 9, c is a centerpoint for this point set.

c

p0

p1
p2

p3

p4

p5

p6

p7
p8

Figure 2.2: Tverberg Partition T = {{p2, p4, p5}, {p1, p6, p8}, {p0, p7, p3}}

If we want to prove that a partition T is a Tverberg partition, we have to
show that the intersection of the convex hulls of the elements of T is nonempty.
Helly’s Theorem [6] turns out to be very handy in this situation is, as it limits
the number of elements we have to look at at once.
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2 Fundamentals

Theorem 2.6 (Helly’s Theorem [6]). Let C1, C2, . . . , Ck ⊂ Rd be convex sets.
If k ≥ d+ 1 and every d+ 1 of these sets intersect, then the intersection of all
convex sets is nonempty.

In the later chapters, we refer to the problem of computing any Tverberg
partition for a given point set as Tverberg problem.
Problem 2.7 (Tverberg Problem). Given a point set P of size at least
(m− 1)(d+ 1) + 1. Compute a Tverberg partition of size m for P .

As noted in the beginning of this section, the robustness of the median against
outliers and false data is not well defined. We formalize this by introducing
the concept of tolerance in the context of Tverberg partitions. A t-tolerated
Tverberg partitions remains a Tverberg partition even if up to t input points
are removed. In a practical context, we can think of these points as false data
or data that is changed after construction of the Tverberg partition.
Definition 2.8 (Tolerated Tverberg Partition [5]). Given a point set P ⊂
Rd. A partition of P into sets T1, T2, . . . , Tm is called a t-tolerated Tverberg
partition of size m if for every subset R ⊆ P of size at most t, the partition
{T1 \R, T2 \R, . . . , Tm \R} is a Tverberg partition for P \R.
Note that we do not define a t-tolerated Tverberg point, since in general

there is no point that remains a Tverberg point after the removal of any t
points. We formally prove this in the next section.

Soberón and Strausz [12] generalized Theorem 2.5 by proving the following
bound for tolerated Tverberg partitions.
Theorem 2.9 (Soberón-Strausz Bound [12]). Let P be a point set of size at
least (t+ 1)(m− 1)(d+ 1) + 1. Then there exists a t-tolerated Tverberg partition
for P of size m.

Soberón and Strausz conjectured this bound to be tight. Until now, it is an
open question whether this is true. We therefore define the tolerated Tverberg
problem slightly different from Problem 2.7 by not constraining the size of the
input point set but enabling the algorithms to return ⊥ if it is not possible to
compute any t-tolerated Tverberg partition of the desired size.

For each developed algorithm, we will give concrete bounds on the size of the
input set that are needed for the algorithms to work properly. If the input size
is strictly lower than this bound, we implicitly assume the algorithms to return
⊥. For the case of the developed approximation algorithms, it is possible that
these algorithms return ⊥ even if there exists a tolerated Tverberg partition of
the input set.
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2.2 Observations

Problem 2.10 (Tolerated Tverberg Problem). Given a point set P and a
tolerance parameter t ∈ Rd. Compute a t-tolerated Tverberg partition for P of
maximum size if one exists, or output ⊥.

2.2 Observations
Lemma 2.11. Let P ⊂ Rd be a set. A point c ∈ Rd has depth t+1 with respect
to P if and only if for all subsets R ⊂ P of size at most t, c is contained in
conv(P \R).

Proof. “⇒”: We prove this direction by contraposition. Suppose R is a subset
of P of size at most t such that c /∈ conv(P \R). Let h be a hyperplane that
separates c from conv(P \ R) and let h+ denote the closed half-space that
contains c and is bounded by h. Since h separates c from conv(P \R), the inter-
section (P \R)∩ h+ has to be empty. Thus, h+ contains c and at most |R| = t
points from P . This implies that c has depth at most t < t+1 with respect to P .

“⇐”: Let h+ be some half-space that contains c and let R denote the set
h+ ∩P . Then c is not contained in conv(P \R). If the size of R is less or equal
to t, this would be a contradiction to c being contained in conv(P \R′) for all
subsets R′ of P of size at most t. This implies that c has depth at least t+ 1,
as claimed. �

Proposition 2.12. Let d ∈ N be the dimension. Then there exists a t-tolerated
Tverberg partition T for some set P ⊂ Rd such that⋂

R⊂P :|R|≤t

⋂
Ti∈T

conv(Ti \R) = ∅

Proof. Suppose for the sake of contradiction that for each t-tolerated Tverberg
partition there exists a point that is contained in the intersection of the convex
hulls of the elements even if any t points are removed from P . Let P ⊂ Rd

be of size (t + 1)(m − 1)(d + 1) + 1. Assume without loss of generality that
t > 0. Theorem 2.9 guarantees the existence of a t-tolerated Tverberg partition
T of size m for P . By our assumption, there exists a point c that is contained
in ⋃Ti∈T conv(Ti \ R) for all subsets R of size at most t. In particular, c is
contained in the convex hull of each element Ti (i ∈ {1, 2, . . . ,m}) of T even if
any R points are removed. Lemma 2.11 then implies that c has depth t + 1
with respect to each element of T . Thus, c has depth m(t+ 1) with respect to
P . However, the centerpoint theorem guarantees only the existence of a point
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2 Fundamentals

that has depth⌈(t+ 1)(m− 1)(d+ 1) + 1
d+ 1

⌉
= (t+ 1)(m− 1) + 1 t>0

< m(t+ 1)

This is a contradiction to the tightness of the centerpoint theorem. �

2.3 Deterministic Approximation Algorithms for
the Untolerated Tverberg Problem

In this section, two different approximation algorithms for the untolerated
Tverberg problem are presented. We discuss the main idea of each algorithm
and prove selected statements. We also take a close look at the properties of
these algorithms in an tolerated setting.

2.3.1 Approximation Algorithm by Miller & Sheehy
Let P ⊂ Rd be the input point set. The algorithm follows a divide & conquer
strategy. We partition P into small sets for which we can obtain trivial Tverberg
partitions and then repeatedly combine them to obtain Tverberg partitions of
greater size. The crucial part of this approach is the way in which we obtain
a Tverberg partition of greater size for the entire point set out of Tverberg
partitions for disjoint subsets. Miller & Sheehy developed the following lemma
for this task.

Lemma 2.13 ([3]). Given d+ 2 Tverberg partitions T1, T2, . . . , Td+2 of disjoint
point sets and of size m. Let qi be a Tverberg point of Ti and Pi the point set
for which Ti is a partition. Then the Radon point of {q1, q2, . . . , qd+2} has depth
at least 2m with respect to P .

Proof. Let Ti,j be the jth element of Ti. Let (Q1, Q2) be a Radon partition
of Q = {q1, q2, . . . , qd+2} and r ∈ conv(Q1) ∩ conv(Q2) a Radon point of Q.
Fix some j ∈ {1, 2, . . . ,m}. We show that r is contained in conv(⋃d+2

i=1 Ti,j).
Because Ti,j is part of the Tverberg partition for qi, we know by defini-
tion that qi ∈ conv(Ti,j). Since r ∈ conv(⋃qi∈Qk

) for k ∈ {1, 2}, r is con-
tained in conv(⋃qi∈Qk

Ti,j). Putting everything together, we know that r ∈⋂m
j=1 conv(⋃qi∈Qk

Ti,j) for k ∈ {1, 2}. By our assumption, all elements of the
Tverberg partitions are disjoint. Since the point r is contained in the convex
hull of 2m disjoint sets, r has depth 2m. �
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Before we take a look at the concrete algorithm, let us discuss an important
optimization to the constructive proof of Lemma 2.13. Let Q be the set
{q1, q2, . . . , qd+1} and let Ti = {Ti,1, Ti,2, . . . , Ti,m} be the Tverberg partition
for which qi is a Tverberg point. Since the bound in Tverberg’s theorem
is sharp, in general the number of points in each Tverberg partition Ti is
at least (m − 1)(d + 1) + 1. Thus, the number of points in the Tverberg
partition that is constructed in the proof of Lemma 2.13 is in general at least
(d + 1)((m − 1)(d + 1) + 1). However, Tverberg’s theorem guarantees the
existence of Tverberg partitions of size 2m for much smaller sets of size at least
(2m− 1)(d+ 1) + 1. By identifying points in the constructed Tverberg partition
by Lemma 2.13 that are not needed for the convex hulls of the elements of
that partition to have a nonempty intersection, we can remove them and fed
back into the algorithm to create more Tverberg partitions that again can be
combined. In this way, we virtually increase the size of the input set and thus
improve the size of the returned Tverberg partition. We refer to this step as
pruning. Carathéodory’s theorem helps us to identify superfluous points.

Theorem 2.14 (Carathéodory’s theorem [6]). Let P ⊂ Rd be a set and x ∈ Rd

a point that is contained in the convex hull of P . Then there exists a subset
P ′ ⊆ P of size at most d+ 1 whose convex hull contains x.

Given a Tverberg partition T = {T1, T2, . . . , Tm}, we fix a Tverberg point
c and then apply Carathéodory’s theorem to identify d+ 1 points T ′i in each
element Ti of T whose convex hull contains c. Since the convex hull of each
of these subsets T ′i contains c, we know that ⋂i∈{1,2,...,m} conv(T ′i ) 6= ∅. We can
thus limit the number of points in the partition constructed by Lemma 2.13 to
2m(d+ 1), a great improvement compared to (d+ 1)((m− 1)(d+ 1) + 1).

We are now ready to discuss the complete algorithm. We will focus on the
main idea of each step and refer the reader to the original publication for a
thorough analysis. In line 2 of Algorithm 2.1, we handle the base case. If
the input point set is of small enough size, we just return a trivial Tverberg
partition for P of size one, which is a good enough approximation for input
sets of small size. In lines 3–6, we recursively compute d+ 1 Tverberg partition
of subsets of P . The removal of the used points for these partitions in line 6
guarantees that the subsets are disjoint. The pruning in line 8 enables us to
choose subsets of size |P |/2 instead of |P |/(d+ 1) as the number of points in
the partition returned by the recursive call is smaller. The analysis by Miller
& Sheehy proves the following bounds on the size of the returned partition and
on the total running time.
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Algorithm 2.1: Iterated-Tverberg [7]
input : Point set P ⊂ Rd

1 if |P | ≤ 2(d+ 1)2 then
2 return {P};
3 foreach i ∈ {1, 2, . . . , d+ 1} do
4 P ′ ← choose any dn/2e points from P ;
5 Ti ← Iterated-Tverberg(P’);
6 P ← P \ (⋃

T
(i)
j ∈Ti

T
(i)
j );

7 T ← combine T1, T2, . . . , Td+1 using Lemma 2.13;
8 Prune T using Carathéodory’s theorem;
9 return T ;

Theorem 2.15 ([3]). Given a point set P ∈ Rd. Algorithm 2.1 computes a
Tverberg partition of size d|P |/(d+ 1)2e for P in nO(log d) time.

Let us now take a look at these results in the context of tolerated Tverberg
partitions. We start with the pruning. Let T = {T1, T2, . . . , Tm} be a Tverberg
partition and let T ′ = {T ′1, T ′2, . . . , T ′m} be the result of T after pruning. That
is, we haven chosen some point c ∈ ⋃i∈{1,2,...,m} conv(Ti) and identified a subset
T ′i of at most d + 1 points whose convex hull contains c for each element Ti

of the partition T . Since c is contained in the convex hull of each element of
T ′, the intersection of the convex hulls of all elements in T ′ has to contain at
least c. Carathéodory’s theorem does not guarantee c to be contained in the
convex hulls of the pruned elements T ′i if we remove points. More formally, it
could be that c /∈ conv(T ′i \ R) if T ′i ∩ R 6= ∅. A simple example for this case
is c being an element of the interior of the simplex spanned by T ′i . Thus, if
points are removed, the convex hulls of the elements of T ′ are not guaranteed
to have a nonempty intersection, so T ′ is an untolerated Tverberg partition.
This is independent of the tolerance of the initial unpruned Tverberg partition T .

