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1 Presheaves and Sheaves

1.0 Categorical preliminaries

Definition 1. Let F,G : C → D be two functors from the category C to the category
D. A natural transformation η : F → G from F to G is a family of morphisms that
satisfies the following requirements

1. For each object X in C there is a morphism ηX : F (X)→ G(X) in D.

2. For each morphism f : X → Y in C the diagram

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

commutes.

η is a natural isomorphism if for each object X in C the morphism ηX is an isomor-
phism in D.
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1.1 Definitions of (pre)sheaves and examples

For us a category C will be usually one of the following: Sets, Ab, Rings, R−Mod.
In any case the underlying structure of the objects of C will be sets so that we can talk
about elements of objects of C.

Definition 2. Suppose G and C are categories. A C-valued presheaf on G is a functor

F : Gop → C.

If G is small, the collection of all C-valued presheaves forms a category, which we denote
by PSh(G, C). Objects are presheaves, morphisms are natural transformations.

Definition 3. If X is a topological space and C is a category, we denote by PSh(X, C)
the category of C-valued presheaves on the category

Open(X) = {U ⊂ X | U open}, Hom(U, V ) =

{
∅, U 6⊂ V
{i : U ↪→ V }, U ⊂ V.

Let F ∈ PSh(X, C). Any inclusion U ⊂ V of open sets of X gets mapped to a
ρV U : F (V )→ F (U), a so called restriction morphism. Moreover if we have inclusions
U ⊂ V ⊂W of opens of X, then ρWU = ρV U ◦ ρWV :

U W

V

 

F (U) F (W )

F (V ) .

ρWU

ρWVρV U

We refer to F (V ) as the sections of F over the open set V . If s ∈ F (V ) we sometimes
write s|U instead of ρV U (s).

Sheaves are now just presheaves that satisfy certain conditions.

Definition 4. A presheaf F ∈ PSh(X, C) is a sheaf if it satisfies the following two
conditions for any open set U ⊂ X and any open covering {Ui}i∈I of U :

(S1) If s1, s2 ∈ F (U) are elements such that s1|Ui = s2|Ui for all i ∈ I, then s1 = s2.

(S2) If we have elements si ∈ F (Ui) for each i ∈ I with the property that si|Ui∩Uj =
sj |Ui∩Uj for each i, j ∈ I, then there is an element s ∈ F (U) such that s|Ui = si
for each i ∈ I.

We denote by Sh(X, C) the category of C-valued sheaves on X.

Remark 5. (S1) implies that the element s in (S2) is unique.

Remark 6. Note that if C is Ab, Rings or R-Mod we always have that for a sheaf
F (∅) = {0}: For the open ∅ ⊂ X choose the empty covering with I = ∅: {Ui}i∈∅. Then
for two sections s1, s2 ∈ F (∅) the condition s1|Ui = s2|Ui is vacuously fulfilled and we
conclude s1 = s2 by (S1).
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So much for now with definitions. Let us train our intuition with some examples.

Example 7. Let X be a space and for each open U ⊂ X let

F (U) := {f : U → R},

the set of continuous real-valued functions on U . For U ⊂ V let further

ρV U : F (V )→ F (U), f 7→ f |U

be the usual restriction map. Then F is a sheaf of rings on X.

Example 8. Consider the real line R and let for each open U ⊂ R

F (U) := {f : U → R | f bounded}.

For U ⊂ V let further
ρV U : F (V )→ F (U), f 7→ f |U

Then F is a presheaf of rings that is not a sheaf. It does satisfy (S1) but not (S2),
because gluing together bounded functions may not yield bounded functions.

Example 9. Suppose X = {x, y} and X has the discrete topology. Set

F ({x}) = R, F ({y}) = R, F ({x, y}) = R⊕ R⊕ R.

Let the two (non-trivial) restrictions maps be projection two the first and second factor.
{x} and {y} form an open covering of {x, y} and the two restrictions to them of the
distinct sections (0, 1, 1), (0, 1, 2) ∈ F ({x, y}) are the same. Hence (S1) is not satisfied
and F is a presheaf that is not a sheaf. Note that (S2) holds true, though.

