
Master’s Thesis

ROUTING SCHEMES FOR DISK GRAPHS AND
POLYGONS

Max Willert

E-Mail address: max.willert@fu-berlin.de

Target degree: Master of Education

1st subject: Computer Science

2nd subject: Mathematics

1st advisor: Prof. Dr. Wolfgang Mulzer

2nd advisor: Prof. Dr. Günter Rote

Address: Department of Computer Science
Freie Universität Berlin
Takustr. 9
14195 Berlin

Berlin, August 8, 2016

Statement of authorship
I declare that this document and the accompanying code has been composed by myself, and
describes my own work, unless otherwise acknowledged in the text. It has not been accepted in
any previous application for a degree. All verbatim extracts have been distinguished by quotation
marks, and all sources of information have been specifically acknowledged.

Max Willert

(Berlin, August 8, 2016)

i

Acknowledgements
After six years studying computer science, mathematics and pedagogical (content) knowledge,
this thesis shall finish this important period of my life. There are many people who helped me to
conclude this thesis and I would like to thank them.

First of all, there is Prof. Dr. Wolfgang Mulzer, who was a brilliant supervisor, because he gave
the right ideas and the best amount of freedom for solving the theoretical problems. Furthermore,
I would like to thank him for the confidence he gave me during my time as teaching assistant.

Additionally, I would like to thank the group of the theoretical computer scientists, especially
Yannik, Paul and Boris for their ideas and discussions about my topic. Moreover, I would like
to give thanks to Dr. Frank Hoffmann and Dr. Klaus Kriegel for their great support of my
preparations for the SoCG last year. Without their help and persuasion I would not have given
that kind of talk about my bachelor thesis. Furthermore, I would like to thank for the financial
support.

Of course, there are many people reviewing my thesis. Without these people my thesis would
not have been as good as it is now.

Not forgetting my whole family, I would like to thank them for the financial and emotional
support.

Last but not least, I would like to give some words to the students, especially the bioinformati-
cians, of the lectures I supervised over the last five years. I never understood why four symbols
(A, C, G and T) are much more interesting than two symbols (0 and 1), but I am very thankful
that you helped me to improve my teaching skills. I am really looking forward to (im-)prove
these skills in other lectures.

ii

Abstract
Routing in networks is a fundamental problem that occurred in the 1980’s and was well studied
since then. However, there are still open problems, which have not been solved until now. In this
thesis we propose routing schemes for special graph classes.

Let G = (V,E) be a weighted network or graph. For any two nodes p, q ∈ V I would like to be
able to route a data package from p to q. A routing schemeR assigns to each node p ∈ V a label
l(p) ∈ {0,1}∗ and a routing table ρ(p) ∈ {0,1}∗. The label identifies the node in the network
and the routing table is its own local read-only memory. Now the scheme works in the following
way: the scheme starts with a current node p, the label of a target node and some additional
information in the data package, called header. As a next step, the scheme computes a new node
in the network, where the data package is forwarded to. It can use the information in the header
and the local memory. The resulting sequence of nodes is the routing path. The stretch ofR is
the maximum ratio of the Euclidean length of the routing path and the shortest path.

Usually, wireless networks are modelled using (unit) disk graphs. A disk graph DG(S)
consists of a set S of n disks with certain radii. The centres of the disks correspond to transmitters
of the wireless network. We say that two transmitters are connected, iff their disks intersect. From
a practical point of view it is reasonable to say that the scope of the transmitters does not differ
too much. Now for any given ε > 0, we show how to find a routing scheme for disk graphs with n
sites, constant bounded radius ratio and diameter D. This routing scheme has stretch 1 + ε and
uses O(logn) bits for the labels. The header size is O(logn logD) and the routing tables need
O(ε−6 log2 n log2D) bits. The preprocessing time is O(n2 logn + ε−4n2 + ε−6n logn log2D).

Travelling in polygons is a well-known problem as well. The visibility graph VG(P) of a
polygon P with n vertices and h holes is a graph in which two vertices in P are connected, iff
they can see each other, meaning that the line segment between the two vertices is contained in P .
We present the first routing scheme for polygons with holes. For any ε > 0 the routing scheme
provides the stretch 1 + ε and uses no additional information in the header of a data package. The
labels have O(logn) bits and the corresponding routing tables are of size O(ε−1h logn). The
preprocessing time is O(n3 + nhε−1) and can be improved for simple polygons to O(n2 + nε−1).

iii

Contents
Abstract iii

Contents iv

List of Figures vi

List of Algorithms vii

1 Introduction 1
1.1 Disk Graphs . 2
1.2 Polygons . 2
1.3 Structure of this Thesis . 2

2 Preliminaries 3
2.1 Basic Definitions . 3
2.2 Routing Schemes . 3
2.3 Disk Graphs . 5
2.4 Polygons . 8

3 Well-separated Pair Decomposition 10
3.1 Computing the Well-separated Pair Decomposition 11
3.2 Analysis . 12
3.3 Further Properties and a first step towards arbitrary Density 16

4 Routing in Disk Graphs 22
4.1 Preprocessing the Disk Graph . 23
4.2 The Routing Scheme . 25
4.3 Analysis . 27
4.4 Extension to arbitrary Density . 32

5 Routing in Polygons 34
5.1 Cones in Polygons . 34
5.2 The Routing Scheme . 36
5.3 Analysis . 38
5.4 Improvement for simple Polygons . 40

6 Conclusion 43

Bibliography 45

iv

List of Figures
2.1 The conceptual idea of a routing scheme. A node N receives a data package P .

Unless N is the target of P , N can use its routing table and the package’s header
to compute the link to which P is forwarded to. 5

2.2 A disk graph with smallest radius 1 and largest radius φ. 6
2.3 The visibility graph (red) of a polygon with ten points and one hole. 9

3.1 S1 and S2 are c-well-separated. 11
3.2 The minimum spanning tree of a disk graph DG(S) (left) and its hierarchical

decomposition (right bottom). The terms Sv, Tv, av and P (Sv) are illustrated
for the edge i. 11

3.3 The set C (black points) and the corresponding ε0r-disks. The normal lines are
the connections between two sites of C and the dashed lines are the bridges for
some sites. Thus, B consists of all sites that are part of a bridge. 17

3.4 The clusterheads lie on the grid and the crosses are possible candidates for bridge
points. 19

3.5 The three cases of Lemma 3.11. 20

4.1 To route a package from p to q, we walk along Tu until we find r. Then we route
from r to m and from m to q in a recursive manner. 22

4.2 To find the site r we perform an Euler Tour on the subtree Tv that contains s and
whose edges have level at least 7. Since we cannot find r, we perform an Euler
Tour in the next larger subtree Tw that is w = P (v) in H 25

4.3 This figure shows how the intermediate target τ and the header stack changes
during the routing. 28

5.1 The cones and rays of a vertex p with inner angle α. 34
5.2 Illustration of Lemma 5.2. The points r and r′ have the same distance to p. The

dashed line represents the shortest path from r to q. 35
5.3 This figure shows the idea of the routing scheme. The first edge on a shortest

path from p to q (red) is contained in Ci(p). The routing algorithm will route the
package from p to p′ (green), the closest vertex to p in Ci(p). 36

5.4 The green line is the shortest path from p to a, whereas the red paths are the
”shortest” paths from p to q and r. The blue line segment gives a shortcut from s
to t′. 37

5.5 The boundaries of Ci(p) hit ∂P in the points si−1 and si. The site p′ is the point
in Ci(p) with shortest distance to p. 41

5.6 The red line is the ”shortest” path from p to q with p′ as first step, whereas the
green dashed line represents a shortcut from p to s. 42

v

List of Figures

6.1 In this polygon, the hop-distance between p and q is 1, because they can see each
other. Our routing scheme routes from one spire to the next. Thus, the stretch is
in Θ(n). 43

6.2 This disk graph has unbounded density and needs Θ(n2) well-separated pairs. . 44

vi

List of Algorithms
3.1 Computes the hierarchical decomposition for an MST with largest degree α. . . 12
3.2 Computes the c-well-separated pair decomposition for DG(S) 13
3.3 Computes an ε0-net of S. 17
3.4 Computes the set Z. 18

4.1 Computes the Labelling for the Routing Scheme 23
4.2 The routing function for disk graphs. 26

vii

CHAPTER 1
Introduction

Routing in graphs is a crucial problem in distributed graph algorithms, see for example [16]
and [30]. Given a graph G we would like to route a data package from one location to another.
There are two different properties, a routing scheme has to satisfy. First, the routing should be
local. That means, it uses only information stored in the data package and the preprocessed
memory of a current node of the graph. Second, the routing scheme should be efficient, meaning
that the data package does not travel considerably too long. There is an obvious way to solve
this problem: for each node p of G, we store the complete shortest path tree of p in its memory.
Thus, we can route along the shortest path from one node to another. Unfortunately, this method
is rather inefficient, because we have to store the entire topology of G at each node. Furthermore,
both goals are conflicting properties. On the one hand, the routing scheme should yield paths
that are as short as possible, but on the other hand, we would like to store a minimum routing
information in the processors’ local memory.

Thorup and Zwick introduced the notion of a distance oracle [39]. Given a graph G, the
goal is to produce a compact data structure, named distance oracle that can quickly answer
distance queries between any pair of nodes in the graph. Thus, routing schemes are distributed
implementations of distance oracles [32]. The graph corresponds to the distributed network. A
distributed algorithm runs on the processors – the nodes of the graph. Each node has a memory
and a data package that is sent from a source to a target contains the name of the destination and
perhaps some additional information for the routing scheme. If a node receives a message, it
checks, whether it is the message’s destination. Otherwise, it uses the additional information and
its own routing table to choose the link on which it forwards the message. The stretch of a routing
scheme is the worst possible ratio between the travelled distance and the shortest path distance.

For general graphs, there are many results available, because the problem was well-studied
since the 1980’s (see for instance [1, 4, 9, 11, 12, 31, 32]). Recently, Roditty and Tov developed
a routing scheme for a graph G with n vertices and m edges. The scheme provides a poly-
logarithmic header size and routes a message from p to q on a path with length O(k∆ +m1/k),
where ∆ is the distance of the shortest path between p and q and k > 2 an integer. Their routing
tables use mnO(1/

√

logn) total space [32]. However, for general graphs, any efficient routing
scheme needs to store Ω(nc) bits per node, for some c > 0 (see [30]). Thus, it is useful to
ask whether there are improved results for specialized graph classes. For instance, there are
routing schemes for trees that follow the shortest path and require at most O(logn) bits at each
node [14, 33, 38]. Additionally, in planar graphs it is possible for any ε > 0 to find a routing
scheme with a poly-logarithmic number of bits in the routing tables and a stretch 1 + ε [37].

1

Chapter 1 Introduction

1.1 Disk Graphs

The first graph class that is of particular interest for routing problems is given by disk graphs. The
nodes are represented by points in the plane, called sites. Furthermore, each site corresponds to a
transmitter in a wireless network and has a certain perimeter, in which a point can receive and
send messages. Traditionally, most networks are modelled as unit disk graphs [16], in which two
sites share an edge if and only if their distance is at most 1. Unit disk graphs maybe dense, but
they share many properties with planar graphs. The first scheme for this graph class was given by
Yan, Xiang and Dragan [41]. They extend the ideas of Gupta et al. [19] to obtain a routing scheme
with routing table size O(log2 n) and constant stretch. Recently Kaplan et al. describe a routing
scheme that provides for any ε > 0 the stretch 1+ ε, using a header with poly-logarithmic size [21].
In this thesis, we extend this last routing scheme to disk graphs with constant bounded radius
ratio, meaning that the radii of the various disks differ by not too much. Unlike the algorithm of
Yan, Xiang and Dragan, we need a header of poly-logarithmic size. It would be interesting to
evaluate, whether one can remove this header.

For the description of this routing scheme we need a geometric data structure – the well-
separated pair decomposition. This decomposition was introduced by Callahan and Kosaraju [8]
and extended for unit disk graphs by Gao and Zhang [15]. A pair of point sets (A,B) is c-well-
separated, if the distance between A and B is at least c times the diameters of both A and B. Here
we can use an arbitrary definition of distance – for example the Euclidean metric or the disk graph
metric. A well-separated pair decomposition of a point set consists of a set of well-separated
pairs that cover all pairs of distinct points. Gao and Zhang already mentioned that it is possible to
extend their result for disk graphs with constant radius ratio. We will describe the details.