However, as the pruning was only an optimization, we could just skip this
step. Unfortunately, a similar problem arises by applying Lemma 2.13. An
essential requirement in the proof of this lemma is, that each point qi is a
Tverberg point for Ti, otherwise an intersection of the constructed t-tolerated
Tverberg partition cannot be guaranteed. However, if qi is a Tverberg point of
Ti, this does not guarantee that qi is still a Tverberg point after the removal of
some point of Qi. This is clear if Ti is untolerated, as the removal of one point
could even lead to an empty intersection of the convex hulls of the elements
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q1

q2

q3

q4

r

p

T1,j

T2,j

T3,j

T4,j

Figure 2.3: Combination of Tverberg partitions using Lemma 2.13 in two
dimensions

in Ti. It makes no difference whether Ti is of some tolerance t > 0 or not,
as tolerance only guarantees an intersection but states nothing about specific
points that are contained in the intersection (cf. Proposition 2.12).
Figure 2.3 shows an example in which the Tverberg partition constructed

using Lemma 2.13 is untolerated. The dashed lines indicate the convex hulls of
the jth elements of d+ 2 = 4 Tverberg partitions, where qi is a Tverberg point
of Ti (i ∈ {1, 2, 3, 4}). The Radon partition for {q1, q2, q3, q4} is represented
with solid lines. In this example, T1,j ∪ T2,j and T3,j ∪ T4,j would be elements
of the returned partition. If p ∈ P1 is removed, then conv(T1,j ∪ T2,j \ {p}) ∩
conv(T3,j ∪ T4,j) = ∅. Thus, the constructed Tverberg partition is untolerated.

2.3.2 Approximation Algorithm by Mulzer & Werner
The algorithm by Miller & Sheehy always operates in the vector space of the
input point set P . In contrast to this approach, Mulzer & Werner’s algorithm [9]
computes a Tverberg partition of the entire input set projected onto a low
dimensional subspace and then lifts the computed partition to the original
dimensionality. We will only discuss the simplified version of this algorithm.
We refer the reader to the original publication for the improved algorithm.

The crucial part of this approach is the way in which we obtain a Tverberg
partition for a point set P ⊆ Rd out of a Tverberg partition of P projected onto
some subspace. Mulzer & Werner developed the following lemma to achieve
this task.
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2 Fundamentals

Lemma 2.16 (Lifting Argument [9]). Given a point set P ⊆ Rd. Let h be a
hyperplane in Rd and c′ a Tverberg point of depth m for the projection of P
onto h with a corresponding Tverberg partition T ′. Then we can find a Tverberg
point c ∈ Rd of depth m/2 for P and a corresponding Tverberg partition in
time |P |.

Proof. Let pi be the ith point of the input point set and let p′i denote the
projection of pi onto h. Let further be l the line through c′ that is orthogo-
nal to h. By our assumption, T ′ = {T ′1, . . . , T ′m} is a Tverberg partition of
P ′ = {p′1, p′2, . . . , p′|P |}. Let Qi be the set of points in P that are projected to the
points in T ′i , that is Qi = {pj | p′j ∈ T ′i}. Since c′ is a Tverberg point of T ′, we
know by definition that c ∈ conv(T ′i ) for all i ∈ {1, 2, . . . ,m}. As the points of P
were projected orthogonally onto h, l has to have a nonempty intersection with
the convex hulls of the sets Q1, Q2, . . . , Qm. Let qi be some point in conv(Qi)∩ l
and let Tq be a Tverberg partition of size m/2 for Q = {q1, q2, . . . , qm}. A
Tverberg partition of this size exists for Q since all points qi are contained in
the one-dimensional affine subspace l and Tverberg’s theorem guarantees for
all point sets of size m in one dimension the existence of a Tverberg partition
of size m/2. We then claim T = {⋃qi∈Tq,j

Qi | Tq,j ∈ Tq} to be the desired
Tverberg partition of size m/2 for P .

We first check that T is indeed a partition of P . By construction, each Qi

contains all points whose projections are contained in the ith element of Tq.
Thus the set {Q1, Q2, . . . , Qm} forms a partition of P . Each element of T is
the union of a subset of {Q1, Q2, . . . , Qm} and each Qi is a subset of exactly
one element in T . As a partition of P remains a partition of P if we replace
some elements by their union, T is a partition of P .

Let Tj and Tk be two elements of T . We now prove that the intersection of
conv(Tj) and conv(Tk) is nonempty. By construction of T , we know that both
sets {qi | Qi ⊆ Tj} and {qi | Qi ⊆ Tk} are elements of a Tverberg partition
of Q. Thus, conv({qi | Qi ⊆ Tj}) ∩ conv({qi | Qi ⊆ Tk}) 6= ∅. Since each
point qi is contained in the convex hull of the corresponding set Qi, the convex
hulls conv({qi | Qi ⊆ Tj}) and conv({qi | Qi ⊆ Tk}) are contained in conv(Tj)
and conv(Tk). Therefore, conv(Tj) and conv(Tk) have a nonempty intersection.
Helly’s theorem now implies that ⋂Ti∈T conv(Ti) 6= ∅, or equivalently that T is
a Tverberg partition. Using the same arguments, we can also prove that each
Tverberg point of Tq is a Tverberg point of the constructed Tverberg partition T .

The only remaining point is the running time in which we can compute T .
We can construct the sets Q1, Q2, . . . , Qm in linear time in the size of P as they
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2.3 Deterministic Approximation Algorithms for the Untolerated Tverberg Problem

form a partition of P . To compute a Tverberg partition of Q, we can use the
fact that the points in Q are contained in a one-dimensional affine subspace.
Thus, we just need to compute the median of Q and then partition Q into
pairs {q−, q+}, where q− is less than the median and q+ is greater than the
median. The computation of the median can be carried out in O(m) using the
algorithm by Blum et al. [4, Chapter 9]. The partitioning of Q into pairs takes
also linear time in the size of Q. This results in a total running time of O(|P |)
as claimed. �

Algorithm 2.2: Simple-Lifting-Argument [9]
input : Point set P ⊂ Rd

1 if d = 1 then
2 m← median of P ;
3 T ← Partition of P into pairs {p−, p+}, where p− ≤ m and p+ ≥ m;
4 return (m, T );
5 else
6 h← some hyperplane in Rd;
7 P ′ ← projection of P onto h;
8 (c′, T ′)← simple-lifting-argument(P’);
9 (c, T )← lift (c′, T ′) using Lemma 2.16;

10 Prune T using Carathéodory’s theorem;
11 return (c, T );

Algorithm 2.2 is based on this lemma. In lines 1–4, we handle the base case.
If the dimensionality is one, we use the median algorithm by Blum et al. to
obtain a Tverberg partition for P as described in the proof of Lemma 2.16. If
the dimensionality d is greater than one, we project P onto some hyperplane h
in Rd and then obtain recursively a Tverberg partition for the projected points
in lines 6–8. This partition is lifted to a Tverberg partition for the input point
set in line 9 using Lemma 2.16.

Theorem 2.17 ([9]). Given a point set P ⊂ Rd. Then Algorithm 2.2 computes
a Tverberg partition of size dn/2de for P in dO(1)|P | time.

The size of the computed Tverberg partition by Algorithm 2.2 gets worse
exponentially in the dimensionality. However, Mulzer & Werner could further
improve this result by generalizing the lifting argument as well as Lemma 2.13
by Miller and Sheehy.
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Theorem 2.18 ([9, Theorem 1.7]). Let P ⊂ Rd be a point set. Then a Tverberg
partition of size n/(4(d+ 1)3) for P can be computed in dO(log d)|P | time.

As in the case of Miller & Sheehy’s algorithm, the Tverberg partitions
returned by this algorithm are in general untolerated. Let us take again
a look at Lemma 2.16. Although this is only a simplified version of the
lemma used in Theorem 2.18, the discussed problem also affects the used
generalization. Essential for the construction of the Tverberg partition in the
proof of Lemma 2.16 was that c′ is a Tverberg point for T ′. In the end of the
last section, we have already argued that the removal of any point could lead
to c′ not being a Tverberg point anymore. Therefore, if any point from P is
removed, the proof of the lemma does not guarantee a nonempty intersection
of the convex hulls of the constructed Tverberg partition.
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3 Tolerated Tverberg Partitions in
Low Dimensions

3.1 One dimension
We start with the special case of tolerated Radon partitions in one dimension
and later extend this solution to an arbitrary number of sets in the partition.

Problem 3.1 (Tolerated Radon Partitions in One Dimension). Let P be a set
of real numbers and t the tolerance parameter. The Problem is to compute a
partition of P into two sets T1 and T2, so that that their convex hulls have a
nonempty intersection even if up to t points are removed from P .

We assume P to contain at least 2t+ 3 points. We will see later that this
involves no loss of generality. A simple solution to this problem is to sort some
subset Q of size 2t+ 3 of P and then place the points in Q alternately in T1
and T2. All unused points in Q \ P can be added to T1 in order to obtain a
partition of P . Figure 3.1 shows an example.

T1

T2

Figure 3.1: Tolerated Radon Partition with Tolerance 3

Proposition 3.2. Given at least 2t + 3 real numbers P , then Algorithm 3.1
computes a tolerated Radon partition {T1, T2} with tolerance t in time O(|P |+
t log t). The deletion of up to t points R from P and the computation of a
Radon point for P \R can be performed in O(t).

Proof. Assume for the sake of contradiction the existence of a subset R ⊆ P of
size at most t whose deletion separates the convex hulls of T1 and T2. Let h be
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3 Tolerated Tverberg Partitions in Low Dimensions

Algorithm 3.1: 1d-Tolerated-Radon-Partition
input : Set of real numbers P , tolerance parameter t
output : t-tolerated Radon partition of P

1 Q← any 2t+ 3 points of P ;
2 Sort Q. Let q1, q2, . . . , q2t+3 be the sorted sequence;
3 T1 ← {qi | i is odd} ∪ (P \Q);
4 T2 ← {qi | i is even};
5 return {T1, T2};

a separating hyperplane of conv(T1 \R) and conv(T2 \R). Define T−1 = T1∩h−
and T+

1 = T1 ∩ h+ (T−2 , T+
2 are defined similarly). Since the size of P is odd,

the following inequality always holds by construction of the partition:

|T+
1 | ≥|T+

2 | (3.1)
|T−1 | ≥|T−2 | (3.2)

Because h separates the resulting convex hulls, R has to contain either T+
1 ∪T−2

or T−1 ∪ T+
2 . Using both inequalities and the fact that T1 and T2 are disjoint,

we can get the desired contradiction by showing that R exceeds its maximum
size t in both cases:

Case 1: T+
1 ∪ T−2 ⊆ R

|T+
1 ∪ T−2 | = |T+

1 |+ |T−2 |
3.1
≥ |T+

2 |+ |T−2 | = |T2|

Case 2: T−1 ∪ T+
2 ⊆ R

|T−1 ∪ T+
2 | = |T−1 |+ |T+

2 |
3.2
≥ |T−2 |+ |T+

2 | = |T2|

Thus R has to be of size at least |T2|. Since |T2| = t+ 1, this is a contradiction
to our initial assumption about the maximal size of R.

It remains to prove the running time in which we can delete t points R from
P and compute a Radon point for P \R. Suppose that each point p ∈ P has
an attached property deleted, that can be set to true to mark p as deleted.
This makes the deletion rather simple: We just set for each point p ∈ R the
deleted property to true. To find a Radon point, we only need to return a
number in the intersection of conv((T1 \ R) ∩Q) and conv((T2 \ R) ∩Q). By
searching for the minimum and maximum number in T1 \R and T2 \R, we can
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3.1 One dimension

return a point in the intersection in linear time in the size of Q and t. Since
|Q| = 2t+ 3, this requires O(t) time. �

We can further show that our assumption about the size of P involves no
loss of generality as there exists no t-tolerated Radon partition for points sets
of size strictly less than 2t+ 3.

Proposition 3.3. Let P ⊂ R be a point set. There exists a t-tolerated Radon
partition for P if and only if P is of size at least 2t+ 3.

Proof. Let P ⊂ Rd be a set of size strictly less than 2t+ 3 and {T1, T2} a parti-
tion of P into two sets. Fix two points h1 and h2, such that |P ∩ (h1, h2)| = 1.
Let T−1,i and T−2,i denote the points in Ti to the left of h1 and h2, respectively.
Define T+

1,i and T+
2,i in an analogue manner. The deletion of one of the four sets

T−1,1 ∪ T+
1,2, T+

1,1 ∪ T−1,2, T−2,1 ∪ T+
2,2, and T+

2,1 ∪ T−2,2 separates the convex hulls of
T1 and T2. We show that at least one of these sets is of size at most t.