Example 10. Let X be a space and let G be an abelian group. The constant sheaf
FG on X determined by G is defined as follows. Give G the discrete topology and
for an open U ⊂ X let

FG(U) := {f : U → G}

be the group of all continuous maps from U to G. Then with the usual restriction maps

ρV U : FG(V )→ FG(U), f 7→ f |U

FG is a sheaf of abelian groups. Note that on every connected open U any f ∈ FG(U)
must be constant and conversely any choice of a constant map U → G is, of course,
continuous. Hence FG(U) ≈ G and the name ”constant sheaf”. If U is an open set
whose connected components are also open (this is always the case in locally connected
spaces), then FG(U) is a direct product of copies of G, one for each connected component
of U .
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2 Stalks and morphisms of (pre)sheaves

2.0 Categorical preliminaries

Definition 11. A directed set (I,≤) is a nonempty set I together with a reflexive and
transitive relation ≤ with the property that for each i, j ∈ I there is a k ∈ I such that

i ≤ k and j ≤ k.

Definition 12. Let (I,≤) and be a directed set and {Gi}i∈I be a family of abelian
groups indexed by I. For all i ≤ j let further fij : Gi → Gj be a homomorphism such
that

1. fii is the identity on Gi,

2. fik = fjk ◦ fij for all i ≤ j ≤ k.

Then (Gi, fi)i∈I is called a direct system of abelian groups over I.

Given a direct system (Gi, fi)i∈I of abelian groups, define the following equivalence
relation on the disjoint union

⊔
i∈I Gi of the groups Gi: For xi ∈ Gi and xj ∈ Gj we let

xi ∼ xj if and only if there is a k with i, j ≤ k and fik(xi) = fjk(xj).

Definition 13. Let (Gi, fi)i∈I be a direct system of abelian groups, then the direct
limit of this system is defined by

lim−→Gi :=
⊔
i∈I

Gi

/
∼,

where the equivalence relation on the right hand side is the one described above.

The direct limit naturally carries an abelian group structure: Given equivalence classes
[xi] and [xj ] with xi ∈ Gi and xj ∈ Gj there is a k ∈ I with i, j ≤ k and we define

[xi] + [xj ] := [fik(xi) + fjk(xj)].

One only has to check that this is well defined, which is a nice exercise.

Proposition 14. The direct limit of a direct system of abelian groups is an abelian
group.

2.1 Definition of stalks and morphisms of (pre)sheaves and examples

Definition 15. Let X be a topological space, F ∈ PSh(X, C) a presheaf and assume
that the category C is cocomplete. Then for x ∈ X we define

Fx := lim−→
U3x

F (U),

where the direct limit is taken over all open neighborhoods U of x. Fx is called the stalk
of F at x.
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An element of the stalk Fx is represented by a pair (U, s), where s ∈ F (U) is a section
and U is an open neighborhood of x. Two such pairs (U, s) and (V, t) are equivalent if
there is an open neighborhood W of x with W ⊂ U ∩ V and s|W = t|W . This is why
we may speak of elements of the stalk Fx as germs of sections of F at the point x.
Sometimes we will denote a germ in Fx, represented by a pair (U, s), by sx.

Example 16. Let G be an abelian group, X be a space and x ∈ X. For open U ⊂ X
we set

x∗G(U) =

{
G, if x ∈ U
{0}, otherwise.

For two open sets U ⊂ V we set

ρV U =

{
idG, if x ∈ U
0, otherwise.

Then we can check that it is a presheaf. But it even is a sheaf (with values in abelian
groups): Suppose {Ui} is an open covering of the open U ⊂ X and s1, s2 ∈ x∗G(U)
satisfy s1|Ui = s2|Ui for all i. If x /∈ U , then s1 = s2 = 0. If x ∈ U , there is a Ui
containing x. Because ρUUi is just the identity, we conclude s1 = s1|Ui = s2|Ui = s2. If
we are given sections si ∈ x∗G(Ui) with si|Ui∩Uj = sj |Ui∩Uj and x /∈ U , then the zero
section s = 0 clearly restricts to the si on Ui. If x ∈ U , then x ∈ Ui for some i and we
set s = si.
If X is a T1-space, we observe that all stalks of this sheaf are {0} except (x∗G(U))x,
which is G. For this reason it is called a skyscraper sheaf.