1.2 Polygons

The second graph class of interest is the visibility graph of a polygon with an arbitrary number
of holes. We say that two vertices in a polygon P with h holes and n vertices are connected by
an edge if they can see each other that is the line segment between the two vertices is contained
in P . The problem of computing a shortest path between two vertices has been well studied in
computational geometry, see for instance [3, 5, 18, 20, 22, 23, 25, 26, 29, 34, 35, 40]. Nevertheless,
to the best of our knowledge there are no routing schemes for visibility graphs of polygons. Thus,
we present the first routing scheme for polygons. For any ε > 0 the routing scheme needs at most
O(ε−1h logn) bits in the routing table and produces a routing path with stretch (1 + ε).

1.3 Structure of this Thesis

First, we introduce relevant basic definitions and prove lemmas in the next chapter which
will be needed for our main results. The following two chapters describe how to produce the
routing scheme for disk graphs. In Chapter 3 we compute the details for the well-separated pair
decomposition and apply them in Chapter 4 to find the routing scheme. After that, we describe
the first routing scheme for polygons in Chapter 5. Last but not least, we discuss open problems
and final issues in Chapter 6.

2

CHAPTER 2
Preliminaries

In this chapter we define the model for our routing problem. In the first section we look at graphs
in general, whereas the following sections provide relevant basis definitions for routing schemes,
disk graphs and polygons.

2.1 Basic Definitions

Let G = (V,E) be an undirected, connected graph without multi-edges or loops. In our model
this graph G is always embedded in the Euclidean plane R2: a node p = (px, py) ∈ V corresponds
to a point and an edge {p, q} ∈ E represents the line segment pq. Since we have the Euclidean
plane, we denote by ∣pq∣ the Euclidean distance between the points p and q that means ∣pq∣ =√

(px − qx)2 + (py − qy)2. Furthermore, we define ∣pq∣ to be the weight of the corresponding
edge. The degree of p ∈ V , called degG(p), is the number of incident edges in G. We omit the
index G, if the graph is known from the context.

Definition 2.1 (Shortest Path). Let G = (V,E) be a graph as described above and p, q ∈ V .
We say that π = p0p1...pk is a path between p and q, if p0 = p, pk = q and {pi−1, pi} ∈ E
(for all 1 ≤ i ≤ k). The length of π is defined as d(π) = ∑

k
i=1 ∣pi−1pi∣. Moreover, we define

d(p, q) = minπ d(π) to be the length of a shortest path connecting p and q in G, where π goes
over all paths with endpoints p and q.

The definition of the shortest path can be extended to pairs of sets. Let V1 and V2 be two subsets
of V . The distance between these two sets is defined as d(V1, V2) = minp1∈V1,p2∈V2 d(p1, p2).
Additionally, diam(V1) = maxp1,p2∈V1 d(p1, p2) denotes the diameter of V1.

2.2 Routing Schemes

Let G = (V,E) be a graph as described above. Now we define a routing scheme for G. There
are several different definitions for routing schemes, see [21, 32, 41]. Most commonly, a routing
scheme has a ”behaviour”, meaning that a physical node of the scheme forwards data packages to
other physical nodes using certain protocols. This behaviour is called routing function. Moreover,
each physical node has a name tag that identifies the physical node in the network and is available
to the routing function. These name tags are called labels. They usually are bit strings. Last but
not least, each node has to use certain information during its routing function. This information is
stored in the memory of the physical node or additionally in the forwarding data package itself.

3

Chapter 2 Preliminaries

The memory of the node is called routing table, and the information stored in the data package
which is necessary for the routing is called header. There are routing schemes that do not use any
headers, see for instance [41] or Chapter 5.

Definition 2.2 (Routing scheme). A routing scheme R = (l, ρ, f) of a graph G consists of the
following elements:

• a label l(p) ∈ {0,1}∗ for each node p ∈ V ,

• a routing table ρ(p) ∈ {0,1}∗ for each node p ∈ V and

• a routing function f ∶V × {0,1}∗ × {0,1}∗ → V × {0,1}∗ × {0,1}∗.

The routing function takes as input a node p ∈ V , the label l(q) of a target node q and a header
h ∈ {0,1}∗. Now the routing scheme works as follows: starting at a point p ∈ V we can use some
information to route an arbitrary data package. This information is composed of three parts. The
first part is the routing table of p. This routing table usually contains some information about the
topology of the graph. The second part is the label of a target site, perhaps an intermediate target.
This label is useful from a practical point of view, because labels can be stored in routing tables of
any other node. Thus, it represents the name of a node but also additive information. Sometimes
we need additional information from the past during the routing of data from one location to
another. This information is stored in the header. The header enables us to use recursive routing
schemes. Figure 2.1 shows the conceptual idea behind that mathematical definition.

Now using the three pieces of information the routing function will compute new information.
The first part of the output is a node p′ that has to be adjacent to p. The data now has to travel
from p to p′. Furthermore, it is possible to compute a new target label (second part of the output)
and a new header (third part of the output). This can be useful for the mentioned recursive routing
schemes.

Definition 2.3 (Properties of a routing scheme). Let R = (l, ρ, f) be a routing scheme of a
graph G. We say that R is correct if the following holds: for any two sites p, q ∈ V consider
the sequence of triples given by (p0, l0, h0) = (p, l(q), ε) and (pi, li, hi) = f(pi−1, li−1, hi−1) for
i ≥ 1. Then there exists a k = k(p, q) ≥ 0 such that pk = q and pi ≠ q for i < k.
The routing scheme reaches q after k steps. Furthermore, π = p0p1...pk is the routing path
between p and q. The routing distance is dρ(p, q) = d(π). If R does not use any headers that
means hi = ε for all i ≥ 0, then we write f(p, l) and mean f(p, l, ε).

Now letR be a correct routing scheme. We would like to know how efficient a routing scheme
is. To measure this efficiency we have to define some useful items. First of all, each site in V gets
a label. The label size L ofR is the size of a largest label among all nodes. This size should be
as small as possible. The label size is defined as

L(n) = max
∣V ∣=n

max
p∈V

∣l(p)∣.

Moreover, we would like to have small routing tables. If the routing table is as small as possible,
the routing process of a data package should be faster. The item for measuring the size of the

4

Chapter 2 Preliminaries

01001000111
01101010001
00001110110
01111010110

Data

Node N

01101001011
00111010111
00011111000
11011110001

TableConnections
Link1: Node G
Link2: Node C
Link3: Node A
Link4: Node T

Package P

Target: X

Header
1010101100110001
1101101011110010

Target = Node ?

yes

done

no Calculate new Node;
use: Header, Table

Forward package

Figure 2.1: The conceptual idea of a routing scheme. A node N receives a data package P . Unless N is
the target of P , N can use its routing table and the package’s header to compute the link to
which P is forwarded to.

routing tables is T and is defined as

T (n) = max
∣V ∣=n

max
p∈V

∣ρ(p)∣.

If the routing scheme uses a header, the size of this header should be as small as possible, because
it belongs to the data travelling through the network. The less bits this header contains the faster
the transportation is realized. The corresponding item for measuring the size of the header is H
and is defined as

H(n) = max
∣V ∣=n

max
p≠q∈V

max
i=1...k(p,q)

∣hi∣.

Last but not least, we would like to know more about the distance of the routed data package in
relation to an optimal path. It is possible that the routing scheme computes a path that is not a
shortest path. The stretch ζ tells us, how large the travelled path is in relation to the shortest path:

ζ(n) = max
∣V ∣=n

max
p≠q∈V

dρ(p, q)

d(p, q)
.

We have defined correct routing schemes and reasonable measures for general graphs. In this
thesis, we discuss two special graph classes: disk graphs and visibility graphs of polygons with
holes. In the following two sections, we define them and provide first simple properties of these
graph classes.

2.3 Disk Graphs

Given a point p ∈ R2 and a real number r > 0, we denote by Dr(p) = {q ∈ R2 ∣ ∣pq∣ ≤ r} the
closed disk with center p and radius r. Now let S be a set of n disks in the plane. The set S can
be represented as a set S of n sites and a function r∶S → R+, which assigns to each center p ∈ S

5

Chapter 2 Preliminaries

the radius r(p), such that Dr(p)(p) is in S. For technical reasons we introduce some important
conventions on the notations. The conventions hold for disk graphs in the entire thesis. First
of all, if we refer to a set S of n sites, we always assume without mentioning it that there is an
additional function r, which assigns to each point p the radius r of the corresponding disk. That
means if we talk about a set S of n points then there is a set of n disks whose centres are the
points in S. Furthermore, we set r(p) = rp or r(pi) = ri and Dr(p)(p) =D(p). For convenience,
we write Dc

r(p) instead of Dc⋅r(p) for each c > 0 and Dc(p) instead of Dc⋅rp(p), respectively.

Definition 2.4 (Disk graph). Let S ⊂ R2 be a set of n sites. DG(S) = (S,E) is called the disk
graph of S, in which two distinct sites p, q ∈ S share an edge e ∈ E, iff ∣pq∣ ≤ rp + rq.

φ

1

Figure 2.2: A disk graph with smallest radius 1 and largest radius φ.

In other words, we can say that there is an edge between p, q ∈ S in the disk graph if and only
if their corresponding disks intersect (see Figure 2.2). Additionally, we define the radius ratio of
S to be φ = maxp,q∈S(

rp
rq
). In our model we will assume that this ratio does not depend on the

size of S, i.e. φ ∈ O(1). This assumption seems to be reasonable from a practical point of view,
because the scope of a transmitter does usually not depend on the number of transmitters.
Furthermore, we assume without loss of generality that the smallest radius equals 1, because
otherwise we would scale the whole input by a suitable factor, such that the smallest radius is
1. Thus we can assume that all the radii of our disk graph are at most the radius ratio φ. We
say that S has density δ if every unit disk (disk with radius 1) contains at most δ sites. The first
observations will be useful for further proofs.

Observation 2.1. Let DG(S) be a disk graph with n sites and maximum radius φ. Then we have
diam(S) ≤ 2φ(n − 1).

Proof. Consider two sites p, q ∈ S with d(p, q) > 2φ(n − 1). On a shortest path from p to q
there have to be at least two adjacent sites s, t ∈ S with Euclidean distance more than 2φ. This
contradicts the assumption that φ is the maximum radius and s and t are adjacent in DG(S).

Observation 2.2. Let S1, S2 ⊆ S be two subsets of sites such that DG(S1) and DG(S2) are
connected, p, s ∈ S1 and q, t ∈ S2. Then we have diam(S1) + d(s, t) + diam(S2) ≥ d(p, q).

6

Chapter 2 Preliminaries

Proof. This claim holds by the triangle inequality and the fact that diam(S1) ≥ d(p, s) and
diam(S2) ≥ d(t, q).

The following lemma will immediately imply that the largest degree in the minimum spanning
tree is inO(φ2). It is easy to show this asymptotic upper bound. But since we need the maximum
degree in a later analysis, we have to know something about the constant. Therefore, the proof is
a bit more involved.

Lemma 2.3. Let DG(S) be a disk graph and T = (S,E) a minimum spanning tree of DG(S).
Then we have for all p ∈ S: degT (p) ≤ 26φ2.

Proof. Let p be a site in the minimum spanning tree and N(p) be the set of all sites in T that are
adjacent to p. Without loss of generality p is the origin.

Consider the disk D2(p). Then we have ∣D2(p) ∩N(p)∣ ≤ 6. To prove this, we assume the
opposite. Then there has to be a cone C with apex p and apex angle 60○ such that two points
r, q ∈ N(p) are located in the interior of C. Without loss of generality we have ∣pq∣ ≤ ∣pr∣. Thus,
we can derive

∣rq∣ =
sinα

sinβ
∣pr∣ <

sin 60○

sin 60○
∣pr∣ = ∣pr∣,

where α < 60○ is the angle at p and β > 60○ is the angle at q in the triangle ∆(p, q, r). This
contradicts the assumption that T is a minimum spanning tree, because we can delete the edge
{p, r} and and since the minimum radius is 1 we can add the edge {r, q} to obtain a new spanning
tree with less weight.