Since |T1∪T2| = |P | ≤ 2t+ 2, either |T−1,1∪T+
1,2| ≤ t+ 1 or |T−1,1∪T+

1,2| ≤ t+ 1
holds. Assume without loss of generality that the size of T−1,1 ∪ T+

1,2 is less or
equal to t + 1. If |T−1,1 ∪ T+

1,2| ≤ t, we have found a subset of size at most t
whose deletion separates the convex hulls of T1 and T2. Thus suppose that
|T−1,1 ∪ T+

1,2| = t + 1. Let p∗ ∈ P denote the point in between h1 and h2. If
p∗ ∈ T+

1,2, then T+
2,1 ∪ T−2,2 is a set of size t whose deletion separates the convex

hulls of T1 and T2. On the other hand, if p∗ ∈ T+
1,1, then T+

1,1 ∪ T−1,2 is a set of
size at most t and the removal of this set separates the convex hulls of T1 and
T2. Since the partition {T1, T2} of P was arbitrary, the claim follows. �

Our next goal is to extend algorithm 3.1 to the general case in which the
partition can be of arbitrary size. The algorithm is based on the following
observation: Given 2(t + 1) ordered numbers Q = {q1, q2, . . . , q2(t+1)}, the
interval [qt+1, qt+2] is contained in the convex hull conv(Q) even if up to t
points are removed. We say Q covers the interval [qt+1, qt+2] with tolerance
t. The algorithm is divided into two steps: First, we bootstrap the tolerated
Tverberg partition using Algorithm 3.1 to obtain a t-tolerated Radon partition
{T1, T2} for 2t + 3 points of the initial point set. In a second step, we use
the observation to find m − 2 disjoint point sets T3, T4, . . . , Tm that cover
conv(T1) ∪ conv(T2) with tolerance t. Thus, after the deletion of any subset
T of size t, conv(T1 \ T ) ∩ conv(T2 \ T ) is nonempty and is also contained in⋂m

i=3 conv(Ti \ T ).
Before we go into more detail, let us take a look at an example in Figure 3.2.

The first two elements of the partition form a 3-tolerated Radon partition
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3 Tolerated Tverberg Partitions in Low Dimensions

consisting of 9 (= 2 · 3 + 3) points. Both elements are covered with tolerance 3
by T3 using additional 8 (= 2(3 + 1)) points.

T1

T2

T3

Figure 3.2: Tolerated Tverberg Partition of size 3 with tolerance 3

In general, our approach needs at least

2t+ 3︸ ︷︷ ︸
t-tolerated Radon partition

+ 2(t+ 1)(m− 2)︸ ︷︷ ︸
(m−2) t-tolerated enveloping point sets

= 2(t+ 1)(m− 1) + 1

points to work. This condition is not particularly restrictive as it coincides
with the bound by Soberón and Strausz [12].

Algorithm 3.2: 1d-Tolerated-Tverberg-Partition
input : Set of real numbers P , tolerance parameter t, size of partition m
output : t-tolerated Tverberg partition of size m of P

1 l← Select (P, (m− 2)(t+ 1));
2 h← Select (P, |P | − (m− 2)(t+ 1)− 1);
3 LowPoints← {p ∈ P | p ≤ l};
4 MiddlePoints← {p ∈ P | l < p < h};
5 HighPoints← {p ∈ P | h ≤ p};
6 {T1, T2} ← 1d-Tolerated-Radon-Partition (MiddlePoints, t);
7 foreach i ∈ {3, 4, . . . ,m} do
8 L← remove any t+ 1 points in LowPoints;
9 H ← remove any t+ 1 points in HighPoints;

10 Ti ← L ∪H;
11 return {T1, T2, . . . , Tm};

Algorithm 3.2 is based on the strategy discussed in the last paragraph.
Lines 1–5 partition the point set into three parts: Low and high points that will
be used to construct the enveloping elements of the partition and middle points
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3.1 One dimension

that will be partitioned using the algorithm for tolerated Radon partitions. We
need 2t+ 3 points for the middle part of the partition to apply Algorithm 3.1
and at least (m − 2)(t + 1) points in each other part, low and high points,
in order to use the observation. We use the Select procedure to find the
(m − 2)(t + 1)-lowest and the (m − 2)(t + 1)-highest point in P and then
split the point set according to the relative order to those two points. After
computing the t-tolerated Radon partition for the middle points in line 6, we
build the outer parts of the Tverberg partition in lines 7–10.

Proposition 3.4. Given a set of real numbers P of size at least 2(t+ 1)(m−
1)+1, Algorithm 3.2 computes a t-tolerated Tverberg partition of size m in time
O(|P |+ t log t). The deletion of up to t points R from P and the computation
of a Tverberg point for P \R can be performed in O(t).

Proof. We have already discussed the correctness of this algorithm. We will
now analyze the complexity of the construction and the running time in which
we can compute a Tverberg point of the constructed Tverberg partition after
up to t points were removed. We start with the construction time.

The Select procedure requires time O(|P |) if implemented as described in
the book by Cormen et. al. [4, Chapter 9]. The initial partition in lines 3–5 can
be found in one iteration over P and therefore in time O(|P |). The computation
of the tolerated Radon partition takes O(|P |+ t log t) time. The construction
of the outer partitions in line 7–10 does not require the picking of the points to
happen in a particular order, so the usage of a simple data structure like a list
gives a running time of O(|P |) for this step. All in all, the complete running
time for Algorithm 3.2 is O(|P |+ t log t) as claimed.

The deletion can be carried out in O(t) time in the same way as described
in the proof of Proposition 3.2 by setting the deletion property to true. Let
us now take a look at the partition after the deletion of up to t points. By
construction of the enveloping sets, we know they still cover the whole interval
of both inner sets. Thus it is sufficient to compute an intersection of T1 and T2.
As proved in Proposition 3.2, this can be performed in O(t). �

Interestingly, the generalization to tolerated Tverberg partitions has no ef-
fect on the running time. However, Algorithm 3.1 can be generalized in a
more direct way that improves the size of the computed tolerated Tverberg
partition. As with the Radon partitions, we sort the points and then place
them alternately in each partition. Figure 3.3 shows an example. To under-
stand why this approach still works, it helps to think of building cells with
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T1

T3

T2

Figure 3.3: Tolerated Tverberg Partition of size 3 with tolerance 3

the first m− 1 sets of the partition. Each two neighboring cells of one set in
the partition have a border in common, consisting of exactly one point. For
example, the first and the fourth point in Figure 3.3 form a cell of T1. The
fourth and the 7th point form another cell. The last element of the Partition,
Tm, is special: It is not used to build cells, but it fills the cells of the other
elements. The ith point of Tm together with the ith cells of the other sets
form an untolerated Tverberg partition of size m. The idea is now to build
t+1 cells, such that after the deletion of up to t points at least one is still intact.

Before we take a look at the complete algorithm and formally prove the
correctness, let us reason about the minimum number of points needed to use
this approach. Each of the first m− 1 sets of the partition has to consist of at
least t+ 1 cells, where two neighboring cells have a point in common. The last
element of the partition is used to fill the t+ 1 cells of each other set with at
least one point. This results in the following lower bound on the size of the
point set

(m− 1)(t+ 2)︸ ︷︷ ︸
first m− 1 sets

+ t+ 1︸ ︷︷ ︸
mth set

= m(t+ 2)− 1

Algorithm 3.3: 1d-Tolerated-Tverberg-Cells
input : Set of real numbers P , tolerance parameter t, size of partition m
output : t-tolerated Tverberg partition of size m of P

1 Q← any m(t+ 2)− 1 points of P ;
2 Sort Q. Let q1, q2, . . . , qm(t+2)−1 be the sorted sequence;
3 foreach i ∈ {1, 2, . . . ,m} do
4 Qi ← {qj ∈ Q | j mod m = i− 1}
5 T1 ← T1 ∪ (P \Q);
6 return {T1, T2, . . . , Tm}
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3.1 One dimension

Algorithm 3.3 shows the steps in more detail. In lines 1–2, a subset Q ⊆ P
of suitable size is selected and then sorted. The points within Q are alternately
placed in the sets of the partition in line 4. Finally, any remaining points are
placed in the first part of the partition in line 5.

Proposition 3.5. Given a set of real numbers P of size at least m(t+ 2)− 1,
Algorithm 3.3 computes a t-tolerated Tverberg partition for P of size m in
time O(|P | + mt logmt). The deletion of up to t points R from P and the
computation of a Tverberg point for P \R can be performed in O(m+ t).

Proof. Let T1, T2, . . . , Tm be the output obtained by Algorithm 3.3 and R ⊆ P
of size at most t. We prove the following two assertions. The statement then
follows by Helly’s theorem.

(α) ∀i ∈ {1, 2, . . . ,m− 1} : conv(Ti \R) ∩ conv(Tm \R) 6= ∅
(β) ∀i, j ∈ {1, 2, . . . ,m− 1}, i < j : conv(Ti \R) ∩ conv(Tj \R) 6= ∅

(α) Consider the output of Algorithm 3.1 on the input Ti∪Tm (i ∈ {1, 2, . . . ,m−
1}) and tolerance parameter t. It is identical to the partition {Ti, Tm}.
Since this is a t-tolerated Radon partition, the assertion follows.

(β) The proof is similar to the proof of Proposition 3.2. Assume for the sake of
contradiction that there exist two elements Ti, Tj (i, j ∈ {1, 2, . . . ,m−1})
of the constructed Tverberg partition whose convex hulls have an empty
intersection if R is removed from P . Let h be a separating hyperplane of
conv(Ti \R) and conv(Tj \R). Define k to be |Tm ∩ h−| (i.e. the number
of cells to the left of h). We know by construction of the partition

∀i ∈ {1, 2, . . . ,m− 1} : |Ti ∩ h−| ∈ {k, k + 1}

Since R separates the convex hulls of both elements, R has to contain
either (Ti ∩ h−) ∪ (Tj ∩ h+) or (Tj ∩ h−) ∪ (Ti ∩ h+). We obtain a
contradiction by showing that R exceeds in both cases its maximal size.

|(Ti ∩ h−) ∪ (Tj ∩ h+)| ≥ k + |Tj| − (k + 1) = |Tj| − 1 = t+ 1
|(Tj ∩ h−) ∪ (Ti ∩ h+)| ≥ k + |Ti| − (k + 1) = |Ti| − 1 = t+ 1

We now analyze the running time of the algorithm. In order to construct the
partition we have to sort a subset of P of size m(t+ 2)− 1. This can be done
in time O(mt logmt). If P is greater than this subset, the remaining points
are added to the first element of the partition. This requires O(|P |) time and
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thus O(|P |+mt logmt) in total.

To compute a Tverberg point of depth m after the deletion of up to t points
R, we have to compute the convex hulls of T1 \R, T2 \R, . . . , Tm \R and find
a point in the intersection. The point removal itself is again done by setting
the deletion attributes of the points in R to true in O(t) time. Since all sets
T1, T2, . . . , Tm are sorted, the minimum and maximum of each Ti can be found
in constant time. To compute the minimum and maximum of each set Ti \R
(i ∈ {1, 2, . . . ,m}), we have to skip over the deleted points. Thus, we can find
a Tverberg point after the removal of R in O(m+ t) time. �

Note that the points between two consecutive points of Tm can be assigned
to the other elements of the partition in any order. The proof (especially
assertion (β)) remains still valid as long as there is a point of each set Ti

(i ∈ {1, 2, . . . ,m − 1}) between each two consecutive points of Tm. However,
Algorithm 3.3 assigns them in a sorted order. We can improve the running
time by not sorting the whole point set. Instead, we compute Tm using the
Select procedure by searching each mth point and then partition the rest of P
into t+ 2 intervals (−∞, pm), (pm, p2m), . . . , (p(t+1)m,∞). The first m− 1 sets
of the partition can then be easily constructed by selecting one point in each of
those intervals.
A naive algorithm that selects each mth point of P and then partitions

P \ Tm into intervals would have a running time of

O(m · |P |)︸ ︷︷ ︸
computation of Tm

+ O(log(t) · |P |)︸ ︷︷ ︸
partitioning of P\Tm

= O(m2t+mt log(t)) if |P | = m(t+ 2)− 1

To actually improve the running time, we have to be more careful. The op-
timized algorithm is based on a quicksort-like divide & conquer strategy. In
each step, we select the median of Tm and split P into two sets P− and P+

that contain all points lower and higher than the median, respectively. We
recursively search for the other elements of Tm in P− and T+. If there is only
one point of Tm left in the search interval, we know due to the splitting in
points higher and lower than the median, that all other points lie between two
consecutive points of Tm. The splitting thus serves two purposes: Improving
the search time of Tm and on-the-fly partitioning of P \ Tm into intervals
(−∞, pm), (pm, p2m), . . . , (p(t+1)m,∞).