Definition 17. Let F,G be (pre)sheaves on a space X. A morphism of (pre)sheaves
ϕ : F → G is a natural transformation from F to G. Hence it consists of a morphism
ϕU : F (U)→ G(U) for each open set U ⊂ X such that for all inclusions U ⊂ V of open
sets the following diagram commutes

F (V ) F (U)

G(V ) G(U).

ρV U

ϕV ϕU

ρ′V U

Here ρ and ρ′ are the restriction maps of F andG. ϕ is an isomorphism of (pre)sheaves
if ϕ is a natural isomorphism.

Example 18. Let F be the sheaf from Example 7. Then ϕU (f) := 2f , which sends
any real-valued function to its double, defines a morphism of sheaves. It is even an
isomorphism.

Proposition 19. Let ϕ : F → G be a morphism of presheaves on a space X. Then ϕ
induces a map on the stalk ϕx : Fx → Gx for every x ∈ X.
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Proof. Let x ∈ X, then ϕx[U, s] = [U,ϕU (s)], where [U, s] stands for the equivalence
class of the pair (U, s) in Fx. We have to show that this is well defined. So assume (V, t)
is another pair equivalent to (U, s). Then there is an open neighborhood W of x with
W ⊂ U ∩ V such that s|W = t|W . It follows that ϕU (s)|W = ϕW (s|W ) = ϕW (t|W ) =
ϕV (t)|W . This can be seen in the following diagram

s s|W = t|W t

F (U) F (W ) F (V )

G(U) G(W ) G(V )

ϕU (s) ϕW (s|W ) ϕV (t).

∈ ∈ ∈

ρUW

ϕU ϕW

ρV W

ϕV

ρ′UW ρ′V W

∈ ∈ ∈

This means that for each x ∈ X we get a functor

·x : PSh(X,Ab)→ Ab

which sends a presheaf F to its stalk at x

F 7→ Fx

and a presheaf morphism to its induced map on the stalk at x

(ϕ : F → G) 7→ (ϕx : Fx → Gx).

One easily verifies the rest of the properties that make this a functor.

Proposition 20. Let ϕ : F → G be a morphism of sheaves on a topological space X.
Then ϕ is an isomorphism if and only if the induced map on the stalk ϕx : Fx → Gx is
an isomorphism for every x ∈ X.

Proof. Assume first that ϕ : F → G is an isomorphism of sheaves. Taking stalks is
a functor as mentioned above, which, of course, sends isomorphism to isomorphisms.
Hence ϕx is an isomorphism for each x ∈ X.
Assume now for all x ∈ X the map ϕx : Fx → Gx is an isomorphism. We have to
show that for any open U ⊂ X the map ϕU : F (U) → G(U) is an isomorphism. So
let s, t ∈ F (U) be sections satisfying ϕU (s) = ϕU (t). Then the pairs (U,ϕU (s)) and
(U,ϕU (t)) are equivalent in any stalk Gx with x ∈ U . Since ϕx is injective, the pairs
(U, s) and (U, t) are equivalent. So there is an open neighborhood Ux ⊂ U of x such that

s|Ux = t|Ux .
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{Ux}x∈U forms an open covering of U and by (S1) s = t and injectivity of ϕU follows.
Let now t ∈ G(U) be any section. For any x ∈ U the element represented by (U, t) in
Gx is equivalent to (Ux, ϕUx(sx)) for some open neighborhood Ux ⊂ U of x and some
section sx ∈ F (Ux), since ϕx is surjective. We may assume that t|Ux = ϕUx(sx) by
shrinking Ux a little if necessary. Let now sx and sy two such sections for x, y ∈ U .
Then sx|Ux∩Uy = sy|Ux∩Uy because

ϕUx∩Uy(sx|Ux∩Uy) = t|Ux∩Uy = ϕUx∩Uy(sy|Ux∩Uy)

and ϕUx∩Uy is injective as proofed above. Again {Ux}x∈U forms an open covering of U
and by (S2) there is an s ∈ F (U) with s|Ux = sx for all x ∈ U . Since ϕU (s)|Ux = t|Ux

for all points x ∈ U we can appeal (S1) to deduce ϕU (s) = t.

The proposition illustrates the local nature of sheaves and would be false for presheaves.