As a next step, we look at the grid defined by the horizontal lines hi∶ yi = i ⋅
√

2 and the vertical
lines vi∶xi = i ⋅

√
2 (for each i ∈ Z). Then each square in the grid has diameter 2. We observe

that N(p) is contained in a square Q with centre p (intersection of the diagonals) that contains at
most 4⌈

√
2φ⌉2 small grid squares. Moreover, we define Di,j to be the perimeter of the square

that is defined by the lines hi, hi+1, vj and vj+1. Thus, we need at most 4⌈
√

2φ⌉2 disks Di,j to
cover N(p). We will apply the same argument as above and show that Di,j ∩N(p) can have at
most one site (with some exceptions). Again, we assume the opposite and derive a contradiction.
Let m be the midpoint of Di,j and r ≠ q ∈Di,j ∩N(p). We have to discuss three cases.
Case 1: In the first case we have ∣pm∣ ≥ 3. Then we have ∣pq∣, ∣pr∣ ≥ 2 and since q ≠ r we have
either ∣pq∣ > 2 or ∣pr∣ > 2. But since ∣qr∣ ≤ 2, we can apply the same argument as above to obtain
a new spanning tree with less weight.
Case 2: In the second case we have 2 < ∣pm∣ < 3. If either q satisfies ∣pq∣ > 2 or r satisfies
∣pr∣ > 2, we have the same situation as in Case 1. Otherwise q and r are contained in D2(p).
Since ∣pm∣ > 2, q and r lie within a cone C with apex p and apex angle < 60○ and we can derive
the contradiction again.
Case 3: In the third case, we only have to look at the four disks D0,0, D0,−1, D1,1 and D−1,0. It
is possible that these disks contain more than one site in the neighbourhood of p. However, we
notice that these four disks are contained in D2(p).

Finally, we have the following situation. D2(p) and 4⌈
√

2φ⌉2 − 4 disks with radius 1 cover the
entire neighbourhood of p. We have shown that D2(p) contains at most 6 sites and all the other

7

Chapter 2 Preliminaries

disks contain at most 1 site of N(p). Hence, we have

degT (p) ≤ 6 + 4⌈
√

2φ⌉2
− 4 ≤ 4(

√
2φ + 1)2

+ 2 ≤ 26φ2.

Lemma 2.4. Let T = (S,E) be a tree with n vertices and maximum degree α. Then there exists
an edge e, such that T ∖ e consists of two trees with at least n/(α + 1) vertices each.

Proof. We show that there is an edge e such that T ∖ e consists of two trees with at least
⌈(n − 1)/α⌉ vertices each. The claim then follows from the fact that n ≥ α + 1.

Let v be an arbitrary vertex of T . By the pigeonhole principle the largest subtree Tu of v rooted
at u has at least ⌈(n−1)/α⌉ vertices. Now let e be the edge between u and v. There are two cases.
In the first case T ∖ e satisfies our lemma and we are done. Otherwise, the subtree of u rooted at
v has less than ⌈(n − 1)/α⌉ vertices. But then - again by the pigeonhole principle - the largest
subtree Tw of u rooted at w ≠ v has at least ⌈(n − 1)/α⌉ vertices. Again, there are two cases and
in fact the process starts from the beginning. The process has to stop after at most ⌈(n − 1)/α⌉
steps, because in each step we gain at least one vertex and there are no cycles in the tree.

Lemma 2.5. Let S ⊂ R2 be a point set with density δ and p ∈ R2. Then the disk Dr(p) with
radius r ≥ 1 contains at most O(r2δ) points of S.

Proof. This proof works by a simple volume argument. We can use O(r2) different unit disks to
cover the entire disk Dr(p). Since S has density δ each unit disk contains at most δ points of S.
In fact, we have O(r2δ) points in Dr(p) ∩ S.

2.4 Polygons

For our second application we need definitions for polygons. First of all, a polygonal chain
π = p0p1, p1p2, . . . , pn−1pn is a sequence of line segments. For convenience, we identify the
polygonal chain with its vertices pi, i.e. π = p0p1 . . . pn. We say that the polygonal chain is closed,
if p0 = pn. Furthermore, if any two non-adjacent line segments do not intersect and adjacent line
segments intersect only in one of their endpoints, the polygonal chain is called simple. It is a
well-known fact that each simple, closed polygonal chain π separates the surface into two distinct
sets: the bounded interior of π – noted by intπ – and the unbounded exterior.

As a next step, we define a polygon that has a certain number of holes. A hole is a connected
region in the interior of a polygon, but it does not belong to the polygon itself. Thus, holes have
to satisfy three conditions: a hole is contained in the interior of the polygon (i) and two distinct
holes do not intersect each other (ii and iii). The following definition states these conditions more
precisely.

Definition 2.5 (Polygon). Let h ∈ N and πi = pi,0 . . . pi,ni be h + 1 different simple and closed
polygonal chains for 0 ≤ i ≤ h, such that

(i) πi ⊂ intπ0 for all 1 ≤ i ≤ h,

8

Chapter 2 Preliminaries

(ii) πi ∩ πj = ∅ for 1 ≤ i ≠ j ≤ h and

(iii) πi ⊈ intπj for 1 ≤ i ≠ j ≤ h.

Then P is called a polygon with h holes and is defined as P ∶= (π0 ∪ intπ0) ∖ (⋃
h
i=1 intπi).

Thus, the boundary of P has h + 1 components: one outer boundary and h hole boundaries.
The boundary of P is the union of the h + 1 polygonal chains, meaning ∂P = ⋃

h
i=0 πi. Moreover,

we set intP ∶= P ∖ ∂P and ∣P ∣ ∶= ∑
h
i=0(ni + 1). For practical reasons, we introduce further

convention. We define for each i = 0 . . . h and each j ∈ Z the point pi,j to be pi,k with k = j
mod (ni + 1). Moreover, if the context is clear, we omit the first index of the pi,j .

To define graph classes for polygons, we need the concept of visibility.

Definition 2.6 (Visibility). Let P be a polygon with h holes and p and q two points in P . The
two points can see each other iff the line segment between the two points is contained in P , i.e.
p↭ q, iff pq ⊂ P . Additionally, the visibility polygon V (p) of a point p is the set of all points
that can see p. That means V (p) = {q ∈ P ∣ p↭ q}.

Finally, we can define the visibility graph for a polygon P , see Figure 2.3.

Definition 2.7 (Visibility graph). Let P be a polygon with h holes. The visibility graph VG(P)

consists of the vertices of P that is V = {pi,j ∣ 0 ≤ i ≤ h,1 ≤ j ≤ ni}. Furthermore, there is an
edge between two points, if and only if they can see each other, meaning E = {{p, q} ∣ p↭ q}.

p0,0 = p0,7

p0,1

p0,2

p0,3

p0,4

p0,5

p0,6

p1,0 p1,2

p1,1

Figure 2.3: The visibility graph (red) of a polygon with ten points and one hole.

9

CHAPTER 3
Well-separated Pair Decomposition

Callahan and Kosaraju introduced the concept of well-separated pair decomposition of a point
set [8]. This decomposition consists of well-separated pairs that cover all the pairs of distinct
points. Two sets of points in the Euclidean plane are well-separated, if the distance between the
two point sets is large enough in relation to their diameters (see for instance Figure 3.1). The
decomposition depends on the chosen distance metric, since the diameter is defined using this
metric. Callahan and Kosaraju have shown how to compute a well-separated pair decomposition
of a point set using the Euclidean distance [8]. Although there are (

n
2
) pairs of distinct points,

we can always find a well-separated pair decomposition with O(n) pairs of point sets. The
decomposition can be computed in O(n logn) time, which is optimal. In the last two decades
well-separated pair decomposition have found various applications in solving proximity problems
for points in the Euclidean space [2, 6–8, 13, 17, 24, 27, 28]. One well-studied problem is the
computation of a spanner. A t-spanner H of a graph G is a subgraph, such that for any two points
p and q in G, there is a path in H between them, whose length is at most t ⋅dG(p, q). Narasimhan
and Smid gave a nice survey on this topic, especially on using well-separated pair decompositions
for computing sparse spanners [28].

However, well-separated pair decompositions are defined for arbitrary distance metrics. In this
chapter we will concentrate on the disk graph metric – the shortest path metric of a disk graph
DG(S). The following definition is illustrated by Figure 3.1.

Definition 3.1 (Well-separated pair decomposition). Let DG(S) be a disk graph with n sites
and c ≥ 1. Two non-empty subsets A,B ⊆ S are called c-well-separated if d(A,B) ≥ c ⋅
max(diam(A),diam(B)).
A set of pairs Ξ = {P1, P2, ..., Pm}, where Pi = (Ai,Bi), is called a pair decomposition of S if

(i) Ai,Bi ⊆ S for 1 ≤ i ≤m,

(ii) Ai and Bi are disjoint and

(iii) for each pair (a, b) ∈ S × S of distinct sites, there is a unique i such that (a, b) ∈ Ai ×Bi.

We say that (Ai,Bi) represents (a, b). If in addition, every pair in Ξ is c-well-separated, Ξ is a
c-well-separated pair decomposition.

Gao and Zhang [15] have shown that it is possible to build a well-separated pair decomposition
for the unit disk graph metric that has O(n logn) pairs. We will use this approach to build a
well-separated pair decomposition for the disk graph with constant radius ratio φ and density δ.

10

Chapter 3 Well-separated Pair Decomposition

The remaining part of this chapter will be very similar to the article of Gao and Zhang. We are
going to extend their description by using pseudo-code. Nevertheless, the lemmas and theorems
will be slightly different, because we have to deal with the additional parameter φ.

diam(S1) diam(S2)

≥ c ·max(diam(S1), diam(S2))

Figure 3.1: S1 and S2 are c-well-separated.

3.1 Computing the Well-separated Pair Decomposition

First of all, let S be a set of n sites with radius ratio φ ∈ O(1) and density δ. In the first step we
compute the minimum spanning tree T of DG(S). Since S has constant radius ratio, we know
by Lemma 2.3 that the maximum degree α of T is in O(1). Applying Lemma 2.4, we find an
edge e such that deleting this edge in T , we get two disjoint subtrees, with at least n

α+1 sites each.
Applying this argument recursively, we obtain a so called hierarchical decomposition of T (see
Figure 3.2). We can represent this decomposition as a binary decomposition tree H , in which an
inner node corresponds to the selected edge and a leaf represents a site of T (see Algorithm 3.1).
Since α is a constant, this decomposition tree is balanced and has height O(logn).

1

2 3

4 5

6

7

8

9

10 11

a, 0

b, 1c, 2

d, 3

e, 2

f, 3

g, 3

h, 1

i, 2
j, 3

a

b

c

d

e

f g

h = P (i)

i

j

1 2

7

5 6 3 4

9

10

8 11

Ti

11
8

10
9

Si
P (Si)

ai

Figure 3.2: The minimum spanning tree of a disk graph DG(S) (left) and its hierarchical decomposition
(right bottom). The terms Sv , Tv , av and P (Sv) are illustrated for the edge i.

11

Chapter 3 Well-separated Pair Decomposition

Algorithm 3.1 Computes the hierarchical decomposition for an MST with largest degree α.
Input: spanning tree Tr rooted at r
Output: hierarchical decomposition H of Tr

1: compute for each site p the number np of leafs in the tree Tp
2: if nr = 1 then
3: H.element ∶= r
4: return H
5: end if
6: size ∶= 0; p ∶= r
7: while size < ⌈(nr − 1)/α⌉ do
8: q ∶= p
9: p ∶= argmax{ns ∣ s is a child of q} /* root of largest subtree of q */

10: size ∶= nr − np /* size of Tr ∖ Tp */
11: end while
12: H.element ∶= {p, q}
13: H.left ∶= hierarchical decomposition of Tp
14: H.right ∶= hierarchical decomposition of Tq = Tr ∖ Tp
15: return H

For the next step of the algorithm and the later analysis we will need some notations. Let v be
a node of H . Then v corresponds to a subtree Tv of T with vertex set Sv ⊆ S and av represents
an arbitrary point in Sv. Furthermore, let v be an inner node and u and w its children, then v
has an associated edge ev ∈ Tv. Removing this edge from Tv yields the two subtrees Tu and Tw.
Again by Lemma 2.4 we have ∣Su∣, ∣Sw∣ ≥ ∣Sv ∣/(α + 1). Moreover, let P (v) be the parent node
of a node v (≠ root) and we set P (Sv) = SP (v). In Figure 3.2 we can see a minimum spanning
tree, the corresponding hierarchical decomposition and the different notations.