The complete steps are shown in Algorithm 3.4. As in the algorithms before,
we choose a subset Q of suitable size if P is too big. In lines 5–9, we search
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3.1 One dimension

the median of Tm and partition Q according to the value of the median. If
there are still points of Tm in Q missing, we recursively apply the algorithm
on Q− and Q+ and combine the results in lines 13–16. Lines 17–20 cover the
base case: The set Q∗ ∈ {Q+, Q−} contains all points from Q in the interval
(p(k−1)m, pkm) or (pkm, p(k+1)m). These points are then distributed among the
first m− 1 elements of the constructed tolerated Tverberg partition to ensure,
that their intersection with the interval is nonempty.

Algorithm 3.4: 1d-Tolerated-Tverberg-Cells*
input : Set of real numbers P , tolerance parameter t, size of partition m
output : t-tolerated Tverberg partition for P of size m

1 if |P | > m(t+ 2)− 1 then
2 Q← any m(t+ 2)− 1 points of P ;
3 else
4 Q← P ;
5 k ← d(|Q| div m)/2e;
6 qkm ← Select (Q, km);
7 Tm ← {qkm};
8 Q− ← {q ∈ Q | q < qkm};
9 Q+ ← {q ∈ Q | q > qkm};

10 foreach i ∈ {1, 2, . . . ,m− 1} do
11 Ti ← ∅;
12 foreach Q∗ ∈ {Q−, Q+} do
13 if |Q∗| ≥ m then
14 {T ∗1 , T ∗2 , . . . , T ∗m} ← 1d-Tolerated-Tverberg-Cells*(Q∗, t,m);
15 foreach i ∈ {1, 2, . . . ,m} do
16 Ti ← Ti ∪ T ∗i ;
17 else
18 foreach i ∈ {1, 2, . . . ,m− 1} do
19 q∗ ← remove any point from Q∗;
20 Ti ← Ti ∪ {q∗};
21 T1 ← P \Q;
22 return {T1, T2, . . . , Tm};

Theorem 3.6. Given a set of real numbers P of size at least m(t + 2) − 1,
Algorithm 3.4 computes a t-tolerated Tverberg partition for P of size m in time
O(|P |+mt log t). After the deletion of up to t points from P , a Tverberg point
can be determined within O(mt) time.
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Proof. Let P be a point set of size exactly m(t+2)−1. We can safely ignore the
case in which P is bigger than m(t+ 2)− 1, as the extension from a t-tolerated
partition of size m for a subset Q of P to a t-tolerated partition of size m for
the whole point set P in Algorithm 3.4 is trivially right. Let T1, T2, . . . , Tm be
the output of Algorithm 3.4 on input P , tolerance parameter t and desired size
m. To reuse the proof of Proposition 3.5, we have to show the following two
assertions

(α) Tm contains each mth point of P

(β) Let pm, p2m, . . . , p(t+1)m be the sorted sequence of Tm.
Then ∀i ∈ {1, 2, . . . ,m− 1}:

Ti ∩ (−∞, pm) 6= ∅ ∧ Ti ∩ (pm, p2m) 6= ∅ ∧ . . . ∧ Ti ∩ (p(t+1)m,∞) 6= ∅

(α) Intuitively, it is clear that the algorithm always selects an element whose
rank is a multiple of m and adds this to Tm. This is true even in the
recursive invocations, since we split the point set only at elements of Tm.
The formal proof is a bit technical and can safely be skipped.
We first prove that the rank in the original point set of each selected
element of Tm in line 6 is indeed a multiple of m. We show this by
induction over the recursion depth n of the algorithm. Let P (i) be some
input set to an instance of the algorithm in the ith level of the recursion
tree and let f : PF (R) × R → N be a function that returns the rank
of an element with respect to some set, where PF (R) denotes all finite
subsets of R.
Inductive Hypothesis

H(n)⇔ ∀pi ∈ P (n) : f
(
P (n), pi

)
≡ f (P, pi) mod m

Base Case n = 1
Since P (1) = P , H(1) obviously holds.

Inductive Step n− 1→ n
If the recursive call in line 19 was invoked with Q− as its argument,
the inductive hypothesis implies that

∀pi ∈ P (n) : f
(
P (n), pi

)
≡ f

(
Q−, pi

)
mod m (3.3)

Since Q− contains all points in P lower than pkm, the ranks in Q−
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3.1 One dimension

have not changed:

∀pi ∈ Q− : f
(
Q−, pi

)
= f (P, pi) (3.4)

Equations 3.3 and 3.4 imply H(n).

Suppose now the recursive call in line 19 was invoked with Q+ as
its argument. Again, we can apply the inductive hypothesis:

∀pi ∈ P (n) : f
(
P (n), pi

)
≡ f

(
Q+, pi

)
mod m (3.5)

The set Q+ contains all points in P that are greater than pkm. Thus,
the ranks of the points in Qi are decreased by km compared to their
ranks in P .

∀pi ∈ Q+ : f
(
Q+, pi

)
= f (P, pi)− km ≡ f(P, pi) mod m (3.6)

Equations 3.5 and 3.6 imply H(n).

Since H(n) holds in both possible cases, this concludes the induction.

So far, we have proved that the selection of points for Tm is right. It
remains to show that all elements whose rank is a multiple of m are found.
In each step of the algorithm, one point of Tm is found and removed from
the current point set (i.e., is no part of Q− ∪ Q+). In lines 13–16, the
search continues in the remaining point set, so no possible candidate for
Tm is removed. The algorithm terminates if |P (n)| < 2m. As we have
already proved, the ranks of the points in P (n) are equivalent to the ranks
in the original point set modulo m. Therefore, P (n) contains only one
point of the original point set whose rank is a multiple of m. This point
is found in line 6 and correctly added to Tm. Because there are no more
candidates in the point set, the termination is correct.

(β) Similar to case (α), we will prove the statement by induction on the
recursion depth.

Inductive Hypothesis Let T1, T2, . . . , Tm be the output of Algorithm 3.4
on input P (n) and let p(m)

1 , p
(m)
2 , . . . , p

(m)
|Tm| be the sorted sequence of

Tm. Then H(n) ⇔ ∀I ∈ {(−∞, p(m)
1 ), (p(m)

1 , p
(m)
2 ), . . . , (p(m)

|Tm|,∞)} :
If |I ∩ P (n)| ≥ m − 1, then each element Ti (i ∈ {1, 2, . . . ,m − 1})
contains a unique point of I ∩ P (n).
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3 Tolerated Tverberg Partitions in Low Dimensions

Base Case n = 1
Because the recursion depth is only 1, P has to be of size strictly
less than 2m. Thus, Tm contains only one point pm. The sets Q−
and Q+ then contain all points in P ∩ (−∞, pm) and P ∩ (pm,∞),
respectively. Since |P (1)| < 2m, we know that |Q−|, |Q+| < m. If
|Q−| ≥ m− 1, then a point from Q− = (−∞, pm) ∩ P is added to
each set T1, T2, . . . , Tm−1 in lines 17–20. The same holds for Q+.
This implies H(1).

Inductive Step n− 1→ n
Let T1, T2, . . . , Tm be the output of Algorithm 3.4 on input P (n) and
let I ∈ {(−∞, p(m)

1 ), (p(m)
1 , p

(m)
2 ), . . . , (p(m)

|Tm|,∞)} be some interval
induced by Tm that contains at least m− 1 points of P (n). Because
P (n) is divided at a point pkm ∈ Tm into the sets Q− and Q+, all
points of P (n) in I are either in Q− or Q+, but not distributed
between both. Without loss of generality, let I ∩ P (n) be a subset
of Q−. If |Q−| < m, then Q− = I ∩ P (n) holds because I ∩ P (n)

is of size at least m − 1. In this case, a point in this interval is
assigned to each element Ti (i ∈ {1, 2, . . . ,m− 1}) of the partition
in lines 17–20. If |Q−| ≥ m, then the algorithm is recursively
invoked with Q− as its input in line 14. Let T ∗1 , T ∗2 , . . . , T ∗m be the
result of this recursive invocation. Since the recursion depth of this
invocation is less than n, we can apply the inductive hypothesis.
Thus, each set T ∗i (i ∈ {1, 2, . . . ,m−1}) contains at least one point of
Q− in each interval (−∞, q(m)

1 ), (q(m)
1 , q

(m)
2 ), . . . , (q(m)

|T ∗m|
,+∞), where

q
(m)
1 , q

(m)
2 , . . . , q

(m)
|T ∗m|

is the sorted sequence of points in T ∗m. Since
T ∗m contains all points of Tm lower than pkm, one of the intervals
(−∞, q(m)

1 ), (q(m)
1 , q

(m)
2 ), . . . , (q(m)

|T ∗m|
,+∞) coincides with I. Thus, each

set T ∗i (i ∈ {1, 2, . . . ,m− 1} contains at least one point of Q− ∩ I =
I ∩ P (n). Because each set T ∗i (i ∈ {1, 2, . . . ,m− 1}) is contained in
the corresponding set Ti of the returned partition, we know that Ti

also contains a point of P (n) in I, which concludes the proof.

Statement (α) asserts, that Tm contains each mth point of the input
point set. Thus, each interval {(−∞, p(m)

1 ), (p(m)
1 , p

(m)
2 ), . . . , (p(m)

|Tm|,∞)}
contains exactly m− 1 points. Together with the induction, this implies
(β).

So far we have proved, that the convex hulls of the elements of the returned
sets T1, T2, . . . , Tm cannot be separated by the removal of up to t points. We
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3.1 One dimension

still have to check that these sets form a partition of P . Each point that is
assigned to an element Ti is directly removed and will not be assigned to any
other element again. Also, points will only be removed if they are assigned.
Together, this implies that the result is a partition of the input set.

The search for the splitting element qkm in each step can be performed
in O(mt) time. Everything else except the recursive invocation can also be
computed within O(mt) time. Since qkm is the median of the input set, the
input sets of the recursive calls is less than |P |/2. The algorithm terminates
if the input set is of size strictly less than 2m. This leads to the following
recursion inequality for the total running time

∀n ≥ 2m : T (n) ≤ 2T (n/2) +O(n)
∀n < 2m : T (n) ≤ O(n)

which resolves to O(mt log t) as claimed. �

The minimum number of points needed to apply Algorithm 3.3 and 3.4 is
different to the bound by Soberón and Strausz. We will now focus on the rela-
tionship between both bounds of the tolerated Tverberg problem. Surprisingly,
we can show that both preceding algorithms give a great improvement compared
to the bound by Soberón and Strausz for the one dimensional case. We first
show that the new bound is always less or equal than the Soberón-Strausz
bound for all values of m and t.

m(t+ 2)− 1
!
≤ 2(t+ 1)(m− 1) + 1 ⇔

(m− 1)(t+ 2) + t+ 1
!
≤ 2(t+ 1)(m− 1) + 1 ⇔

t+ 1
!
≤ t(m− 1) + 1 ⇔

0
!
≤ t(m− 2)

The last inequality holds since m ≥ 2 is a precondition. The inequality also
implies, that the new bound is strictly better if t > 0 or m > 2. That is,
the new bound is better except in the special cases of untolerated Tverberg
partitions or tolerated Radon partitions.

We now analyze the asymptotic behaviour of both bounds for large values of
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3 Tolerated Tverberg Partitions in Low Dimensions

m and t.

lim
(m,t)→(∞,∞)

m(t+ 2)− 1
2(t+ 1)(m− 1) + 1

= lim
(m,t)→(∞,∞)

1
2 + 1

(t+1)(m−1)
+ 1

2(t+ 1) + 1
2(m− 1)

= 1
2

Thus, for large values of m and t only about half of the points compared to
the bound by Soberón and Strausz are required. We can show that the new
bound cannot be improved.

Theorem 3.7. Let P be a set of a real numbers. There exists a t-tolerated
Tverberg partition for P of size m if and only if P is of size at least m(t+2)−1.

Proof. We have already proved in Proposition 3.5 the existence of a t-tolerated
Tverberg partition of size m for point sets having the required amount of
elements.

Let P ′ be a set of real numbers of size strictly less than m(t+ 2)− 1. Assume
there is a t-tolerated Tverberg partition P ′1, P

′
2, . . . , P

′
m of size m for P ′. By

the averaging argument, there is a set P ′i of size less or equal to t+ 1. On the
other hand, P ′i has to be of size at least t+ 1 since the partition is t-tolerated.
Therefore, P is of size exactly t + 1. Suppose there exists another set P ′j
such that |P ′i ∪ P ′j| < 2t + 3. Because P ′i and P ′j are part of a t-tolerated
Tverberg partition, {P ′i , P ′j} forms a t-tolerated Radon partition for P ′i ∪ P ′j .
This contradicts Proposition 3.3.