2.2 Kernels, cokernels and images of morphisms of presheaves

For this section let the category C be Ab, the category of abelian groups.

Definition 21. Let ϕ : F → G be a morphism of presheaves on a space X. We define
the

1. presheaf kernel of ϕ to be the presheaf given by U 7→ kerϕU ,

2. presheaf image of ϕ to be the presheaf given by U 7→ imϕU ,

3. presheaf cokernel of ϕ to be the presheaf given by U 7→ cokerϕU .

Let us elaborate a little bit on this. If U ⊂ V are open sets. Then the first two
definitions above can be illustrated in the following diagram:

kerϕV kerϕU

F (V ) F (U)

G(V ) G(U)

imϕV imϕU .

⊂

ρV U

⊂

ρV U

ϕV ϕU

ρ′V U

⊂

ρ′V U

⊂

Using commutativity it is easy to verify that for an s ∈ kerϕV we have that s|U ∈ kerϕU
and for a t ∈ imϕV we have t|U ∈ imϕU . For the third definition we only have to show
that the maps induced by the restriction maps ρ′V U are well defined. So let t+ imϕV ∈
cokerϕV and let t′ ∈ G(V ) such that t− t′ ∈ imϕV . Then t|U − t′|U = (t− t′)|U ∈ imϕU
which is exactly what we wanted.

We have the following proposition regarding the presheaf kernel.
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Proposition 22. Let ϕ : F → G be a morphism of sheaves on a space X. Then the
presheaf kernel is a sheaf.

Proof. We have to check that (S1) and (S2) in the definition of sheaves are satisfied. So
let U ⊂ X be an open set and {Ui} be an open covering of U . (S1) is obviously true since
F is a sheaf. Let now si ∈ kerϕUi be sections with the property that si|Ui∩Uj = sj |Ui∩Uj

for each i, j. Because F is a sheaf there is an element s ∈ F (U) with s|Ui = si for all i.
Now ϕU (s) is locally zero, so it is the zero section: ϕU (s)|Ui = ϕUi(s|Ui) = ϕUi(si) = 0
and since G is a sheaf we conclude with (S2) that ϕU (s) = 0.

Note that the above proposition is not true for presheaf images and presheaf coker-
nels. So taking presheaf image and cokernel of a morphism of sheaves might only yield
presheaves. So it is natural to ask how to make a sheaf out of a presheaf - or how to
sheafify a presheaf. Remember that sheaves are presheaves where the sections have two
additional properties. (S1) roughly says, that if sections agree locally they do so globally.
So if a presheaf does not satisfy this, it violates uniqueness and one could say that there
are ”too many” sections. (S2) roughly says, that if we are given sections locally such
that they agree on the overlaps, we can glue them together to get a global section. This
is an existence statement and if a presheaf does not satisfy this, we could on the other
hand say that there are ”too few” sections. Thus we could try to ”throw away” the
sections that are superfluous while ”adding the missing” sections and it turns out that
there is an optimal way to do it.

Proposition 23. Given a presheaf F on a space X, then there is a sheaf F+ on X and
a (presheaf) morphism θ : F → F+ such that for any sheaf G on X and any morphism
ϕ : F → G there is a unique (sheaf) morphism ψ : F+ → G such that ϕ = ψ ◦ θ:

F F+

G.

θ

ϕ
∃!ψ

Proof. Construction of F+:
We construct F+ as follows. For any open U ⊂ X let F+(U) be the set of functions
s : U →

⋃
x∈U Fx, from U to the disjoint union of stalks of F over points in U , such that

1. for all x ∈ U we have s(x) ∈ Fx,

2. for all x ∈ U there is an open neighborhood V ⊂ U of x and an element t ∈ F (V )
such that for all y ∈ V the germ ty is equal to s(y).