As we can see in Algorithm 3.1, the computation of the hierarchical decomposition does not
depend on the separating parameter c. Using this parameter and the decomposition tree H , we
can compute the c-well-separated pair decomposition for DG(S) with an iterative process (see
Algorithm 3.2). We discuss the details of this algorithm in the following section.

3.2 Analysis

In this section we bound the number of computed pairs and give the first theorem of this thesis.
First of all, we prove that Algorithm 3.2 computes a c-well-separated pair decomposition for
DG(S). Then we bound the number of computed pairs and analyse the running time for our
approach.

Let Ξ be the output of Algorithm 3.2 for the hierarchical decomposition H of a disk graph
DG(S).

Lemma 3.1. Ξ is a c-well-separated pair decomposition of DG(S) and each pair of different
sites (p, q) is covered by exactly one pair in Ξ.

12

Chapter 3 Well-separated Pair Decomposition

Algorithm 3.2 Computes the c-well-separated pair decomposition for DG(S)

Input: DG(S), c ≥ 1
Output: c-well-separated pair decomposition Ξ

1: H ∶= hierarchical decomposition of minimum spanning tree of DG(S)
2: Q ∶= Queue()
3: Ξ ∶= ∅

4: Q.add((Sr, Sr)) /* r is the root of H*/
5: while Q ≠ ∅ do
6: (Sv, Sw) ∶= Q.remove()
7: if ∣avaw∣ > 2φ(c + 2)max(∣Sv ∣ − 1, ∣Sw∣ − 1) then
8: Ξ.add((Sv, Sw))
9: else if ∣Sv ∣ = ∣Sw∣ = 1 then

10: NOP
11: else if ∣Sv ∣ ≥ ∣Sw∣ then
12: Q.add((Sv1 , Sw)); Q.add((Sv2 , Sw)) /* v1 and v2 are the children of v */
13: else
14: Q.add((Sv, Sw1)); Q.add((Sv, Sw2)) /* w1 and w2 are the children of w */
15: end if
16: end while
17: return Ξ

Proof. First, we show that Ξ is a pair decomposition. The process of Algorithm 3.2 obviously
ends and we have to argue that all the pairs of distinct sites are covered by a pair in Ξ. Line 9
ensures that pairs of the form ({p},{p}) are discarded. Furthermore, we know that the pair
(Sr, Sr) is the first pair in the queue. This pair covers all the pairs (a, b) ∈ S × S with a ≠ b.
Now each time we split a pair in the queue, the union of the covered pairs remains the same.
Thus, each ordered pair of distinct sites is covered by a pair in Ξ. Furthermore, we know that the
splitting of Sv in Su and Sw is a splitting in two disjoint sets (see Line 11 to 14). That guarantees
that each ordered pair is covered exactly once.

Second, we have to prove that each pair in Ξ is c-well-separated. Let (Sv, Sw) ∈ Ξ. By
construction we have ∣avaw∣ > 2φ(c + 2)max(∣Sv ∣ − 1, ∣Sw∣ − 1). Since Sv is connected by
construction, we have diam(Sv) ≤ 2φ(∣Sv ∣ − 1) by Observation 2.1. Furthermore, we have
d(p, q) ≥ ∣pq∣ and diam(Sv) + d(Sv, Sw) + diam(Sw) ≥ d(av, aw). Finally, we can estimate by
Observation 2.2

d(Sv, Sw) ≥ d(av, aw) − (diam(Sv) + diam(Sw))

≥ d(av, aw) − 4φ ⋅max(∣Sv ∣ − 1, ∣Sw∣ − 1)

≥ ∣avaw∣ − 4φ ⋅max(∣Sv ∣ − 1, ∣Sw∣ − 1)

> (2φ(c + 2) − 4φ) ⋅max(∣Sv ∣ − 1, ∣Sw∣ − 1)

≥ c ⋅ 2φ ⋅max(∣Sv ∣ − 1, ∣Sw∣ − 1)

≥ c ⋅max(diam(Sv),diam(Sw))

13

Chapter 3 Well-separated Pair Decomposition

and hence the pair is c-well-separated.

Lemma 3.2. Let α be the maximum degree in the minimum spanning tree of DG(S). Then each
pair (Sv, Sw) that ever appears in the queue Q in Algorithm 3.2 satisfies the inequality

1

α + 1
≤

∣Sv ∣

∣Sw∣
≤ α + 1.

Proof. The proof works by induction. The first pair in Q is (Sr, Sr). Obviously, this pair satisfies
the inequality. In the induction step we consider some pair (Sv, Sw) that occurs in the queue. We
assume without loss of generality that P (Sv) has been split to generate (Sv, Sw). This means
(P (Sv), Sw) appeared in the queue and we can apply the induction hypothesis to get

∣Sw∣ ≥
∣P (Sv)∣

α + 1
≥

∣Sv ∣

α + 1
.

In addition, since P (Sv) has been split, we have ∣P (Sv)∣ ≥ ∣Sw∣ (see Algorithm 3.2 Line 11).
Furthermore, the splitting is balanced because of Lemma 2.4. In the end, we have the second
inequality

∣Sv ∣ ≥
∣P (Sv)∣

α + 1
≥

∣Sw∣

α + 1
.

If we combine both statements, we can finish the proof.

Lemma 3.3. Let Ξ(Sv) = {Sw ∣ (Sv, Sw) ∈ Ξ} and m(Sv) = ∣Ξ(Sv)∣ be the multiplicity of Sv
in Ξ. Then we have m(Sv) ∈ O(δc2∣Sv ∣).

Proof. This proof needs a volume argument to show that sets of one pair are not far away from
each other. As will be seen, the proof of this lemma makes use of the fact that the radius ratio φ
is bounded by a constant. Otherwise, the size of Ξ(Sv) would grow strongly.

Let Sw ∈ Ξ(Sv), then we have (P (Sv), P (Sw)) ∉ Ξ. Now we can assume without loss of
generality that (P (Sv), Sw) occurred in Q. Thus, we get by Algorithm 3.2 (Line 7) and the fact
that aw, aP (w) ∈ P (Sw)

∣aP (v)aP (w)∣ ≤ ∣aP (v)aw∣ + 2φ(∣P (Sw)∣ − 1)

≤ ∣aP (v)aw∣ + 2φmax(∣P (Sv)∣ − 1, ∣P (Sw)∣ − 1)

≤ 2φ(c + 3)max(∣P (Sv)∣ − 1, ∣P (Sw)∣ − 1).

Next, we define R ∶= (α + 1)∣P (Sv)∣ to show that max(∣P (Sv)∣ − 1, ∣P (Sw)∣ − 1) ≤ R and
diam(P (Sw)) ≤ R. If we split P (Sw) in Algorithm 3.2 to get (Sv, Sw), then (Sv, P (Sw)) has
to appear in the queue Q and by Lemma 3.2, we estimate

∣P (Sw)∣ − 1 ≤ ∣P (Sw)∣ ≤ (α + 1)∣Sv ∣ ≤ (α + 1)∣P (Sv)∣ = R.

Alternatively, if we split P (Sv) to get (Sv, Sw), we first apply Lemma 2.4 again and then use the

14

Chapter 3 Well-separated Pair Decomposition

splitting rule (Algorithm 3.2 Line 9) to obtain

∣P (Sw)∣ − 1 ≤ ∣P (Sw)∣ ≤ (α + 1)∣Sw∣ ≤ (α + 1)∣P (Sv)∣ = R.

We immediately obtain max(∣P (Sv)∣−1, ∣P (Sw)∣−1) ≤ R and finally we use the same inequality
as in the proof of Lemma 3.1 to get diam(P (Sw)) ≤ 2φR and ∣aP (v)aP (w)∣ < 2φ(c+ 3)R. Then
all the points of Sw have to be inside the disk Dr(aP (v)) with radius r = 2φ(c + 4)R. Since R
does not depend on Sw, all Sw ∈ Ξ(Sv) have to lie within Dr(aP (v)). Because of Lemma 2.5, we
know that Dr(aP (v)) contains at most O(δφ2(c + 4)2R2) sites. By combining both properties
we obtain

RRRRRRRRRRRR

⋃
Sw∈Ξ(Sv)

Sw

RRRRRRRRRRRR

= O(δφ2c2R2
).

Using Lemma 3.2, we get ∣Sw∣ ≥ ∣Sv ∣/(α+1) ≥ ∣P (Sv)∣/(α+1)2 and therefore ∣Sw∣ ≥ R/(α+1)3

by our choice of R. We apply Lemma 2.3 and bound m(Sv) with

m(Sv) ∈ O(
φ2δc2R2

R/(α + 1)3
) = O(φ2α3δc2R) = O(φ2α5δc2

∣Sv ∣) = O(φ12δc2
∣Sv ∣).

We used the fact that R = (α + 1)∣P (Sv)∣ ≤ (α + 1)2∣Sv ∣ (again by Lemma 2.4). As predicted,
the size m(Sv) grows strongly with the radius ratio. In our model we postulated a constant radius
ratio. Finally, we have m(Sv) ∈ O(δc2∣Sv ∣).

Lemma 3.4. We have ∣Ξ∣ ∈ O(δc2n logn).

Proof. For 0 ≤ i ≤m ∶= ⌈logn⌉ we define Vi = {v ∈ H ∣ 2i ≤ ∣Sv ∣ < 2i+1}. Since H is balanced,
Vi contains at most O(n/2i) nodes. In addition, we define Λi = {(Sv, Sw) ∈ Ξ ∣ v ∈ Vi}. By
Lemma 3.3, we have

∣Λi∣ = ∑
v∈Vi

m(Sv) ∈ O
⎛

⎝
∑
v∈Vi

δc2
∣Sv ∣

⎞

⎠
= O(δc22i+1

⋅ n/2i) = O(δc2n).

Finally, ∣Ξ∣ = ∑
m
i=0 ∣Λi∣ ∈ O(δc2n logn).

We obtain our first theorem by combining the four lemmas. Gao and Zhang used the relative
neighbourhood graph (see [36]) to compute a minimum spanning tree in time O(n logn). It does
not seem to be obvious to use this approach for general disk graphs. Instead we use the fact that
S has density δ.

Theorem 3.5. Let DG(S) be a disk graph with n sites, constant bounded radius ratio and
density δ. Moreover, let c ≥ 1. There is an algorithm that computes a c-well-separated pair
decomposition of DG(S) with O(δc2n logn) pairs. The running time is O(δc2n logn).

Proof. Proving the running time proves the theorem. By assumption, we know that the density
of S is δ. By Lemma 2.5, we get deg(p) ∈ O(δ) for all p ∈ S because φ ∈ O(1). Thus, DG(S)
has O(δn) edges and we can compute its minimum spanning tree in time O(δn logn) [10].
Algorithm 3.1 needs O(n logn) time, because one invocation needs linear time and since the

15

Chapter 3 Well-separated Pair Decomposition

splitting of the tree is balanced we get a balanced computation tree with height O(logn). To
bound the running time of Algorithm 3.2, we count the number of pairs which occur in the queue
Q. Obviously, the running time is proportional to the number of pairs that appear in Q. The
construction of Ξ can now be represented by a tree. A node is related to a pair that occurs in Q
and if a pair has been split, the resulting pairs are the children of the node. The leaves of the tree
are either the pairs of Ξ or the discarded pairs ({p},{p}). The second case occurs at most O(n)
times whereas the appearance of the first case is bounded by ∣Ξ∣. Thus, the computation tree has
O(δc2n logn) nodes and since each split costs O(1), we can bound the total running time by
O(δc2n logn).