Suppose now there exists no set P ′j such that |P ′i ∪ P ′j| < 2t+ 3 holds. Then
each other set P ′j has to be of size at least 2t + 3 − |P ′i |. We can use this to
lower bound the size of P ′.

m(t+ 2)− 1 > |P ′| = |P ′i |+ |
⋃

j∈{1,2,...,m},j 6=i P
′
j|

≥ |P ′i |+ (m− 1)(2t+ 3− |P ′i |)
≥ (t+ 1) + (m− 1)(t+ 2) = m(t+ 2)− 1 E

We have obtained contradictions in both possible cases, which proves the
theorem. �
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3.2 Multiple Dimensions

3.2 Multiple Dimensions
We use a simple dimension reduction similar to the lifting argument (Lemma 2.16)
by Mulzer and Werner [9] that enables us to apply the algorithms in the last
section to multi-dimensional input. Given a point set P ⊆ Rd, let h be a hyper-
plane that splits P evenly. We then partition P into pairs Ti = {p−i , p+

i }, where
p−i ∈ h− and p+

i ∈ h+. Each of those pairs is projected onto the intersection
of the connecting line segment p+

i p
−
i and h. We thus obtain |P |/2 points of

dimension d − 1. Figure 3.4 displays an example. Pairs are indicated with
dashed lines, crosses mark the points onto which the pairs are projected.

h

Figure 3.4: Dimension Reduction

Let p′i ∈ Rd−1 be the projection of Ti and T ′ = {T ′1, T ′2, . . . , T ′m} a t-tolerated
Tverberg partition of P ′ = {p′1, . . . , p′|P |/2}. It is easy to check that we obtain a
Tverberg partition T of size m and tolerance t for P by replacing each qi in T ′
by its corresponding pair p−i , p+

i . The algorithm is now clear: We reduce the
dimensionality of the initial point set P until we can apply Algorithm 3.4 and
then lift the solution for one dimension to the original dimensionality.
Algorithm 3.5 follows this approach. If the dimensionality is one, the algo-

rithms just uses our result from the last section (lines 1–2). The hyperplane h
is computed in line 4. In lines 5–8, the points are projected onto h. Finally, the
result for d− 1 dimensions is lifted to the original dimensionality (lines 11–12).

Proposition 3.8. Given a set P ⊂ Rd of size at least 2d−1(m(t + 2) − 1),
Algorithm 3.5 computes a Tverberg partition of size m and tolerance t for P in
time O(|P |+mt log t).

Proof. We have already proved the correctness of the algorithm. It still remains
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3 Tolerated Tverberg Partitions in Low Dimensions

Algorithm 3.5: DimReduct-Tolerated-Tverberg
input : point set P ⊂ Rd, tolerance parameter t, size of partition m
output : t-tolerated Tverberg partition for P of size m

1 if d = 1 then
2 return 1d-Tolerated-Tverberg-Cells*(P,m,t)
3 h← hyperplane s.t. |P ∩ h−| = |P ∩ h+|;
4 Choose a basis B of the affine subspace h;
5 foreach i ∈ {1, 2, . . . , |P ∩ h−|} do
6 p−i ← remove any point from P that is an element of P ∩ h−;
7 p+

i ← remove any point from P that is an element of P ∩ h+;
8 qi ← coordinates of p−i p+

i ∩ h with respect to B;
9 Q← {q1, q2, . . . , q|P∩h−|};

10 {T ′1, T ′2, . . . , T ′m} ← DimReduct-Tolerated-Tverberg(Q,m,t);
11 foreach j ∈ {1, 2, . . . ,m} do
12 Tj ← {p−i , p+

i | qi ∈ T ′j};
13 return {T1, T2, . . . , Tm};

for us to show the running time and to prove the lower bound on the size of P .

We can compute the hyperplane h by searching a median for P projected
onto the first dimension. Using the Select procedure, this takes time O(|P |).
The dimension reduction as well as the lifting requires also linear time in the
size of P . We obtain the following recurrence relations for appropriate constants
c1, c2

T (n, d) = T (n/2, d− 1) + c1n

T (n, 1) = c2(mt log t+ n)

which resolves to

T (n, d) = c2

(
mt log t+ n

2d−1

)
+

d−2∑
j=0

c1
n

2j

= c2

(
mt log t+ n

2d−1

)
+ c1n

(
2− 1

2
d
)
∈ O(mt log t+ n)

This proves the claimed running time. Note that the parameter d is hidden in
the size n of P . We continue with proving the bound on the size of P . In each
step, we project two points in P onto one point in h, thus halving the size of the
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3.2 Multiple Dimensions

point set. To apply Algorithm 3.4, we need at least m(t+2)−1 one-dimensional
points. Therefore, it is sufficient if P is of size at least 2d−1(m(t+ 2)− 1). �

Again, we are interested in a comparison between the bound of Algorithm 3.5
and the Soberón-Strausz-bound.

2d−1(m(t+ 2)− 1) !
< (d+ 1)(m− 1)(t+ 1) + 1 ⇔

0 !
<
(
(d+ 1)− 2d−1

)
mt+

(
(d+ 1)− 2d

)
m

+ 2d−1 − (d+ 1)t− d

In general, this is false as the right hand side of the inequality becomes negative
if d ≥ 3. Let us examine the conditions under which the new bound is better
for the two-dimensional case.

0 !
< mt−m− 3t

m

m− 3
!
< t

This holds for instance if t ≥ 5 or m ≥ 7 ∧ t ≥ 2. Thus, Algorithm 3.5 can
construct a t-tolerated Tverberg partition of size m in R2 using less points than
the Soberón-Strausz bound implies for almost all values of m and t.

There is a slight optimization to the presented dimension reduction: By
choosing a hyperplane that splits P into two even sets and is spanned by d points
in P , the points in P ∩ h can be projected onto the d− 1 dimensional subspace
without having to sacrifice another point. Unfortunately, this optimization is
too weak to derive a better bound for special cases in dimensions higher than
2.

33





4 Approximation Preserving
Reductions

The focus of this chapter lies in the development of approximation preserving
reductions of the tolerated Tverberg problem to the untolerated version, as those
let us reuse existing approximating algorithms for the untolerated Tverberg
problem to compute tolerated Tverberg partitions. An approximation preserving
reduction is a reduction of a problem Π to a problem Π′ that leads for every
α-approximation algorithm for Π to an f(α)-approximation algorithm for Π′,
where f is some function. For a more thorough discussion about this kind of
reductions, we refer the reader to the book by Williamson and Shmoys [19].

4.1 Reduction to the Untolerated Tverberg
Problem

We present three different approximation preserving reductions to the untoler-
ated Tverberg problem. All reductions can be applied to any approximation
algorithm for the untolerated Tverberg problem.

4.1.1 Point Stabilization
In general, the output of any approximation algorithm AUT for the untolerated
Tverberg problem is of tolerance 0, as each point could be essential for the
intersection of the convex hulls of the partition. One way to overcome this
problem is to compute points with depth of at least t+ 1 for disjoint subsets of
P . These points are still contained in the convex hulls of their corresponding
subsets after the removal of up to t points. In this sense, they are stable. The
disjoint subsets can be used to construct a t-tolerated Tverberg partition for P
out of any untolerated Tverberg partition for the stabilized points.

Let AUT and ACP be approximation algorithms for the untolerated Tverberg
problem and the centerpoint problem, respectively. Assume that AUT returns
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4 Approximation Preserving Reductions

a Tverberg partition of size mUT (|P |) for any point set P and ACP returns a
point of depth t+ 1 with respect to an input point set of size at least sCP (t+ 1).
In Algorithm 4.1, we partition the point set P into n′ = b|P |/sCP (t+ 1)c sets
Q1, Q2, . . . , Qn′ , each of size sCP (t+ 1), and use algorithm ACP to obtain for
each set a point p′i of depth t+ 1 (lines 1–4). Applying algorithm AUT in line 5,
we obtain a Tverberg partition T ′ = {T ′1, T ′2, . . . , T ′mUT (n′)} of the stabilized
point set P ′ = {p′1, p′2, . . . , p′n′}. In lines 6–7, each point p′i in the elements of
T ′ is replaced by its corresponding subset Qi. The so modified partition is
returned as result of the algorithm.

Algorithm 4.1: Point-Stabilization
input : Point set P ⊂ Rd, tolerance parameter t, algorithm ACP ,

algorithm AUT

1 n′ ← b|P |/sCP (t+ 1)c;
2 Partition P into n′ sets Q1, Q2, . . . , Qn′ , each of size at least sCP (t+ 1);
3 foreach i ∈ {1, 2, . . . , n′} do
4 p′i ← ACP (Qi);
5 {T ′1, T ′2, . . . , T ′mUT (n′)} ← AUT ({p′i | i ∈ {1, 2, . . . , n′}});
6 foreach i ∈ {1, 2, . . . ,mUT (n′)} do
7 Ti ←

⋃
p′j∈T ′i

Qj;
8 return {T1, T2, . . . , TmUT (n′)}

Theorem 4.1. Let AUT , ACP be as above and TUT , TCP the respective running
time functions. Algorithm 4.1 constructs a t-tolerated Tverberg partition of size
mUT (b|P |/sCP (t+ 1)c) for any input point set P ⊂ Rd in time O(TCP (sCP (t+
1)) · |P |/sCP (t+ 1) + TUT (|P |/sCP (t+ 1))).

Proof. We start with proving the correctness of Algorithm 4.1 and then show
the running time.

As T ′ = {T ′1, T ′2, . . . , T ′mUT (n′)} is a Tverberg partition of P ′, we know by
definition that

mUT (n′)⋂
i=1

conv(T ′i ) 6= ∅

This property is preserved by replacing each point p′i in the elements of T ′ by
its corresponding subset Qi, since p′i ∈ conv(Qi). Thus, the convex hulls of
the elements of T have a nonempty intersection. As the set {Q1, Q2, . . . , Qn′}
forms a partition of P and each set Qi corresponds to a unique point p′i ∈ P ′,
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4.1 Reduction to the Untolerated Tverberg Problem

T is a partition of P . So far we have proved that T is a Tverberg partition. It
remains to show the claimed tolerance. By construction of the point set P ′,
each point p′i ∈ P ′ has depth t+ 1 with respect to its corresponding subset Qi.
By Lemma 2.11 on page 9, this is equivalent to

∀p′i ∈ P ′ : ∀R ⊆ Qi, |R| ≤ t : p′i ∈ conv(Qi \R)

Therefore, the convex hulls of the elements of T have a nonempty intersection
even after the removal of up to t points from P .

The partitioning of P into sets Q1, Q2, . . . , Qb|P |/sCP (t+1)c in line 2 takes
linear time in the size of P . The algorithm ACP is executed on each of these
sets in lines 3–4, which requires O(TCP (sCP (t + 1)) · |P |/sCP (t + 1)) time in
total. By our assumption, the computation of the Tverberg partition for P ′
takes O(TUT (|P |/sCP (t + 1)) time. The construction of T in lines 6–7 takes
time O(|P |/sCP (t+ 1)), as each point p′i ∈ P ′ is replaced only once and each
replacement can be performed in constant time if all sets are implemented as
linked lists. Summing everything up, we obtain a total running time of

O(TCP (sCP (t+ 1)) · |P |/sCP (t+ 1) + TUT (|P |/sCP (t+ 1)))

�

Table 4.1 on page 50 shows values for concrete approximation algorithms
that are obtained by applying Theorem 4.1 to approximation algorithms for
the untolerated Tverberg problem. Note that the approximation algorithms for
the untolerated Tverberg problem are used for both computing points of depth
t+ 1 and computing a Tverberg partition of the stabilized point set. Thus, in
this analysis, ACP and AUT refer to the same algorithm.

An advantage of working on a stabilized point set is that each Tverberg point
of the Tverberg partition T ′ for the stabilized point set is a Tverberg point
of the returned Tverberg partition T even if we remove up to t points from
P . This in an interesting property since both approximation algorithms for
the untolerated Tverberg problem return a Tverberg partition together with
a corresponding Tverberg point. By storing this returned Tverberg point for
T ′, we obtain a Tverberg point for the returned Tverberg partition T that
remains a Tverberg point even if up to t points are removed from P during the
construction of T without any additional computation.