This means that locally around any point x ∈ U a section s ∈ F+(U) looks like a section
t of F (U). Let the restriction maps be the usual restrictions of functions. We now have
to verify that F+ is indeed a sheaf. Let U ⊂ X be open. First of all note that F+(U)
is nonempty because it always contains the zero section s(x) = 0. It is also a presheaf
and F+(U) is an abelian group with pointwise addition (note that for s1, s2 ∈ F+(U)
the section s1 + s2 satisfies both conditions above). Let now {Ui} be an open covering
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of U and suppose we are given s1, s2 ∈ F+(U) such that s1|Ui = s2|Ui for all i. Since
s1 and s2 really are functions, it follows that s1 = s2. If we are given si ∈ F+(Ui) such
that for all i, j we have si|Ui∩Uj = sj |Ui∩Uj , we define s(x) := si(x), where x ∈ Ui. This
is independent of the choice of i. We have to show that s ∈ F+(U). For any x ∈ U
there is a Ui containing x such that s|Ui = si. Hence by condition 2 above there is a
neighborhood Vi ⊂ Ui of x and an element t ∈ F (Vi) such that for all y ∈ Vi the germ
ty is equal to si(y) = s(y) and we conclude that F+ is a sheaf.
Construction of θ : F → F+:
Now we construct the presheaf morphism θ : F → F+. For open U ⊂ X we set

θU : F (U)→ F+(U), t 7→ (x 7→ tx).

Then the two conditions above are immediate and θU indeed maps to F+(U). To show
that θ is a presheaf morphism we have to establish commutativity of

F (V ) F (U)

F+(V ) F+(U)

ρV U

θV θU

ρ′V U

t t|U

x 7→ tx .

ρV U

θV θU
ρ′V U

for another open V ⊃ U and that θU is a homomorphism. Going from the top left
corner first down and then right, we end up with U 3 x 7→ tx. Going first right and
then down we obtain U 3 x 7→ (t|U )x = tx. For another section t′ ∈ F (U) we have
θU (t+ t′) = x 7→ (t+ t′)x = x 7→ (tx + t′x) = θU (t) + θU (t′), so θU is a homomorphism.
Construction of a ψ : F+ → G:
Let now G be any sheaf on X and let ϕ : F → G be a morphism. By the second condition
there is for any section s ∈ F+(U) and any x ∈ U an open neighborhood Vx ⊂ U of
x and a section tx ∈ F (Vx) with s(z) = txz for all z ∈ Vx. Then {Vx}x∈U is an open
covering of U . We set

ψU (s) := ”The section g ∈ G(U) with g|Vx = ϕVx(tx)”.

We have to verify that ϕVx(tx)|Vx∩Vy = ϕVy(ty)|Vx∩Vy for all x, y ∈ U and then by (S2)
this will give us a section g ∈ G(U). For all z ∈ Vx ∩ Vy it is true that txz = s(z) = tyz
and so there is an open neighborhood Wz ⊂ Vx ∩ Vy of z such that tx|Wz = ty|Wz .
{Wz}z∈Vx∩Vy forms an open covering of Vx ∩ Vy and(

ϕVx(tx)|Vx∩Vy
)∣∣∣
Wz

= ϕWz(tx|Wz) = ϕWz(ty|Wz) =
(
ϕVy(ty)|Vx∩Vy

)∣∣∣
Wz

so by (S1) we obtain ϕVx(tx)|Vx∩Vy = ϕVy(ty)|Vx∩Vy .
We also have to show that the obtained section g ∈ G(U) does not depend on the
choices of the Vx and tx. So let Ux and ux another such choice and let h ∈ G(U) be the
section obtained from them. Then txx = s(x) = uxx and we obtain an open neighborhood
Wx ⊂ Vx ∩ Ux such that tx|Wx = ux|Wx . So {Wx} forms an open covering of U ,

g|Wx = ϕVx(tx)|Wx = ϕWx(tx|Wx) = ϕWx(ux|Wx) = ϕUx(ux)|Wx = h|Wx
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and by (S1) we conclude g = h. Also one verifies that ψU is a homomorphism using (S1)
again. Lastly for open U ⊂ V we need to establish the commutativity of

F+(V ) F+(U)

G(V ) G(U)

ψV ψU

s s|U

ψV (s) .