3.3 Further Properties and a first step towards arbitrary
Density

The following two technical lemmas on well-separated pair decompositions will be useful later
on. They are quite similar to the lemmas we can find in [21]. Kaplan et al. use these lemmas for
the routing scheme. We need them in Chapter 4.

Lemma 3.6. Let Ξ be a c-well-separated pair decomposition for DG(S) and let p, q be two sites
such that the pair (Su, Sv) ∈ Ξ represents (p, q). Then c ⋅ diam(Su) ≤ 2φc(∣Su∣ − 1) ≤ d(p, q).

Proof. The first inequality follows from Observation 2.1. For the second inequality we use the
assumption and the fact that p ∈ Su and q ∈ Sv. That means ∣auav ∣ > 2φ(c + 2)max(∣Su∣ −
1, ∣Sv ∣ − 1). Now we use Observation 2.1 and 2.2 to get

d(p, q) ≥ d(au, av) − 2 max(diam(Su),diam(Sv))

≥ ∣auav ∣ − 2 max(diam(Su),diam(Sv))

> 2φ(c + 2)max(∣Su∣ − 1, ∣Sv ∣ − 1) − 4φmax(∣Su∣ − 1, ∣Sv ∣ − 1)

≥ 2φcmax(∣Su∣ − 1, ∣Sv ∣ − 1)

≥ 2φc(∣Su∣ − 1).

Lemma 3.7. Let Ξ be a c-well-separated pair decomposition for DG(S) and let p, q be two sites
with d(p, q) < c. If (Su, Sv) ∈ Ξ represents (p, q), then Su = {p} and Sv = {q}.

Proof. By Lemma 3.6 and assumption, we get 2φc(∣Su∣ − 1) ≤ d(p, q) < c. Thus we have
∣Su∣ < 1 + 1

2φ . Since φ ≥ 1 we obtain ∣Su∣ < 2 and the claim follows immediately. A similar
argument works for Sv.

In the remaining part of this chapter, we attempt to diminish the density δ. For this step we
follow the strategy of Gao and Zhang [15], see also Kaplan et al. [21].

Let ε0 > 0 be an appropriate parameter. Using an iterative strategy we compute an ε0-net of
S in the following way: we sort the elements of S by decreasing radius, repeatedly pick a site
p ∈ S and delete all the other sites in Dε0(p) (see Algorithm 3.3). This algorithm ensures that

16

Chapter 3 Well-separated Pair Decomposition

Algorithm 3.3 Computes an ε0-net of S.
Input: S, ε0 > 0
Output: C ⊆ S with ∣pq∣ ≥ ε0 max(rp, rq) (for all p, q ∈ C)

1: sort S by decreasing radius
2: C ∶= ∅

3: while S ≠ ∅ do
4: p ∶= S.next()
5: C ∶= C ∪ {p}
6: S ∶= S ∖Dε0(p)
7: end while
8: return C

each rpε0-disk of a site p contains only one site and we would like to represent the sites in S
with the clusterheads in C. There is still one problem: the connectivity of DG(C) might differ
from DG(S). To resolve this problem, we add further sites of S to C. Two sites p, q ∈ C are
called neighbours, iff ∣pq∣ > rp + rq, but there are s, t ∈ S (possibly p = s or q = t) such that pstq
is a path in DG(S) and such that ∣ps∣ ≤ ε0rp and ∣tq∣ ≤ ε0rq. We call {s, t} the bridge of p and
q. We define B to be the set that contains one arbitrary bridge for each neighbouring pair and
set Z = C ∪B (see Algorithm 3.4 and Figure 3.3). This setting has useful properties, which are
shown in the next lemmas.

Figure 3.3: The setC (black points) and the corresponding ε0r-disks. The normal lines are the connections
between two sites of C and the dashed lines are the bridges for some sites. Thus, B consists
of all sites that are part of a bridge.

Lemma 3.8. The density of C is in O(ε−2
0) and the density of Z is in O(ε−4

0).

Proof. Let U be a unit disk. Any two sites p, q ∈ C are of distance at least ε0 away from each
other. Thus, we can cover the entire unit disk with O(ε−2

0) disks with radius ε0. Hence, we have
O(ε−2

0) sites in U and C has density O(ε−2
0).

17

Chapter 3 Well-separated Pair Decomposition

Algorithm 3.4 Computes the set Z.
Input: S, ε0 > 0
Output: Z ⊆ S

1: C ∶= ε0-cluster of S /* Algorithm 3.3 */
2: B ∶= ∅

3: T ∶= RangeTree(C)

4: for p ∈ C do
5: Rp ∶= square with center p and side length 2(1 + ε0)(rp + φ)
6: Qp ∶= T.query(Rp)
7: for q ∈ Qp do
8: (s, t) ∶= bichromatic closest pair of (Dε0(p),Dε0(q))
9: if ∣st∣ ≤ rs + rq then

10: B ∶= B ∪ {s, t} /* {s, t} is a bridge for p and q */
11: end if
12: end for
13: end for
14: Z ∶= C ∪B
15: return Z

Let p ∈ C be a clusterhead. We want to bound the number of bridges for the site p. Therefore,
we bound the number of neighbours. A neighbour of p is not contained in the disk Drp+1(p). But
since each radius of a corresponding bridge site is at most φ, the neighbour has to be in D1+ε0

rp+φ
(p).

That means, a neighbour lies in an annulus with center p and width φ − 1 + ε0(rp + φ). This
annulus contains at most O(ε−2

0) different sites of C. Since each clusterhead p is neighbour of at
most O(ε−2

0) other clusterheads, the disk Dε0(p) contains O(ε−2
0) bridge sites. Finally, we have

O(ε−2
0) clusterheads in U . This finishes the proof.

However, we are not able to bound the density of Z to O(ε−3
0) or O(ε−2

0). The following
lemma shows on the one hand that there is hope to improve the last lemma, but on the other hand
it gives some hints about the upcoming problems.

Lemma 3.9. Let DG(S) be a disk graph with constant bounded radius ratio and a constant
number of different radii. Then the density of Z is in O(ε−3

0). Furthermore, for each ε0 there is a
set of points with density Ω(ε−3

0).

Proof. Let U be a unit disk and p be a clusterhead. Again, we bound the number of neighbours
for p. Therefore, consider a site q with radius rq = r that is a neighbour of p. Thus, it is not
contained in the disk Drp+rq(p) , but it has to be in D1+ε0

rp+rq(p). That means, q lies in an annulus
with center p and the small width ε0(rp + rq) ≤ 2φε0. This annulus contains at most O(ε−1

0)

different sites of C – each site has the corresponding radius r. Since we have a constant number
of different radii, all the neighbours of p have to lie in a constant number of annuli with O(ε−1

0)

neighbours each. Thus, each clusterhead p is neighbour of at most O(ε−1
0) other clusterheads and

the disk Dε0(p) contains O(ε−1
0) bridge sites. By Lemma 3.8, we have O(ε−2

0) clusterheads in
U . This finishes the proof of the upper bound.

18

Chapter 3 Well-separated Pair Decomposition

ε0

Figure 3.4: The clusterheads lie on the grid and the crosses are possible candidates for bridge points.

For the lower bound consider the grid defined by the horizontal lines hi∶ y = i ⋅ 3ε0 and the
vertical lines vi∶x = i ⋅ 3ε0 (for i ∈ Z). As a next step, we describe a set S of sites, such that
the corresponding set Z has density Ω(ε−3

0). The radius ratio of S is 1 that means each disk is
a unit disk and has radius 1. Furthermore, the clusterheads are the intersections of the vertical
and horizontal lines and for each clusterhead p ∈ C there is a sufficiently large number of sites
arranged in a regular polygon on the boundary ofDε0(p) (candidates for bridge points, see Figure
3.4). Again, let U be a unit disk. It is obvious that U has Ω(ε−2

0) clusterheads. Furthermore, for
each clusterhead p there are Ω(ε−1

0) distinct clusterheads in D1+ε0
2 ∖D2(p). By construction,

we can assume that all the clusterheads are neighbours of p. Thus, we have Ω(ε−2
0) different

clusterheads in U and each corresponding ε0-disk contains Ω(ε−1
0) bridge points. Finally, Z has

density Ω(ε−3
0).

Lemma 3.10. The computation of Z needs O(n2 + ε−2
0 n logn) time.

Proof. Using Algorithm 3.3 we can compute the setC of clusterheads naively in timeO(n2). For
each p ∈ C we remember the setDε(p). To compute the neighbouring pairs we use Algorithm 3.4.
First, we build a range tree for C in time O(n logn) and make a query for each p ∈ C. The
query consists of the square with side length 2(1+ ε0)(rp +φ) centered at p. Since C has density
O(ε−2

0) (Lemma 3.8), each query has running time O(log2 n + ε−2
0) and the total running time

of this part is in O(n log2 n + nε−2
0). The output of the query is called Qp. By construction,

all neighbours of p have to be in Qp. Now for each pair (p, q) with q ∈ Qp, we compute the
bichromatic closest pair between the two sets Dε0(p) and Dε0(q). In the plane, this can be done
in O(∣Dε0(p) ∪Dε0(q)∣ logn) time. Now let s, t be the output of this computation. If s and t
share an edge in S, we have found a neighbouring pair. By Lemma 3.8, we know that the density

19

Chapter 3 Well-separated Pair Decomposition

of C is O(ε−2
0). Thus, Qp contains O(ε−2

0) distinct sites. Furthermore, we observe that each site
s ∈ S ∖C is related to a constant number of different clusterheads. Finally, we can bound the
time for the computation of the bridges by

∑
p∈C
q∈Qp

O(∣Dε0(p) ∪Dε0(q)∣ logn) = O(ε−2
0 n logn).

This finishes our proof.

Lemma 3.11. Let dZ(⋅, ⋅) be the metric of DG(Z). For any two sites p, q ∈ C we have

d(p, q) ≤ dZ(p, q) ≤ (1 + 6φε0)d(p, q) + 6φε0.

Proof. The first inequality is obvious since we have Z ⊆ S. Now let π = p0p1...pk be a shortest
path in DG(S) for p0 = p and pk = q and let si be the clusterhead with radius ri that covers pi
(for 0 ≤ i ≤ k). Notice that s0 = p and sk = q.

First of all, consider two consecutive sites pi and pi+1 and their corresponding clusterheads si
and si+1. There are three different cases, how si is related to si+1, see Figure 3.5.

pi pi+1

si = si+1

Dε0(si)

Case 1

si

pi

pi+1

si+1

Case 2

si

pi

pi+1

si+1

Case 3

Figure 3.5: The three cases of Lemma 3.11.

Case 1: In the first case si is the same as si+1. This means that dZ(si, si+1) ≤ ∣pipi+1∣ ≤ 2riε0
because pi and pi+1 have to be inside the disk Dε0(si).
Case 2: In the second case we have si ≠ si+1 and ∣sisi+1∣ ≤ ri + ri+1. Then the triangle inequality,
pi ∈D

ε0(si) and pi+1 ∈D
ε0(si+1) show that dZ(si, si+1) = ∣sisi+1∣ ≤ ∣pipi+1∣ + (ri + ri+1)ε0.

20

Chapter 3 Well-separated Pair Decomposition

Case 3: In the third case we have si ≠ si+1 again, but ∣sisi+1∣ > ri + ri+1. By definition si
and si+1 has to be a neighbouring pair. Again, the triangle inequality yields dZ(si, si+1) ≤

∣pipi+1∣ + 3(ri + ri+1)ε0.
Combining the previous steps, we see

dZ(p, q) ≤
k−1

∑
i=0

dZ(si, si+1)

≤ 6φkε0 +
k−1

∑
i=0

∣pipi+1∣

≤ 6φkε0 + d(p, q)

Finally, we have to eliminate the factor k. Knowing that π is a shortest path between p and q,
we can estimate d(pi, pi+2) ≥ 2 for any 0 ≤ i ≤ k − 2 because otherwise we could find a short cut
using the triangle inequality. This would contradict the assumption that π is a shortest path. Thus,
we have

d(p, q) =
k−1

∑
i=0

d(pi, pi+1)

≥

⌊k/2⌋−1

∑
j=0

d(p2j , p2j+1) + d(p2j+1, p2j+2)

≥

⌊k/2⌋−1

∑
j=0

d(p2j , p2j+2)

≥

⌊k/2⌋−1

∑
j=0

2 = 2 ⋅ ⌊
k

2
⌋ ≥ k − 1

and we can substitute k into the formula to get dZ(p, q) ≤ (1 + 6φε0)d(p, q) + 6φε0.