Proposition 4.2. Let AUT and ACP be as in Theorem 4.1 and let P ⊂ Rd be
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a point set and t ∈ N the tolerance parameter. Let further be T the returned
t-tolerated Tverberg partition by algorithm 4.1 on input (P, t,ACP ,AUT ) and
T ′ the Tverberg partition of the stabilized point set. Then

c ∈
⋂

T ′i∈T ′
conv(T ′i )⇒ ∀R ⊂ P, |R| ≤ t : c ∈

⋂
Ti∈T

conv(Ti \R)

Proof. Let c be a Tverberg point of T ′. Fix some subset R ⊂ P of size at most
t. In the proof of Theorem 4.1, we have already argued that each stabilized
point p′i is contained in conv(Qi \ R). By construction of T , we thus know
that ∀T ′i ∈ T ′ : T ′i ⊂ conv(Ti \ R). Together with our assumption that c is a
Tverberg point of T ′, this implies that c ∈ ⋂Ti∈T conv(Ti \R). �

4.1.2 Partition Hardening
In the preceding section, we have guaranteed the tolerance of the constructed
Tverberg partition by modifying points. In this section, we present two slightly
different approaches, parallel and sequential partition hardening, that both
modify Tverberg partitions of the input point set to guarantee tolerance. The
main idea behind these approaches is to combine elements of untolerated
Tverberg partitions to increase their tolerance at the expense of their size.

Parallel Partition Hardening

We partition P into t+ 1 disjoint sets of equal size and use the approximation
algorithm for the untolerated Tverberg problem to obtain for each of these sets
an untolerated Tverberg partition. After removing any t points of P , at least
one of these partitions remains untouched. By combining each ith element of
these partitions, we can guarantee a nonempty intersection of the convex hulls
of the combined elements.

In lines 1–4 of Algorithm 4.2, we partition P into t+ 1 sets Q1, Q2, . . . , Qt+1
of equal size and use algorithm AUT to obtain for each set a Tverberg partition
of size m = mUT (bP/(t+1)c). All ith elements of these partitions are combined
into one element of the returned Tverberg partition in lines 5–6.

Theorem 4.3. Let AUT be an approximation algorithm for the untolerated
Tverberg problem under the assumptions of Theorem 4.1 and P ⊂ Rd a point
set. Algorithm 4.2 computes a t-tolerated Tverberg partition of P of size
mUT (bP/(t+ 1)c) in time O(t · TUT (|P |/t)).
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4.1 Reduction to the Untolerated Tverberg Problem

Algorithm 4.2: Parallel-Partition-Hardening
input : Point set P ⊂ Rd, tolerance parameter t, algorithm AUT

1 Partition P into sets Q1, Q2, . . . , Qt+1 of equal size;
2 m← mUT (b|P |/(t+ 1)c);
3 foreach i ∈ {1, 2, . . . , t+ 1} do
4 Ti = {Ti,1, Ti,2, . . . , Ti,m} ← AUT (Qi);
5 foreach j ∈ {1, 2, . . . ,m} do
6 Tj ←

⋃
i∈{1,2,...,t+1} Ti,j;

7 return {T1, T2, . . . , Tm};

Proof. We first prove that the returned set T = {T1, T2, . . . , Tm} is a partition
of P of size m = mUT (bP/(t+ 1)c) and then show the conjectured tolerance.
Since Q1, Q2, . . . , Qt+1 is a partition of P and each Ti is a partition of Qi, the
set ⋃t+1

i=1 Ti is a partition of P . This still holds if we combine elements from⋃t+1
i=1 Ti, which proves that T is a partition of P . As the combination does not

change the size of the initial Tverberg partitions, T is a partition of size m.
Fix some subset R ⊆ P of size at most t. Since we have partitioned P into

t+ 1 sets, there is at least one set Qi that contains no point from R. Thus, the
convex hulls of the elements of Ti have still a nonempty intersection even if we
remove R from P . By construction, each element Ti,j is a subset of Tj. This
implies, that ∩m

j=1conv(Tj \R) 6= ∅. Since R was an arbitrary subset of size at
most t, T is t-tolerated.

The initial partitioning in line 1 can be performed in time O(|P |). The
computation of the Tverberg partitions for the initial sets in line 4 requires O(t ·
TUT (|P |/t)) time. The combination of the elements of the Tverberg partitions
in line 6 can be carried out in O(t ·mUT (|P |/t)) if the sets are represented as
linked lists. Since the time TUT (|Qi|) to construct a Tverberg partition of Qi is
at least linear in the size of the returned partition mUT (|Qi|) and in the size of
Qi, this results in a total time complexity of O(t · TUT (|P |/t)). �

We refer to this method as parallel partition hardening, as the computation
of the Tverberg partitions for each set Qi is completely independent of solutions
for other sets Qj (j 6= i) and can be carried out in parallel.

Let us again take a look at Table 4.1 on page 50. Compared to point
stabilization, we obtain approximation algorithms for the tolerated Tverberg
problem that compute partitions of much greater size. Unfortunately, using
this approach, we are unable to compute a point that is a Tverberg point
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of the constructed Tverberg partition T if up to t points are removed from
P . However, we can still take advantage of the specific construction of T to
compute a Tverberg point after t points are removed. In particular, we can
show that Tverberg points for at least one of the initial sets Q1, Q2, . . . , Qt+1
remain Tverberg points of T even after up to t points are removed.

Proposition 4.4. Let AUT be an algorithm under the assumptions of Theo-
rem 4.1 and P ⊂ Rd a point set. Let further be t ∈ N the tolerance parameter
and T the returned t-tolerated Tverberg partition of algorithm 4.1 on input
(P, t,AUT ). Then

∀R ⊂ P, |R| ≤ t : ∃i ∈ {1, 2, . . . , t+ 1} :
⋂

Ti,j∈Ti

conv(Ti,j) ⊆
⋂

Tj∈T
conv(Tj \R)

where Ti is the Tverberg partition for Qi that is computed by algorithm 4.1 in
line 4.

Proof. Fix some subset R ⊂ P of size at most t. Let T1, T2, . . . , Tt+1 be the
Tverberg partitions of the sets Q1, Q2, . . . , Qt+1, respectively. In the proof of
Theorem 4.3, we showed that there exists at least one Tverberg partition Ti

such that Ti,j ⊂ Tj \ R for all j ∈ {1, 2, . . . ,m′}. Thus every Tverberg point
of Ti is also a Tverberg point of T . Since R was arbitrary, this concludes the
proof. �

This result implies a simple algorithm to determine a Tverberg point of
the returned Tverberg partition after the removal of up to t points if the
used approximation algorithm for the untolerated Tverberg problem returns a
Tverberg point together with the computed Tverberg partition. Suppose that
each point p ∈ P has a pointer to the initial set Qi in which it is contained.
Given a subset R ⊂ P of size at most t, we can use the pointer to the initial
sets to find a Qi from which no point is removed and return the corresponding
Tverberg point.

Sequential Partition Hardening

Instead of partitioning P into t+ 1 sets and computing for each set a Tverberg
partition, we can also use a Tverberg partition of the entire input set P to
construct a tolerated one. Let m = mUT (|P |) be the size of the returned
partition by AUT on input P and T ′ = {T ′1, T ′2, . . . , T ′m} be the corresponding
partition. We partition T ′ into t + 1 subsets T1, T2, . . . , Tt+1, each of size
bm/(t+ 1)c. Since T ′ is a Tverberg partition, each subset Ti is also a Tverberg
partition of a subset of P . Thus, we can use the same method as in the parallel
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4.1 Reduction to the Untolerated Tverberg Problem

partition hardening reduction to construct a t-tolerated Tverberg partition for
P out of T1, T2, . . . , Tt+1. Because this time we had to compute the untolerated
Tverberg partition for the entire set P in advance, we refer to this approach as
sequential partition hardening.

Algorithm 4.3: Sequential-Partition-Hardening
input : Point set P ⊂ Rd, tolerance parameter t, algorithm AUT

1 m′ ← mUT (|P |);
2 T ′ = {T ′1, T ′2, . . . , T ′m′} ← AUT (Qi);
3 m← bm′/(t+ 1)c;
4 foreach j ∈ {1, 2, . . . ,m} do
5 Tj ←

⋃
i∈{(m−1)(t+1)+1,(m−1)(t+1)+2,...,m(t+1)} T

′
i ;

6 return {T1, T2, . . . , Tm};

Theorem 4.5. Let AUT be an approximation algorithm for the untolerated
Tverberg problem under the assumptions of Theorem 4.1 and P ⊂ Rd a point set.
Algorithm 4.3 computes a t-tolerated Tverberg partition of size bmUT (|P |)/(t+
1)c for P in time O(TUT (|P |)). Also, every Tverberg point of T ′ is a Tverberg
point of T even if up to t points are removed from P , where T ′ is the Tverberg
partition computed by algorithm 4.3 in line 2.

Proof. The correctness of the algorithm relies on Theorem 4.3. The running
time of Algorithm 4.3 is clearly dominated by the computation of the untoler-
ated Tverberg partition in line 2.

Let c be a Tverberg point of the Tverberg partition T ′ computed by AUT in
line 2. Since each Tverberg partition T ′i is a subset of the elements of T ′, c is
also a Tverberg point of T ′i . In the proof of Theorem 4.3, we have argued that
one of the Tverberg points of the combined partitions is still a Tverberg point
of the returned partition after the removal of up to t points. In this case, all
combined Tverberg partitions have a Tverberg point in common, so we know
that this point is still a valid Tverberg point of the returned partition after up
to t points are removed. �

Although the sequential partition hardening reduction is very similar to the
parallel version, there are subtle differences. One different aspect is the size of
the obtained tolerated partition. As stated, we obtain a Tverberg partition of
size bmUT (|P |)/(t+ 1)c in contrast to mUT (b|P |/(t+ 1)c). While this makes
neither for the algorithm by Miller & Sheehy [7] nor for the algorithm by Mulzer
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4 Approximation Preserving Reductions

& Werner [9] a difference, as in both cases the size of the untolerated Tverberg
partition is linear in the size of the input point set, in general both terms do
not have to be equal.
If we compare sequential partition hardening with the parallel version in

Table 4.1 on page 50, we note another difference. If the running time of the
approximation algorithm for the untolerated Tverberg problem is not linear in
the size of P , as it is the case for Miller & Sheehy’s algorithm, the running time
of the obtained approximation algorithm for the tolerated Tverberg problem is
worse than the running time of the approximation algorithm obtained using
parallel partition hardening.
Perhaps the main difference, which is independent of the properties of the

used approximation algorithms for the untolerated Tverberg problem, is the
possibility to compute a Tverberg point of the returned partition that remains
a Tverberg point after the removal of up to t points. In the parallel variant, it
is in general impossible to find such a point. In the sequential variant, every
Tverberg point of the untolerated partition of P is also a Tverberg point of
the Tverberg partitions T ′1, T ′2, . . . , T ′t+1 and thus remains a Tverberg point for
the tolerated partition, even after up to t points are removed. In this sense,
sequential partition hardening combines the advantage of computing a Tverberg
point that remains a Tverberg point after the removal of up to t points in
advance from point stabilization, with the greater size of the computed tolerated
Tverberg partition from parallel partition hardening.

If we want to always compute t-tolerated Tverberg partitions that admit the
computation of Tverberg points that remain Tverberg points even if up to t
points are removed from P , we can show that sequential partition hardening
cannot be improved in the quality of the obtained approximation algorithms.
Consider an algorithm AUT that returns on input P ⊂ Rd a Tverberg

partition of maximum size. Suppose we could use this algorithm to construct an
approximation algorithm AT T for the tolerated Tverberg problem that returns
on input (P, t) a t-tolerated Tverberg partition T for P of size strictly greater
than mUT (|P |)/(t+ 1) and there exists a Tverberg point c of T that remains a
Tverberg point of T even if up to t points are removed. That is, for all subsets
R ⊂ P of size at most t, c is contained in ⋂Ti∈T conv(Ti \R). By Lemma 2.11,
this implies that c has depth t+ 1 with respect to each element of T and thus
the depth of c is strictly greater than (t + 1)mUT (|P |)/(t + 1) = mUT (|P |)
with respect to P . Since AUT returns a Tverberg partition of maximum depth,
mUT (|P |) is greater or equal to |P |/(d+ 1). Therefore, the depth of c is strictly
greater than |P |/(d+ 1). Because P was arbitrary, this is a contradiction to
the tightness of the centerpoint theorem.
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4.2 Reduction to the Constant Tolerated Tverberg Problem

4.2 Reduction to the Constant Tolerated
Tverberg Problem

We refer to the problem of finding a t-tolerated Tverberg partition as constant
tolerated Tverberg problem if t is a constant and not part of the input. For the
special case of t = 0, we have developed several approximation preserving re-
ductions in the preceding section. In this section, we develop an approximation
preserving reduction for the more general case in which t can be an arbitrary
constant.