ψV ψU

For s ∈ F+(V ) we choose the Vx and tx such that for x ∈ U we have Vx ⊂ U . Then we
can use the same Vx and tx for s|U . Now going first right then down we get ψU (s|U ) and
first down then right yields ψV (s)|U . Observe that(

ψV (s)|U
)∣∣∣
Vx

= ψV (s)|Vx = ϕVx(tx) = ψU (s|U )|Vx ,

and {Vx} is an open covering of U , hence by (S1) commutativity is established. The
assertion ϕ = ψ ◦ θ is immediately verified.
Uniqueness of ψ : F+ → G:
Assume we have another sheaf morphism ψ′ as above. Then for open U ⊂ X consider
the diagram

F (U) F+(U)

G(U)

θU

ϕU
ψU

ψ′U

Let s ∈ F+(U) be any section and suppose we use Vx, t
x for the definition of ψU (s).

Once again {Vx} is an open covering of U and

ψU (s)|Vx = ϕVx(tx) = ψ′Vx(θVx(tx)) = ψ′Vx(s|Vx) = ψ′U (s)|Vx ,

so by (S1) ψU (s) = ψ′U (s) and we are done (finally!).

Remark 24. As usual with universal properties, the sheaf F+ is unique up to isomor-
phism. It follows, that if F is already a sheaf, then F+ is isomorphic to F via θ.

Proposition 23 reinforces the perspective that the sections s ∈ F (U) of a sheaf F are
functions defined on U . Since if you look at sections of the sheafification F+ (being
isomorphic to F ) they are exactly that.

Definition 25. For a presheaf F on a topological space X we call the sheaf F+ together
with the morphism θ : F → F+ constructed above the sheafification of F or the sheaf
associated to F .

Remark 26. For a morphism of presheaves ϕ : F → G there is a unique morphism
ϕ+ : F+ → G+ making the following diagram commute

F G

F+ G+.

ϕ

θF θG

ϕ+

10



Verifying the functorial properties we conclude that sheafifying is a functor

·+ : PSh(X,Ab)→ Sh(X,Ab).

Proposition 27. For a presheaf F the morphism θ : F → F+ induces an isomorphism
on the stalks, so Fx ≈ F+

x for all x ∈ X.

Proof. Let x ∈ X be a any point, V an open neighborhood of x and t ∈ F (V ) a section
such that θx(tx) = 0. Then there is an open U 3 x with 0 = θV (t)|U = (U 3 y 7→ ty).
Hence tx = 0.
Take now any sx ∈ F+

x . By the construction of F+ there is an open U 3 x and a
t ∈ F (U) with s(y) = ty for all y ∈ U . So θU (t) = s|U and we obtain θx(tx) = sx.

Example 28. Consider the presheaf from Example 9. It satisfies (S2) but not (S1).
The stalks are Fx ≈ R ≈ Fy. We obtain

F+({x, y}) = {s : {x, y} → Fx ∪ Fy} ≈ {s : {x, y} → R} ≈ R⊕ R,

so we got rid of one factor R and have therefore ”thrown away” a lot of sections. Note
also that the two sections (0, 1, 1), (0, 1, 2) ∈ F ({x, y}) both get mapped to (x 7→ 0, y 7→
1) ∈ F+({x, y}) by θ.

Example 29. Now consider the presheaf F from Example 8. The presheaf of bounded
continuous functions on X = R does satisfy (S1) but not (S2). We claim that its
sheafification F+ is isomorphic to the sheaf of continuous functions (here with values
in abelian groups), which we denote by C0. Let U ⊂ R be open, G a sheaf on R and
ϕ : F → G a morphism. We have to show that there is a unique morphism ψ : C0 → G
making the diagram

F (U) C0(U)

G(U)

incl

ϕ
∃!ψ

commutative. For a continuous function f : U → R we can find an open covering {Ui}
of U such that f |Ui is bounded. We then set

ψU (f) = ”The section g ∈ G(U) with g|Ui = ϕUi(f |Ui)”,

which makes the diagram commute. Note that this does not depend on the open cover
{Ui} and that ψ thus is a well defined morphism. If ψ′ is another such morphism we
use the cover {Ui} again to see that ψU (f)|Ui = ϕUi(f |Ui) = ψ′U (f)|Ui . Hence by (S1)
ψ = ψ′.

Definition 30. A subsheaf of a sheaf F is a sheaf F ′ such that F ′(U) is a subgroup of
F (U) for every open U ⊂ X and the restriction maps of F ′ are induced by those of F .