21

CHAPTER 4
Routing in Disk Graphs

Let S be a set of n sites with density δ and DG(S) the corresponding disk graph. Again, we
assume that the radius ratio φ is constant. We present a routing strategy for DG(S) whose
parameters depend on the density. However, in the last section we describe how to eliminate this
parameter δ and extend our strategy to site sets with arbitrary density. The idea is based on the
work of Kaplan et al. [21] where they use the well-separated pair decomposition (see Chapter 3)
to develop a routing scheme for unit disk graphs. We extend this idea to design a routing scheme
for disk graphs with constant bounded radius ratio.

The idea is presented in Figure 4.1 and is as follows: let Ξ be the c-well-separated pair
decomposition for DG(S) and T the minimum spanning tree used to compute it. We use the
information of the pairs in Ξ to store them among the sites in S such that each site stores
O(δc2 logn) pairs in its routing table. To walk from p to q, we start from p and walk along T
until we find a site r that stores a pair (Su, Sv) that represents (p, q). We can guarantee that
p, r ∈ Su and therefore it is sufficient to walk along Tu. We call this process the local routing.

For the global routing we use a recursive approach. With (Su, Sv) we store the middle site m
that lies on the path from r to av. This middle site is ”halfway” between r and av. We recursively
route from r to m and then from m to q. Since m is an intermediate target we have to save the
primary target by storing it in the header we can use in our routing scheme.

p

r

q

av
m

≈ d(p,q)
2

≈ d(p,q)
2

Tu

Tv

≈ d(p,q)
c

Figure 4.1: To route a package from p to q, we walk along Tu until we find r. Then we route from r to m
and from m to q in a recursive manner.

22

Chapter 4 Routing in Disk Graphs

4.1 Preprocessing the Disk Graph

Let ε > 0 such that 1 + ε is the desired stretch factor of our routing scheme. First of all, we set
c = (tφ3/ε) logD to be the separation parameter of a well-separated pair decomposition, where
D is the diameter of DG(S) and t a sufficiently large constant which will be needed at a later
stage. The computed c-well-separated pair decomposition consists of a spanning tree T , the
hierarchical decomposition H of T and a sequence of pairs Ξ = (Su1 , Su2), ..., (Sum , Sum) of
m ∈ O(δc2n logn) = O(δε−2n logn log2D) well-separated pairs that forms a partition of S × S.

In the first step we use Algorithm 4.1 to compute the label l(p) ∈ {0,1}∗ for each p ∈ S. We
perform a postorder traversal of the hierarchical decomposition of H . For this let l be a counter,
initialized to 1. Whenever we visit a leaf p in H , we set l(p) to l and increment l. Otherwise, we
encounter an inner node u in H for the last time we annotate it with the interval Iu of the labels in
Tu. This will be useful for a later part of the preprocessing, because we can say that a site p ∈ S
lies in the subtree of Tu if and only if l(p) ∈ Iu. Obviously, each label has at most O(logn) bits.

Algorithm 4.1 Computes the Labelling for the Routing Scheme
Input: hierarchical decomposition H

Global integer l (initially 1)
Output: computes labels for all p ∈ S

1: if H is leaf then
2: p ∶=H.element
3: l(p) ∶= l
4: l ∶= l + 1
5: return [l(p)]
6: end if
7: I1 ∶= computeLabelling(H.left) /* postorder traversal */
8: I2 ∶= computeLabelling(H.right)
9: H.interval ∶=[min I1,max I2]

10: return H.interval

Next, we describe the local and the global routing tables. The local routing table ρL(p) stores
all neighbours of p in the minimum spanning tree T , in counterclockwise order. Additionally, for
each corresponding edge we store the level of the corresponding node in H . Since each site in S
has at most α ∈ O(1) neighbours and the height of H is O(logn), the local routing table needs
only O(logn) bits.

For the global routing table ρG(p) we have to work a bit more. We go through all nodes u of
H that contain p in their subtree Tu. There are at most O(logn) such subtrees. By Lemma 3.3
we know that our well-separated pair decomposition has O(δc2∣Su∣) well-separated pairs, in
which Su is part of one of the sets. O(δc2) = O(δε−2 log2D) of these pairs are assigned to
the global routing table of p and we ensure that each pair is assigned to exactly one site in Su.
Moreover, for each pair (Su, Sv) that is assigned to p, we store the interval Iv of the node in the
hierarchical decomposition that corresponds to Sv. To store (Su, Sv) we cannot use the whole
set Su and Sv, but we can store a binary representation of their respective nodes in H . If in
addition av is not a neighbour of p we save the label l(m) of the middle site m of a shortest path

23

Chapter 4 Routing in Disk Graphs

π from p to av. The middle site m is a site lying on π that minimizes the maximum distance,
max(d(p,m), d(m,av)), between the endpoints of π. Since H has height O(logn), p can
lie in O(logn) different sets Su. For each such set we store O(δε−2 log2D) different lines in
ρG(p). Each line consists of the following parts: the binary presentation of the node in H that
corresponds to Su, the binary presentation of the node in H that corresponds to Sv, the interval
boundary of Iv corresponding to Sv and in certain cases the label l(m) of a middle site. Each
representation needs at most O(logn) bits. Thus, ρG has O(δε−2 log2 n log2D) bits. Again, we
used the fact that φ ∈ O(1).

In the next lemma, we bound the preprocessing time. However, we should mention that there
are two possibilities for our input. The input is either just the set of sites S or the complete
corresponding disk graph. Since we want a routing scheme for DG(S), we have to compute the
graph in the first case. Albeit, this can be done in O(n2) time with a simple brute force variant.
Fortunately, the preprocessing time will be slightly higher than this. Thus, we can assume that
our input is a set of sites.

Lemma 4.1. The preprocessing time for the routing scheme described above is O(n2 logn +
δn2 + δε−2n logn log2D).

Proof. By Theorem 3.5 and φ ∈ O(1), we can compute the c-well-separated pair decomposition
in O(δε−2n logn log2D) time. Algorithm 4.1 computes the labels of S in linear time. The same
time is needed to distribute the pairs of Ξ and their corresponding intervals among the sites in S.
Finally, we have to find a clever way to compute all the middle sites. S has density δ. Thus,
DG(S) has O(δn) edges. First, we compute DG(S) naively in time O(n2) and then compute
for each site p ∈ S the shortest path tree Tp with root p. We use n invocations of Dijkstra’s
algorithm to compute all the shortest path trees in O(n2 logn + δn2) time.

Next, we perform a post-order traversal of each Tp to find the middle sites for the p-q-paths
in Tp. We create a mergeable max-heap for each leaf q that contains the key d(p, q) and the
value q. Now let m be an inner node of Tp that is processed during the traversal. Each child
of m in Tp has a max-heap. We merge all the max-heaps and insert d(p,m) with value m into
this heap. The resulting heap is named Hm. During the traversal we maintain the invariant
that Hm contains only sites in the subtree of Tp rooted at m for which we have not yet found a
middle site. The sites for which m could be a middle site are a prefix of the decreasingly sorted
distances d(p, q) with q ∈Hm, because the distances d(p, q) are increasing monotonically along
a root-leaf-path. If we want to find the sites in Hm for which m is a middle site we repeatedly
perform an extract-max operation to get the next candidate q and check whether the parent node
m′ of m in Tp is a better middle site. That means we compare the values max(d(p,m), d(m,q))
and max(d(p,m′), d(m′, q)). If the first value is smaller than the second one, m has to be the
middle site between p and q. Otherwise, m cannot be the middle site for any other site in Hm.
In this case, we process the next site in the post-order traversal. If the max-heap is a Fibonacci
Heap, we can merge two heaps in O(1) time and perform the extract-max operation in O(logn)
amortized time [10]. Additionally, each element of Tp is inserted and extracted at most once.
Thus, we need O(n logn) time to find the middle sites for p. Finally, we can find all middle sites
in time O(n2 logn) and the preprocessing time is O(n2 logn + δn2 + δε−2n logn log2D).

24

Chapter 4 Routing in Disk Graphs

4.2 The Routing Scheme

In this section, we will describe how the routing function f ∶S ×{0,1}∗ ×{0,1}∗ → S ×{0,1}∗ ×
{0,1}∗ works. Consider a start site p and a target site q of S. Our strategy works as follows:
we explore the graph DG(S) in a suitable manner until we discover a site r storing the pair
(Su, Sv) ∈ Ξ which represents (p, q). This pair has to lie in the global routing table ρG(r) of r.
Now we consider the subtrees of T that contain p by increasing size. We do an Euler tour in the
subtrees until we find the site r. The middle site m of a shortest path from r to av is stored in
r’s global routing table. We push the target site q onto the header stack and perform recursive
routing from r to m. After reaching m we pop the original target q from the header stack and
route from m to q recursively. Algorithm 4.2 describes the routing process in pseudo-code.

Local Routing

We start at the site p and we would like to find the site r that stores the pair (Su, Sv) representing
(p, q). We know by construction that p and q are contained in Su. Thus, we only have to perform
an Euler tour on Tu to discover the site r. But there is a problem, which we have to solve.
Before starting the tour, we do not know u in advance. To fix this, we begin with the leaf in the
hierarchical decomposition H that contains p and explore all nodes on the path from the leaf to
the root of H until we find u (see Figure 4.2).

9

9

8

Tv

Tw

6
7

8

9

8

9

9

7

8

9

5

p

Figure 4.2: To find the site r we perform an Euler Tour on the subtree Tv that contains s and whose edges
have level at least 7. Since we cannot find r, we perform an Euler Tour in the next larger
subtree Tw that is w = P (v) in H .

First, we store p as the start site in the header. Let v ∈ H be the node to be explored.
Furthermore, let lv be the depth of v in H . We can store this l = lv in our header, because the
depth of v in H is stored in the local routing table of a point incident to the edge represented by v.
Recall that Tv is a subtree of the minimum spanning tree T where all edges are of level at least l.

25

Chapter 4 Routing in Disk Graphs

We perform an Euler tour on Tv by using the local routing table. Starting at p we follow an edge
in ρL(p) that has level at least l. Every time we visit a site r, we check for all pairs (Su, Sw) in
the global routing table ρG(r) whether l(q) ∈ Iw that means, whether p ∈ Sw. If we found such a
pair, we clear the local routing information in the header – the Euler tour stops – and start the
global routing. If there is none such pair, we scan the local routing table ρL(r) for the next edge
in counterclockwise order that has level at least l and follow this edge. However, we have to find
out at which time the Euler tour is finished. To do this, we have to remember in our header which
neighbour of p we visited first. After we have reached p for the last time that means the next
possible edge would be the starting edge, we proceed with the parent of v in H by decrementing
the counter l. The Euler tour starts from the beginning.

Algorithm 4.2 The routing function for disk graphs.

Input: site p ∈ S, targetLabel l(q) ∈ {0,1}∗, header h ∈ {0,1}∗

Output: nextSite, nextLabel, header
1: if l(p) = l(q) then
2: if h.stack.isEmpty() then
3: return (p, ε, ε) /* ε represents the empty word */
4: else
5: return (p, h.stack.pop(), h)
6: end if
7: else if ρG(p) stores (Su, Sw) with l(q) ∈ Iw then
8: h.startSite ∶= null
9: if p is neighbour of q then

10: return (q, l(q), h)
11: else
12: nextLabel ∶= label of middle site for (Su, Sw)
13: h.stack.push(l(q))
14: return (p,nextLabel, h)
15: end if
16: else
17: if h.startSite = null then
18: h.startSite ∶= p
19: h.level ∶= lp − 1
20: h.startNext ∶= r ∶= arbitrary neighbour of p with level of edge {p, r} ≥ h.level
21: else
22: r ∶= next counterclockwise neighbour of p with level of edge {p, r} ≥ h.level
23: if h.startSite = p and h.startNext = r then
24: h.level ∶= h.level − 1 /* Euler tour starts for the next level */
25: end if
26: end if
27: return (r, l(q), h)
28: end if

26

Chapter 4 Routing in Disk Graphs

Global Routing

Consider a start site p and a target site q such that ρG(p) contains the pair (Su, Sv) with q ∈ Sv.
There are two cases:
Case 1: The site q is a neighbour of p. Then we go directly from p to q, since q is stored in the
local routing table of p.
Case 2: The site q is not a neighbour of p. Then we also stored the middle site m in the global
routing table of p. We push the label of q onto the header stack and use l(m) as an intermediate
target. Next we perform a local routing starting from p to find the site storing the pair (Su′ , Sv′)
with m ∈ Sv′ .
After we have reached the target q, we have to look at the header stack. If the stack is empty, q
has to be our final destination. Otherwise, we pop the next element from the header stack and set
it as the new target label (see Figure 4.3).