In the parallel partition hardening method, we combine several Tverberg
partitions for disjoint subsets to create a tolerated Tverberg partition for the
entire set. This still works if applied to a set of Tverberg partitions with
tolerance greater than zero. In other words, we combine Tverberg partitions for
disjoint sets with some tolerance to obtain a Tverberg partition for the whole
point set with higher tolerance.

Lemma 4.6. (Combination Lemma) Let T1, T2, . . . , Tk be Tverberg partitions
of size m and tolerance t for disjoint point sets P1, P2, . . . , Pk ⊂ Rd. Then

T =
{
Ti = ⋃k

j=1 Tj,i | i ∈ {1, 2, . . . ,m}
}

is a Tverberg partition of P = ⋃k
j=1 Pi with tolerance k(t+ 1)− 1 and size m,

where Tj,i is the ith element of Tj.

Proof. Let R ⊆ P be any subset of size less or equal to k(t+ 1)− 1. Since we
have k partitions, there exists a j such that Pj ∩R ≤ t. By our precondition, Tj

is t-tolerated. We thus know that ⋂m
i=1 conv(Tj,i \R) 6= ∅. Because each element

Tj,i is contained in the corresponding element Ti of T , the convex hulls of the
elements in T still intersect after the removal of R. Since R was arbitrary, the
claim follows. �

Note that the parallel partition hardening method is a special case of this
lemma, where the tolerance of the partitions T1, T2, . . . , Tk is 0.

Lemma 2.13 by Miller & Sheehy is very similar to Lemma 4.6, as it also
constructs a Tverberg partition for the entire set out of several Tverberg parti-
tions for disjoint subsets. While our lemma preserves the size of the combined
Tverberg partitions and increases the tolerance, the lemma by Miller & Sheehy
increases the size but does not preserve the tolerance. Despite this difference,
we can adopt the general scheme of their algorithm in conjunction with our
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4 Approximation Preserving Reductions

combination lemma: We partition the input point set into small subsets of
equal size and use an approximation algorithm for the constant tolerated Tver-
berg problem to obtain initial solutions for each subset. In a second step, we
repeatedly combine these solutions to increase their tolerance until only one
solution for the entire point set is left.

Algorithm 4.4 follows this approach. The parameter n′ of the input defines
the size of the subsets on which the approximation algorithm ACT T for the
constant tolerated Tverberg problem is applied. The parameter k defines
how many of the tolerated Tverberg problems for subsets of P are combined
at once using Lemma 4.6. We will later determine the optimal values for
these parameters. The solutions of ACT T for the initial sets are computed
and stored in lines 1–4. The solutions array contains in index i all unused
tolerated Tverberg partitions that have been computed after i combination
steps. By unused we mean that those partitions have not been used yet during
the combination steps. Note that all partitions in solutions[i] have the same
tolerance. The combination itself is carried out in lines 7–10 and is repeated
until there are less than k partial solutions left of the same tolerance. The outer
repeat-until-loop (line 6) terminates if no combination was performed. That
is, when each cell of the solutions array contains strictly less than k elements.
Finally, all partial solutions are combined using the parallel partition hardening
method to construct one partition for the entire input set in line 13.

Theorem 4.7. Given a point set P ⊆ Rd, let ACT T be an algorithm that returns
a tCT T -tolerated partition of size mCT T (|P |), where tCT T is a constant. Then
Algorithm 4.4 returns a

(
|P |+n′

kn′
(tCT T + 1)− 1

)
-tolerated Tverberg partition of

P of size mCT T (n′) in time O (TCT T (n′) · |P |/n′ + k ·mCT T (n′) logk (|P |/n′)),
where TCT T (n′) is the running time of algorithm ACT T if applied to a set of
size of at most n′.

Proof. We first show that algorithm 4.4 always returns a Tverberg partition for
P of size mCT T (n′) and prove afterwards the tolerance and the running time of
the algorithm.

We prove that the output is a Tverberg partition of P by showing the
following invariant: The solutions array always contains Tverberg partitions of
size mCT T (n′) of disjoint subsets that together form a partition of P . This holds
in the beginning of the algorithm (lines 1–4), as the solutions array contains
the results of ACT T applied to each set of a partition of P . During each
combination step (lines 7–10), the combined Tverberg partitions T1, T2, . . . , Tk
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4.2 Reduction to the Constant Tolerated Tverberg Problem

Algorithm 4.4: Constant-Tolerated-Tverberg-Reduction
input : Point set P , approximation algorithm for the constant tolerated

Tverberg problem ACT T , base set size n′, branching factor k
1 {P1, P2, . . . , Pb|P |/n′c} ← partition of P into sets of size n′;
2 solutions← array of sets of tolerated Tverberg partitions for subsets of P ;
3 foreach i ∈ {1, 2, . . . , b|P |/n′c} do
4 solutions[0]← solutions[0] ∪ {ACT T (Pi)};
5 level← 0;
6 repeat
7 while |solutions[level]| ≥ k do
8 T1, T2, . . . , Tk ← remove any k elements from solutions[level];
9 T ← combination of T1, T2, . . . , Tk using Lemma 4.6;

10 solutions[level + 1]← solutions[level + 1] ∪ {T };
11 level← level + 1;
12 until no combination was performed;
13 T ← combination of all tolerated Tverberg partitions in solutions using the

parallel partition hardening method;
14 return T ;

are removed in line 8 and will not be part of the combination anymore. The
obtained partition T of this combination is added to the solutions array. Let P ′i
be the subset of P for which Ti is a Tverberg partition. By the correctness of
Lemma 4.6, T is a Tverberg partition of ⋃k

i=1 P
′
i and is of the same size as the

combined partitions. Thus, at the end of the combination, the invariant holds.

This implies, that the final combination step in line 13 indeed returns a
Tverberg partition of P of size mCT T (n′).

We continue with proving the tolerance of the final Tverberg partition. Each
Tverberg partition in solutions[i] is the result of i combination steps. If t′ is
the tolerance of the combined partitions, the resulting partition has tolerance
k(t′ + 1) − 1. Due to algorithm ACT T , the initial Tverberg partitions have
tolerance tACT T

. This leads to the following recurrence relation

tolerance(i) = k · (tolerance(i− 1) + 1)− 1
tolerance(0) = tACT T
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which resolves to

tolerance(i) = k
(
k(tolerance(i− 2) + 1)− 1 + 1

)
− 1 ⇔

tolerance(i) = k2 (tolerance(i− 2) + 1)− 1 ⇔
tolerance(i) = ki(tACT T

+ 1)− 1

To give a lower bound on the tolerance of the returned partition, we need to
know the maximum index of the solutions array. Let us analyze the size of a
subset of P that corresponds to a partition in solutions[i]. The initial point sets
are of size n′. Let again be T1, T2, . . . , Tk the combined partitions, where Pi is
the corresponding point set to Ti. The resulting partition T then corresponds
to the point set ⋃k

j=1 Pi. Thus, the number of points of each Tverberg partition
in solutions[i] is kin′. The algorithm advances in line 11 only if there are strictly
less than k elements left in solutions[level]. In the end, each cell of the solutions
array contains strictly less than k partitions. We have already proved, that the
corresponding subsets to each partition in the solutions array form a partition
of P . This leads to the following upper bound on the number of points in P

|P | ≤
h∑

i=0
(k − 1)(ki · n′)

where h is the maximum index of the solutions array at the termination. We
can use this inequality to lower bound h.

|P | ≤ (k − 1)n′
h∑

i=0
ki ⇔

= (k − 1)n′k
h+1 − 1
k − 1 ⇔

logk

(
|P |
n′

+ 1
)
− 1 ≤ h

This implies that solutions[logk

(
|P |
n′

+ 1
)
− 1] contains at least one Tverberg

partition. Since this partition is used to build the returned partition T , T has
to be of tolerance at least klogk( |P |n′ +1)−1(tCT T + 1)− 1 = |P |+n′

kn′
(tCT T + 1)− 1.

The only remaining point of the proof is the running time of algorithm 4.4.
Computing the initial partitions takes O(TCT T (n′) · |P |/n′) time. The crucial
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part are both loops. The inner while loop removes and combines in each step k
partitions from solutions[level]. Both the removal and the combination can be
carried out within O(k ·mCT T (n′)) time if the sets are represented as linked
lists. The outer loop increases the level in each iteration. We need to upper
bound the maximum index h of the solutions array. There can be no partitions
whose corresponding point set is greater than P . Using our result about the
number of points of the partitions in solutions[h], we get the following inequality

|P | ≥ kh−1n′ ⇔ h ≤ logk

(
|P |
n′

)
+ 1

This leads to a complexity of O (k ·mCT T (n′) logk (|P |/n′)) for both loops. The
running time of the combination in line 13 can be upper bounded by O(|P |),
which results in the conjectured total time complexity of

O (TCT T (n′) · |P |/n′ + k ·mCT T (n′) logk (|P |/n′))

�

Equipped with this result, we are now ready to determine the optimal values
for the branching factor k and the size n′ of the initial point sets. As with
our previous reductions, we always want Algorithm 4.4 to return a Tverberg
partition of the desired tolerance t. We also want to choose n′ maximal without
violating the tolerance constraint so that algorithm ACT T returns a tolerated
Tverberg partition of maximal size for the initial point sets .

Proposition 4.8. Under the preconditions of Theorem 4.7, Algorithm 4.4
returns a t-tolerated partition of size mCT T (|P |(tCT T + 1)/(2t− tCT T + 1)) if
n′ = |P |(tCT T +1)/(2t−tCT T +1) and k = 2. In general, there is no assignment
to n′ and k for which Algorithm 4.4 returns a t-tolerated Tverberg partition of
greater size.

Proof. The constraint on the tolerance of the returned partition can be used
to upper bound the size of the initial point sets.

t ≤ |P |+ n′

kn′
(tCT T + 1)− 1 ⇔

(t+ 1)n′ ≤ |P |+ n′

k
(tCT T + 1) ⇔
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k(t+ 1)− (tCT T + 1)
k

n′ ≤ |P |(tCT T + 1)
k

⇔

n′ ≤ |P |(tCT T + 1)
k(t+ 1)− (tCT T + 1)

As mCT T is a monotonically increasing function, the size of the returned
partition is maximized if k is chosen as small as possible. We can safely assume,
that t > tCT T since otherwise we could use the approximation algorithm for
the constant tolerated Tverberg problem directly. Choosing k = 2 results in
n′ = |P |(tCT T + 1)/(2t− tCT T + 1) as claimed. �

One important step in both approximation algorithms for the untolerated
Tverberg problem is to identify points that are not needed for the convex
hulls of the elements of the untolerated Tverberg partition in order to have
a nonempty intersection. In section 2.3, we refered to this step as pruning.
Unnecessary points can be removed and fed back into the algorithm, which
virtually increases the size of the initial point set and thus the size of the
returned Tverberg partition. Unfortunately, in a t-tolerated Tverberg partition
it is unclear how points that are not needed for the convex hulls to have a
nonempty intersection even if we remove t points from P can be identified. Let
us take again a look at Carathéodory’s theorem, which is used by Miller &
Sheehy and Mulzer & Werner to prune points. It limits the size of the elements
of the untolerated Tverberg partition to less than d + 1. This can obviously
not work on tolerated Tverberg partitions, as the tolerance t could be greater
than d+ 1. However, Montejano and Oliveros [8] proved a tolerated version of
Carathéodory’s theorem:

Theorem 4.9 (Tolerance Carathéodory Theorem [8, Theorem 4.1]). Let P ⊂
Rd be a set, c ∈ Rd a point, and t ∈ N the tolerance parameter. Then c is
contained in ⋂R⊆P,|R|≤t conv(P \R) if and only if there is some subset P ′ ⊆ P
of size of at most η(d+ 1, t+ 1) such that c ∈ ⋂R⊆P,|R|≤t conv(P ′ \R), where η
is the Erdős-Gallai bound.