Remark 31. Observe that for any point x ∈ X the stalk F ′x can be naturally identified
with a subgroup of Fx.
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Definition 32. If ϕ : F → G is a morphism of sheaves, we define the kernel of ϕ,
denoted by kerϕ, to be the presheaf kernel of ϕ which is a sheaf by Proposition 22.

Remark 33. kerϕ is a subsheaf of F .

Definition 34. A morphism of sheaves ϕ : F → G is said to be injective if kerϕ = 0.

Remark 35. ϕ is injective if and only if ϕU : F (U)→ G(U) is injective for every open
U ⊂ X.

For a morphism of sheaves ϕ : F → G, we let for the moment the sheafification of the
presheaf image of ϕ be denoted by ĩmϕ. By the universal property of the sheafification
there is a natural morphism ĩmϕ→ G. We will show that this is injective and thus ĩmϕ
can be identified with a subsheaf of G.

Lemma 36. Let ϕ : F → G be a morphism of presheaves such that ϕU : F (U)→ G(U)
is injective for each open U ⊂ X. Then the induced morphism ϕ+ : F+ → G+ is
injective.

Proof. Let s ∈ F+(U) be any section such that ϕ+(s) = 0. There is an open neighbor-
hood Ux ⊂ U of each x and a section t ∈ F (Ux) such that s(y) = ty for each y ∈ Ux.
Consider the diagram

F (Ux) G(Ux)

F+(Ux) G+(Ux).

ϕUx

ϕ+
Ux

Mapping t first right, then down we obtain the map

Ux 3 y 7→ (ϕUx(t))y

which is zero due to commutativity. Thus we find an open neighborhood Vx ⊂ Ux of
x such that ϕUx(t)|Vx = ϕVx(t|Vx) = 0. Using injectivity of ϕVx yields t|Vx = 0 and so
s(x) = tx = 0, so s = 0.

Proposition 37. If ϕ : F → G is a morphism of sheaves, then the natural morphism
ĩmϕ→ G is injective. Hence we can identify ĩmϕ with a subsheaf of G.

Proof. The inclusion imϕU ↪→ G(U) is clearly injective for each open U ⊂ X, so the
statement follows from the lemma above.

Definition 38. For a morphism of sheaves ϕ : F → G we define the image of ϕ,
denoted by imϕ, to be the subsheaf of G identified with ĩmϕ.

Definition 39. A morphism of sheaves ϕ : F → G is said to be surjective if imϕ = G.

We saw that a morphism of sheaves ϕ : F → G is injective if and only if ϕU : F (U)→
G(U) is injective for each open U ⊂ X. The corresponding statement for surjective
morphisms is not true, as we will see now.
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Example 40. Consider the circle X = S1 and the sheaf C∞ of smooth functions on it.
Further let γ(t) := (cos t, sin t). Define the sheaf morphism d : C∞ → C∞ by

dU : C∞(U)→ C∞(U), f 7→ ((cos t, sin t) 7→ (f ◦ γ)′(t)).

Let P := (0, 1) ∈ S1 be the north pole and Q = (0,−1) ∈ S1 be the south pole. For the
two sections f ∈ C∞(S1 − P ), f(cos t, sin t) = t and g ∈ C∞(S1 − Q), g(cos t, sin t) = t
we have d(f) = 1 ∈ C∞(S1 − P ) and d(g) = 1 ∈ C∞(S1 −Q). Hence they agree on the
overlaps of their domains. Their domains also cover the whole S1 but the global section
obtained by gluing them together is the constant function 1 ∈ C∞(S1) which is not in
the image of dS1 . So dS1 is not surjective.
d as a morphism of sheaves is still surjective. Roughly because all smooth functions are
locally in the image of d.

Definition 41. A sequence

...→ F i−1
ϕi−1

−−−→ F i
ϕi

−→ F i+1 → ...

of sheaves and morphisms is said to be exact if kerϕi = imϕi−1.

Remark 42. A sequence 0→ F
ϕ−→ G is exact if and only if ϕ is injective. A sequence

F
ϕ−→ G→ 0 is exact if and only if ϕ is surjective.

Definition 43. Let F ′ be a subsheaf of F . We define the quotient sheaf F/F ′ to be
the sheafification of the presheaf U 7→ F (U)/F ′(U).

Remark 44. Observe that for the stalks we have (F/F ′)x ≈ Fx/F ′x.
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