4.3 Analysis

Next, we prove that the routing scheme is correct and produces a routing path for all p, q ∈ S of
length at most (1 + ε)d(p, q).

Correctness

To prove the correctness of our routing scheme, we first consider only small distances and show
that the routing scheme produces an actual optimal path.

Lemma 4.2. Let p, q ∈ S with d(p, q) < c and c > 2φ. Then our routing scheme R produces a
routing path p0p1...pk with the following properties:

(i) p0 = p and pk = q,

(ii) dρ(p, q) = d(p, q) and

(iii) the header stack is in the same state at the beginning and at the end of the routing path.

Proof. We prove this lemma by induction. First, we have to characterize the induction parameter.
We count for each pair p, q of distinct sites the number of edges on the shortest path between them
and sort the pairs increasingly. We delete all pairs with d(p, q) ≥ c. We conduct the induction on
the rank of the sorted list.

First, consider that d(p, q) = ∣pq∣ ≤ rp+rq ≤ 2φ < c. Then p and q share an edge in DG(S) and
by Lemma 3.7 there exists a pair (Su, Sv) ∈ Ξ with Su = {p} and Sv = {q}. Thus, Algorithm 4.2
correctly routes from p to q, because the pair (Su, Sv) has to be stored in ρL(p). Furthermore,
the header remains the same and hence all properties are fulfilled.

Next, consider an arbitrary pair p, q with rp + rq < d(p, q) < c. Again, by Lemma 3.7 there is a
pair (Su, Sv) ∈ Ξ with Su = {p} and Sv = {q}, which has to be stored in the global routing table
of p. Thus, Algorithm 4.2 directly proceeds to the global routing phase. Furthermore, since p and
q do not share an edge, the global routing table has to contain the middle site m between p and
av = q. The routing algorithm pushes l(q) onto the stack and sets m as an intermediate target. By

27

Chapter 4 Routing in Disk Graphs

induction, the routing scheme routes the data package along the shortest path from p to m and
then pops the head of the stack (Line 5) which has to be l(t). The properties (i)-(iii) are fulfilled.
Afterwards, Algorithm 4.2 routes the packet from m to q and again by induction the data package
follows a shortest path from m to q. Afterwards, the header stack is in the same state as before
pushing l(q). This satisfies (iii) and the claim follows.

We proved that the routing scheme works well for short distances. Next, we use Lemma 4.2, to
show that the routing scheme produces correct routing paths for other distances as well.

Lemma 4.3. Let p, q ∈ S and c > 2φ. Then our routing scheme R produces a routing path
p0p1...pk with the following properties:

(i) p0 = p and pk = q and

(ii) the header stack is in the same state at the beginning and at the end of the routing path.

Proof. Again, we use induction on the rank of the sorted list as described in Lemma 4.2. If
d(p, q) < c, the claim follows immediately by Lemma 4.2.

Next, consider two distinct sites p, q ∈ S with d(p, q) ≥ c. By construction, Algorithm 4.2
finds a site r ∈ S whose global routing table stores the pair (Su, Sv) that represents (p, q) and the
corresponding middle site m. This middle site exists since d(p, q) ≥ c > 2φ. The stack remains
unchanged until now (see Figure 4.3), because the local routing information is cleared just before
the global routing starts. The routing algorithm pushes l(q) onto the header stack and sets m
as a new intermediate target. Again by induction, the routing scheme routes the data package
correctly from p to m (Property i). Immediately after the data package arrives at the intermediate
target m, the target label l(q) is at the top of the stack (Property ii) and Algorithm 4.2 executes
Line 5 to pop the target label and routes the data package from m to q. Again by induction, the
data package arrives at q and the stack remains in the same state as before pushing l(q).

p

r

q

m

→

→ →
→

l(t)

l(t)

l(q)

l(t)
l(q)

l(t)

l(t)
l(t)

τ = l(t)

τ = l(t)

τ = l(q)

τ = l(q)
τ = l(q)

τ = l(q)τ = l(m) τ = l(m)

Figure 4.3: This figure shows how the intermediate target τ and the header stack changes during the
routing.

28

Chapter 4 Routing in Disk Graphs

Stretch factor

After we proved the correctness, we next evaluate how efficient the routing scheme is. The
analysis of the stretch factor requires technical work. First, we justify the properties of a middle
site.

Lemma 4.4. Let p and q be two sites in S with d(p, q) ≥ c ≥ 24φ and let (Su, Sv) ∈ Ξ be the
well-separated pair that represents (p, q). If m is a middle site of a shortest path from p to av in
DG(S), then we have

(i) d(p,m) + d(m,q) ≤ (1 + 2/c)d(p, q) and

(ii) d(p,m), d(m,q) ≤ 0.625d(p, q).

Proof. For the first inequality we use Lemma 3.6 and the fact that m lies on a shortest path from
p to av. The remaining steps follow by the triangle inequality. Thus, we have

d(p,m) + d(m,q) ≤ d(p,m) + d(m,av) + d(av, q)

= d(p, av) + d(av, q)

≤ d(p, q) + 2d(av, q)

≤ d(p, q) + 2 diam(Sv)

≤ (1 +
2

c
)d(p, q).

The other inequalities are much more involved. To prove them, consider a shortest path π
from p to av that contains the middle site m. Furthermore let m′ be the point on π with distance
d(p, av)/2 from p and from av. It is possible that m′ is not a site in S, because it lies on an edge
between two sites. But one of these two sites, let us say m̃, has to satisfy d(m′, m̃) = ∣m′m̃∣ ≤ φ,
since the length of the edges in DG(S) are at most 2φ. Furthermore, by Lemma 3.6, the triangle
inequality and our assumption that d(p, q) ≥ c we have

d(p, av) ≥ d(p, q) − d(av) ≥ d(p, q) − diam(Sv) ≥ d(p, q)(1 − 1/c) ≥ c − 1.

Now we can estimate

max(d(p, m̃), d(m̃, av)) ≤
d(p, av)

2
+ φ

≤
d(p, av)

2
+ φ

d(p, av)

c − 1

= (
1

2
+

φ

c − 1
)d(p, av)

=
2φ + c − 1

2(c − 1)
d(p, av)

≤
13c − 12

24(c − 1)
d(p, av). (c ≥ 24φ)

29

Chapter 4 Routing in Disk Graphs

In the next step we can bound the distances to and from the middle site m. They are at most

max(d(p,m), d(m,av)) ≤ max(d(p, m̃), d(m̃, av)) ≤
13c − 12

24(c − 1)
d(p, av).

By applying the triangle inequality and Lemma 3.6 once more, we see (1 − 1/c)d(m,q) ≤

d(m,av) and d(p, av) ≤ (1 + 1/c)d(p, q). Using the last three estimations we can finally assess

max(d(p,m), d(m,q)) ≤ (1 +
1

c − 1
)max(d(p,m), d(m,av))

≤ (1 +
1

c − 1
)(

13c − 12

24(c − 1)
)d(p, av)

≤ (1 +
1

c − 1
)(

13c − 12

24(c − 1)
)(1 +

1

c
)d(p, q)

=
13c2 + c − 12

24c2 − 48c + 24
d(p, q).

Since c ≥ 24φ ≥ 24 we have max(d(p,m), d(m,q)) ≤ 0.625d(p, q).

Lemma 4.5. Let p, q ∈ S with d(p, q) ≥ c. The total distance travelled by the packet during
the local routing phase before the WSPD-pair representing (p, q) is discovered is at most
(162φ3)/c ⋅ d(p, q).

Proof. Let (Su, Sv) ∈ Ξ be the pair that represents (p, q) and let u0u1...uk = u be the path in
H from the leaf u0 corresponding to p to u. Furthermore, let Ti and Si be the corresponding
subtrees of T and sites of S for 0 ≤ i ≤ k. The local routing algorithm iteratively performs an
Euler tour of each Ti. The tour of Tk may stop early. Additionally, an Euler tour in Ti takes
2∣Si∣ − 2 steps . The length of each step is at most 2φ. As described in Chapter 3, Algorithm 3.1
guarantees

∣Si∣ ≤ ∣Si+1∣ −
∣Si+1∣

α + 1
=

α

α + 1
∣Si+1∣.

Using the geometric progression we can bound the total distance of the local routing to at most

k

∑
i=0

2φ(2∣Si∣ − 2) ≤ 4φ
k

∑
i=0

∣Si∣ ≤ 4φ∣Sk∣
k

∑
i=0

(
α

α + 1
)
i

≤ 4φ(α + 1)∣Sk∣.

Once again, we use Lemma 3.6 to have d(p, q) ≥ 2φc(∣Su∣ − 1) and since Sk = Su we can bound
the total distance to

4φ(α + 1)∣Su∣ ≤ 4φ(α + 1)(
d(p, q)

2φc
+ 1) ≤ 4φ(α + 1) (1 +

1

2φ
)
d(p, q)

c
,

where the last inequality holds by d(p, q) ≥ c. Finally, since α ≤ 26φ2 by Lemma 2.3 the distance
during the local routing is at most (162φ3)/c ⋅ d(p, q).

Last but not least, we can bound the stretch factor.

30

Chapter 4 Routing in Disk Graphs

Lemma 4.6. For any two sites p and q we have dρ(p, q) ≤ (1 + ε)d(p, q).

Proof. We show by induction on dρ(p, q) that there is a constant t > 0 with

dρ(p, q) ≤ (1 + (tφ3
/c) log d(p, q))d(p, q).

The claim then follows from our choice of c = (tφ3/ε) logD, because d(p, q) ≤ diam(DG(S)).
There is nothing to prove for d(p, q) < c, since Lemma 4.2 shows that the routing path is an
optimal path. Now consider d(p, q) ≥ c. Then Algorithm 4.2 performs a local routing to find
the site r that stores a well-separated pair (Su, Sv) representing (p, q) in its global routing
table. Afterwards, the data package is routed recursively from r to the corresponding middle
site m and from m to q. Now we can bound the total routing distance using Lemma 4.5 to
dρ(p, q) ≤ (162φ3/c)d(p, q) + dρ(r,m) + dρ(m,q). By induction, we gain

dρ(p, q) ≤ (162φ3
/c)d(p, q) + (1 + (tφ3

/c) log d(r,m))d(r,m)

+ (1 + (tφ3
/c) log d(m,q))d(m,q).

The middle site m lies on a shortest path from r to av in DG(S). Thus, we can apply Lemma 4.4
to get

dρ(p, q) ≤ (162φ3
/c)d(p, q) + (1 + (tφ3

/c) log d(r, q) + (tφ3
/c) log 0.625)d(r,m)

+ (1 + (tφ3
/c) log d(r, q) + (tφ3

/c) log 0.625)d(m,q).

Lemma 4.4 again and the fact that log 0.625 ≤ −0.5 imply

dρ(p, q) ≤ (162φ3
/c)d(p, q) + (1 + (tφ3

/c) log d(r, q) − tφ3
/(2c)) (1 + 2/c)d(r, q).