Unfortunately, this result is of no help in pruning tolerated Tverberg parti-
tions. Let T = {T1, T2, . . . , Tm} be a t-tolerated Tverberg partition. We want
to use Theorem 4.9 to upper bound the size of each element in T . The main
problem is, that in general there is no point c that satisfies the conditions
of Theorem 4.9 as there is in general no point of depth t + 1 with respect
to each element of T . Otherwise it would lead to an improvement of the
centerpoint bound, which is a contradiction to the tightness of the bound. But
even if such a point existed, the theorem is too weak to improve the current
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reduction. Tuza [14] proved a sharp upper bound on the Erdős-Gallei bound
which is exponential in the first parameter. This is in our case the dimension.
However, this is worse than our upper bound on the total number of points of
the constructed tolerated Tverberg partition in the proof of Theorem 4.7.
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Algorithm Size Running Time
Theorem 4.1 with
Miller-Sheehy |P |/4(t + 1)(d + 2)4 O(|P |(td2)cms log(d)−1 + (|P |/td2)cms log(d))

Theorem 4.1 with
Mulzer-Werner |P |/16(t + 1)(d + 1)6 O(dcmw log(d) |P |)

Theorem 4.3 with
Miller-Sheehy |P |/2(t + 2)(d + 1)2 O(t (|P |/t)cms log(d))

Theorem 4.3 with
Mulzer-Werner |P |/4(t + 1)(d + 1)3 O(dcmw log(d)|P |)

Theorem 4.5 with
Miller-Sheehy |P |/2(t + 1)(d + 1)2 O(|P |cms log(d))

Theorem 4.5 with
Mulzer-Werner |P |/4(t + 1)(d + 1)3 O(dcmw log(d)|P |)

Theorem 4.7 with
Miller-Sheehy |P |/(4t + 2)(d + 1)2 O(t (|P |/t)cms log(d) + |P | log(t)/td2)

Theorem 4.7 with
Mulzer-Werner |P |/(8t + 4)(d + 1)3 O(dcmw log(d)|P |)

Table 4.1: Quality of approximation algorithms for the tolerated Tverberg
problem that are obtained by reduction to concrete approximation
algorithms for the untolerated Tverberg problem. The columns
“Size” and “Running Time” refer to the computation of a t-tolerated
Tverberg partition for a point set P ⊂ Rd, where cms and cmw are
constants specific to the algorithms by Miller & Sheehy [7] and
Mulzer & Werner [9], respectively.
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5 Testing-Tolerated-Tverberg
Teng proved in his Ph.D. thesis [13] that testing whether a point is a centerpoint
is coNP-complete if the dimension is part of the input. He also showed that the
problem to test whether there exists a Tverberg partition containing a given
point is NP-complete if the dimension is part of the input. We refer to these
problems as Testing-Center and Testing-Tverberg.
Naturally, the question arises how hard it is to decide whether a given

Tverberg partition is t-tolerated, where the parameter t and the dimension is
part of the input. We call this decision problem Testing-Tolerated-Tverberg.
Note that this is not a generalization of Testing-Tverberg as the naming suggests.
There is no obvious polynomial-time reduction of Testing-Tolerated-Tverberg
to Testing-Tverberg, as the former focuses on a specific partition and the latter
on the existence of any partition. However, we can use the Testing-Center
problem to prove coNP-completeness of Testing-Tolerated-Tverberg.

Proposition 5.1. Testing-Tolerated-Tverberg is coNP-complete if the dimen-
sion d, the size m of the Tverberg partition and the conjectured tolerance t are
part of the input.

Proof. We first check that Testing-Tolerated-Tverberg is indeed contained in
the complexity class coNP. Let T be a Tverberg partition of P ⊂ Rd that
is conjectured to have tolerance t. A witness to T not being a t-tolerated
Tverberg partition would be any subset R ⊆ P of size at most t, such that⋂

Ti∈T conv(Ti \R) = ∅. Consider the linear program L defined by the following
constraints for each element Ti of T , where pi,j denotes the jth point in Ti \R:

αi,1 pi,1 + αi,2 pi,2 + . . .+ αi,|Ti\R| pi,|Ti\R| − x = 0
αi,1 + αi,2 + . . .+ αi,|Ti\R| = 1

∀j ∈ {1, 2, . . . , |Ti \R|} : αi,j ≥ 0

L has a feasible solution if and only if ⋂Ti∈T conv(Ti \R) = ∅. Therefore, we
can check if R is a witness by showing that the constrains in L are inconsistent.
Since L is defined by m(d+ 1) + |P | − |R| constraints in |P | − |R|+ 1 variables
and linear programs can be solved in polynomial time in the number of the
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constraints and variables, we can check if R is a witness in polynomial time
the length of T . Therefore, Testing-Tolerated-Tverberg ∈ coNP.

c
T1

T2

Figure 5.1: Reduction of Testing-Tolerated-Tverberg to Testing-Center

Let (P, c) be an input to Testing-Center. We construct a partition that is
a Tverberg partition with tolerance t = d|P |/(d+ 1)e − 1 if and only if c is a
centerpoint. Consider the following two sets

T1 ={c+ i · (1, 0 . . . 0)T | i ∈ {−(t+ 1),−t, . . . ,−1, 1, 2, . . . , t+ 1}}
T2 ={c+ i · (0, 1, 0 . . . 0)T | i ∈ {−(t+ 1),−t, . . . ,−1, 1, 2, . . . , t+ 1}}

Both sets contain points on a line through c, having t+ 1 points on each side
of c. Figure 5.1 presents an example in two dimensions. The dots are points
from the original point set P , crosses mark the generated points in T1 and T2.
We claim T = {P, T1, T2} to be the desired partition.

Assume c is a centerpoint of P . By definition, c has depth at least |P |/(d+1).
Equivalently, c is contained in the convex hull of P after the removal of any
d|P |/(d + 1)e − 1 = t points from P . Since the sets T1 and T2 contain t + 1
points on both sides of a line through c, c is contained in the convex hulls
conv(T1) and conv(T2), even if up to t points from T1 ∪ T2 are removed. We
therefore know that

∀R ⊆ (P ∪ T1 ∪ T2), |R| ≤ t : c ∈ conv(P \R) ∩ conv(T1 \R) ∩ conv(T2 \R)

Thus, T forms a Tverberg partition with tolerance t for P ∪ T1 ∪ T2.
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We now prove the opposite direction. Let T be constructed as above for the
input (P, c) to the Testing-Center problem. Assume T is a t-tolerated Tverberg
partition. We know that c = conv(T1) ∩ conv(T2) by construction of T1, T2.
Together with the definition of tolerated Tverberg partitions, we obtain

∀R ⊆ (P ∪ T1 ∪ T2), |R| ≤ t : conv(P \R) ∩ conv(T1 \R) ∩ conv(T2 \R) = c

⇒ ∀R ⊆ P, |R| ≤ t : c ∈ conv(P \R)

This is equivalent to c having depth at least t+ 1 = (d|P |/(d+ 1)e − 1) + 1 =
d|P |/(d+ 1)e with respect to P , or c being a centerpoint of P .

We have proved the correctness of the reduction. The size of T1 and T2
depends upon the parameter t. However, we can safely assume t to be less
than |P | since there is no t-tolerated Tverberg partition of P if t ≥ |P |. Thus
both generated sets T1 and T2 can be constructed in polynomial time in the
length of the input, which concludes the proof. �

In the proof of Proposition 5.1, we have constructed a Tverberg partition
of size 3 that is t-tolerated if and only if c is a centerpoint of P , where
t = d|P |/(d+ 1)e − 1. We can prove that even testing whether a given Radon
partition is of some tolerance is coNP-complete.

In the proof of Proposition 5.1, both constructed sets T1 and T2 are necessary
for the reduction. If we drop one of these sets, for example T2, then in general
{c} is a proper subset of conv(P )∩conv(T1). Thus even if the Tverberg partition
{P, T1} is of some tolerance t, Proposition 2.12 implies that c does not have to
be contained in the intersection of conv(P \R) ∩ conv(T1 \R) for every subset
R ⊂ P ∪ T1 of size at most t. In other words, we are not able to relate the
tolerance of the partition {P, T1} with the depth of c with respect to P . This
problem is not specific to the choice of T1, as there is no set T∗ ⊂ Rd, |T | > 1
such that |conv(P ) ∩ conv(T∗)| = 1 if dim(aff(P )) = d, where aff(P ) denotes
the affine subspace spanned by P . However, if we introduce a new dimension,
it is easy to find such a set.

Theorem 5.2. Testing-Tolerated-Radon is coNP-complete if the dimension d
and the conjectured tolerance t are part of the input.

Proof. We prove again the hardness by a reduction to Testing-Center. Let
P ⊂ Rd, c ∈ Rd be an input to Testing-Center. We embed the vector space
Rd in Rd+1 by identifying it with the hyperplane h0 ⊂ Rd+1 that contains all
points in Rd+1 whose last coordinate is 0.
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5 Testing-Tolerated-Tverberg

Similar to the construction of T1, T2 in the proof of Proposition 5.1, we can use
the new dimension to construct a set T whose convex hulls intersect the convex
hull of P only in c. Let l be the line that is orthogonal to h0 and passes through
c. Let T− and T+ be two sets that consist of any t+1 points in l∩h−0 and l∩h+

0 ,
respectively. We claim that {P, T} is a Radon partition for P ∪ T with toler-
ance t = d|P |/d+1e−1 if and only if c is a centerpoint of P , where T = T−∪T+.

“⇒”: Assume {P, T} is a t-tolerated Radon partition. By construction of T ,
the intersection of conv(P ) and conv(T ) consists only of c. Thus, c is contained
in the intersection of both convex hulls even if any subset of size at most t is
removed.

∀R ⊂ P ′ ∪ T, |R| ≤ t : c′ = conv(P ′ \R) ∩ conv(T \R)

Lemma 2.11 then implies that c has depth t + 1 with respect to P . Since
t+ 1 = dP/d+ 1e, c is a centerpoint for P .

“⇐”: Assume c is a centerpoint for P . By definition, each closed half-space
contains at least d|P |/d+ 1e = t+ 1 points of P . Thus, c is contained in the
convex hull of P even if any t points from P are removed. Since T contains
t + 1 points on both sides of a line through c, c is also contained in conv(T )
if any t points from T are removed. Together, this implies that {P, T} is a
t-tolerated Radon partition for P ∪ T . �
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6 Conclusions
Due to the lack of algorithms for the tolerated Tverberg problem, the intention
of this thesis was to develop algorithms to compute tolerated Tverberg par-
titions. By generalizing a simple algorithm for the tolerated Radon problem
in one dimension, we managed to construct an algorithm which solves the
tolerated Tverberg problem in one dimension. This algorithm also improved the
Soberón-Strausz bound in one dimension and the new bound could be proven
to be tight. Using a dimension reduction, the algorithm can be applied to
multi-dimensional data. This has again led to an improvement of the Soberón-
Strausz bound in two dimension if m and t are of sufficient size. However,
the one-dimensional algorithm together with the dimension reduction is not
well-suited for high-dimensional data.

To approach the problem in higher dimensions, we have developed two kinds
of approximation preserving reductions.

First, there are three reduction to the untolerated Tverberg problem that led,
based on the existing approximation algorithms for the untolerated Tverberg
problem, to approximation algorithms for the tolerated Tverberg problem
whose running time is not exponential in the dimension. The third one,
sequential partition hardening, combines the benign properties of algorithms
obtained by the former presented approximation preserving reductions: As
with point stabilization, the returned t-tolerated Tverberg partitions admit
the computation of a Tverberg point that remains a Tverberg point even after
the removal of up to t points, while at the same time the greater size of the
partition achieved by parallel partition hardening is retained.
The second kind, the approximation preserving reduction to the constant

tolerated problem, is based on Miller & Sheehy’s algorithm, but with a replaced
combination lemma. Compared with the other reductions, it leads to better
results if it is applied to algorithms that compute Tverberg partitions that
already have some guaranteed tolerance greater than 0.

With the aid of the approximation preserving reductions, we can thus benefit
from the existing algorithms for the untolerated Tverberg problem and any
future progress.
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6 Conclusions

Concerning the hardness of the tolerated Tverberg problem, the complexity
of computing a tolerated Tverberg partition is still unknown. However, we
could prove that a related decision problem, testing whether a given Tverberg
partition is of some tolerance, is coNP-complete if the dimension is part of the
input by a reduction to Testing-Center.
Another open point is the tightness of the Soberón-Strausz bound. The

improvement in one dimension and the improvement in a large range of values
m, t in two dimensions are indications that the bound is in general not tight.
At last, a pruning argument for tolerated Tverberg partitions is still miss-

ing. Such an argument is important for both approximation algorithms for
the untolerated Tverberg problem, as it can be used to improve the size of
the constructed Tverberg partitions. It would be desirable to find a similar
argument for tolerated Tverberg partitions to further improve the developed
approximation algorithms.
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