Moreover, we know that p, r ∈ Su and by triangle inequality we obtain d(r, q) ≤ d(p, q) +
diam(Su). Applying Lemma 3.6 we see

dρ(p, q) ≤ (162φ3
/c)d(p, q) + (1 + (tφ3

/c) log d(r, q) − tφ3
/(2c)) (1 + 2/c)(1 + 1/c)d(p, q)

≤ (162φ3
/c)d(p, q) + (1 + (tφ3

/c) log d(r, q) − tφ3
/(2c)) (1 + 4/c)d(p, q)

= (162φ3
/c + (1 + (tφ3

/c) log d(r, q) − tφ3
/(2c)) (1 + 4/c))d(p, q)

for c > 2φ ≥ 2. Now for t ≥ 648 we have 162φ3/c−(1+4/c)tφ3/(2c) ≤ −(1+4/c)tφ3/(4c) and
hence we can derive

dρ(p, q) ≤ (1 + (tφ3
/c) log d(r, q) − tφ3

/(4c)) (1 + 4/c)d(p, q).

This ensures c ≥ 648. Now we use Lemma 4.4 once again and the fact that log(1 + 1/c) ≤ 1/8 to

31

Chapter 4 Routing in Disk Graphs

obtain

dρ(p, q) ≤ (1 + tφ3
/c log d(p, q) − tφ3

/(8c)) (1 + 4/c)d(p, q)

= (1 + tφ3
/c log d(p, q))d(p, q)

+ (4/c(1 + tφ3
/c log d(p, q)) − tφ3

/(8c)(1 + 4/c))d(p, q)

It remains to show that 4/c(1 + tφ3/c log d(p, q)) ≤ tφ3/(8c)(1 + 4/c). For t ≥ 648 we have

1 + tφ3 log d(p, q) ≤ 1 + ε ≤ 2 ≤ tφ3
/32 ≤ tφ3

/32(1 + 4/c).

This finally finishes the proof.

Now we get following theorem.

Theorem 4.7. Let S be a set of n sites in the plane with density δ and r∶S → R+ a function which
assigns to each site a radius r ∈ O(1). For any ε > 0, we can preprocess S into a routing scheme
for DG(S) with labels of size O(logn) bits and routing tables of size O(δε−2 log2 n log2D)

bits, where D is the diameter of DG(S). For any two sites p, q the routing scheme produces a
routing path with distance at most (1 + ε)d(p, q). During the routing the maximum header size is
O(logn logD). The preprocessing time is O(n2 logn + δn2 + δε−2n logn log2D).

Proof. The proof can be conducted by evaluating the header’s size. The rest follows from
Lemma 4.1 and Lemma 4.6. During the local phase of the routing algorithm we store the label of
the point where we start the Euler tour, together with a counter l. Their binary representations
need O(logn) bits.

For the global routing part we need to store O(logn) bits for one intermediate target. Since S
has diameter D and the middle sites split a path from p to q in a balanced way, the recursion depth
of the global routing part has to be O(logD). Thus, the maximum header size is O(logn logD).

4.4 Extension to arbitrary Density

Let 1 + ε be the desired stretch factor with ε > 0. We extend the routing scheme to site sets of
unbounded density and follow the strategy described in Section 3.3. We first compute an ε0-net C
of S and a set of bridges B to get Z = C ∪B using Algorithm 3.3 and 3.4. We clarify the choice
of ε0 later on. Next, we perform the preprocessing routine with ε0 as the stretch parameter for the
set Z. We assign new labels to the sites in S ∖Z and extend the label l(p) of each site in p ∈ S,
such that it also contains the label of the next site in C. Thus, the label size remains O(logn).

As a next step, we describe the extension of the routing algorithm. First, we assume two points
p, q ∈ S and check whether there is an edge between them. In this case we route the data package
straight from p to q. Otherwise, we have d(p, q) > 2. Let p′ and q′ be the clusterheads of p and q.
Since we extend the labels of sites in S such that we always know the corresponding clusterhead,
we can go the direct way from p to p′. Then, we use the low density algorithm to route from p′ to
q′ and finally go the last step from q′ to q. Let dρZ(⋅, ⋅) be the routing distance in DG(Z). Then

32

Chapter 4 Routing in Disk Graphs

we have dρ(p, q) ≤ ∣pp′∣ + dρZ(p
′, q′) + ∣qq′∣. We use Lemma 4.6, Lemma 3.11 and the triangle

inequality twice to obtain

dρ(p, q) ≤ ε0(rp′ + rq′) + (1 + ε0)dZ(p
′, q′)

≤ 2φε0 + (1 + ε0)((1 + 6φε0)d(p
′, q′) + 6φε0)

≤ 2φε0 + (1 + ε0)((1 + 6φε0)(d(p, q) + 2φε0) + 6φε0).

With rearranging we obtain

dρ(p, q) ≤ 10φε0 + (8φ + 12φ2
)ε20 + 12φ2ε30 + (1 + (6φ + 1)ε0 + 6φε20)d(p, q).

Since we have d(p, q) > 2, we see

dρ(p, q) ≤ (1 + (1 + 11φ)ε0 + (10φ + 6φ2
)ε20 + 6φ2ε30)d(p, q).

Thus, we have dρ(p, q) ≤ (1 + ε)d(p, q) if we choose

ε0 ≤
ε

12φ2 + 21φ + 1
.

This discussion discussion leads us to our main theorem.

Theorem 4.8. Let S be a set of n sites in the plane and r∶S → R+ a function which assigns to
each site a radius r ∈ O(1). For any ε > 0, we can preprocess S into a routing scheme for DG(S)
with labels of size O(logn) bits and routing tables of size O(ε−6 log2 n log2D) bits, where D is
the diameter of DG(S). For any two sites p, q the routing scheme produces a routing path with
distance at most (1 + ε)d(p, q). During the routing the maximum header size is O(logn logD).
The preprocessing time is O(n2 logn + ε−4n2 + ε−6n logn log2D).

Proof. Since we choose ε0 ∈ O(ε), the set Z has density O(ε−4) by Lemma 3.8. The theorem
then follows from Theorem 4.7 and Lemma 3.10.

33

CHAPTER 5
Routing in Polygons

In this chapter, we present the first routing scheme for polygons with holes. In contrast to the
routing scheme for disk graphs, we do not have a recursive approach and hence do not need any
additional information in the header. Moreover, our routing scheme guarantees that each vertex
of the polygon is visited at most once. In the following section we describe a partition of the
visibility polygon of a vertex p. This partition is then used for the routing scheme with arbitrarily
small stretch.

5.1 Cones in Polygons

Let P be a polygon with h holes and n vertices. Furthermore, let t > 0 be a parameter. In this
section, we will use a technique of Yao [42], to subdivide the visibility polygon of a site into rays
and cones with a certain apex angle.

p = pj

pj+1pj−1

α

r0(p)

r2(p)r3(p)

rdε−10 e(p)

r1(p)

C2(p)

αε0

Figure 5.1: The cones and rays of a vertex p with inner angle α.

Let p = pj be a vertex in the visibility polygon. Thus, p lies on the boundary of P or on
the boundary of a hole in P . We assume that the indices of the outer boundary are increasing
clockwise, whereas the indices of the hole boundaries are increasing counterclockwise. Then we
denote with r0(p) the ray emanating from p through pj+1. Next, we can rotate this initial ray by

34

Chapter 5 Routing in Polygons

certain angles. Let α be the inner angle at p and ε0 = 2π
αt . We set

ri(p) ∶= rotate r0(p) clockwise by angle α ⋅min (i ⋅ ε0,1)

for 1 ≤ i ≤ ⌈ε−1
0 ⌉. Using the rays, we can define the cones of p. Ci(p) is the cone with apex p and

boundary ri−1(p) and ri(p) (see Figure 5.1). Furthermore, C(p) is the set of all cones with apex
p whose boundaries emanate into P that is C(p) = {Ci(p) ∣ 1 ≤ i ≤ ⌈ε−1

0 ⌉}.

Observation 5.1. Each vertex p with inner angle α has ⌊ε−1
0 ⌋ cones, with apex angle αε0 and

⌈ε−1
0 ⌉ − ⌊ε−1

0 ⌋ ≤ 1 cones with apex angle α(1 − ε0 ⋅ ⌊ε−1
0 ⌋) ≤ αε0. Thus, the apex angle of each

cone is at most αε0 = 2π/t.

Lemma 5.2. Let p be a vertex in P and {p, q} an edge of VG(P) in the coneCi(p). Furthermore,
let r be the closest vertex in Ci(p) to p. Then the following inequality holds:

d(r, q) ≤ ∣pq∣ − (1 − 2 sin
π

t
) ∣pr∣.

Ci(p)

≤ 2π
t

r
r′

q

p

γ

Figure 5.2: Illustration of Lemma 5.2. The points r and r′ have the same distance to p. The dashed line
represents the shortest path from r to q.

Proof. First of all, let r′ be the point on pq such that ∣pr′∣ = ∣pr∣ (see Figure 5.2). Since p↭ q, we
have also r′ ↭ q. Furthermore, by construction we have r↭ r′, because if the line segment rr′

would intersect the boundary of P , we could find a vertex r′′ contained in Ci(p) with ∣pr∣ > ∣pr′′∣.
Now the triangle inequality yields d(r, q) ≤ ∣rr′∣ + ∣r′q∣. Let β be the angle at p in the triangle
∆(p, r, r′). This angle has to be at most 2π/t. Thus, the angle γ at r′ is at least π/2 − π/t. After
using the Sine Theorem and sin 2x = 2 sinx cosx we get

∣rr′∣ = ∣pr∣ ⋅
sinβ

sinγ
≤ ∣pr∣ ⋅

sin 2π
t

sin (π
2 −

π
t
)
= ∣pr∣ ⋅

2 sin π
t cos πt

cos πt
= 2∣pr∣ sin

π

t
.

Furthermore, the triangle inequality provides ∣r′q∣ ≤ ∣pq∣ − ∣pr′∣ = ∣pq∣ − ∣pr∣ and thus, we have

d(r, q) ≤ 2∣pr∣ sin
π

t
+ ∣pq∣ − ∣pr∣ = ∣pq∣ − (1 − 2 sin

π

t
) ∣pr∣.

35

Chapter 5 Routing in Polygons

5.2 The Routing Scheme

Let P be a polygon with n vertices and h holes. Additionally, let ε > 0 be a parameter. We
describe a routing scheme for VG(P) with stretch factor 1 + ε. The idea is to compute for each
vertex p the corresponding set of cones C(p) and save a certain set of indices for each cone in the
routing table of p. These sets of indices form intervals. If an interval of a cone Ci(p) contains a
target vertex q we walk to the next vertex contained in Ci(p) (see Figure 5.3). This will provide a
small stretch.

p

ri−1(p)

ri(p)

q

r

p′

Figure 5.3: This figure shows the idea of the routing scheme. The first edge on a shortest path from p to q
(red) is contained in Ci(p). The routing algorithm will route the package from p to p′ (green),
the closest vertex to p in Ci(p).

For the preprocessing we first compute the labels l(p) of each vertex p. These labels consist of
the indices of the numbering in P . The first part of l(p) represents one of the h + 1 components
of the boundary, whereas the second part describes the index of the vertex on the fixed boundary.
All the labels are distinct binary strings and have length O(logn). It would also be possible
to use one index instead of two. This one index should be a binary representation of a number
between 1 and n. Using this kind of representation we would need an extra table in the routing
table of p. This table shows for each hole the corresponding interval of indices of the vertices
contained on the boundary of the hole. Using this table we can map each single piece index to the
mentioned two piece index. The table’s size is O(h logn), because we have to store an interval
for each hole. Later on, we will see that our routing table needs asymptotically more information.
Thus, the mapping table carries no weight. In fact, we assume without loss of generality that the
labels of the vertices have two parts: the number of the hole and the number of the vertex on the
boundary of the hole.

For the routing table we do the following: We compute the shortest path tree Tp starting from
p. Let Tp(r) be a subtree of Tp with root r. Now let e = (p, r) be a directed edge in Tp between
the starting vertex and a neighbour r in VG(P). For this edge e we can look at all vertices q,
where e is the first edge on a shortest path from p to q. That means, we look at all nodes in Tp(r).
For 1 ≤ i ≤ h we set Ir(i) = {pi,j ∣ r is on the shortest path from p to pi,j}. Now we can prove

36

Chapter 5 Routing in Polygons

the following lemma.

Lemma 5.3. Let p be a vertex in P and e = (p, p′) an edge in Tp. Then the indices of the vertices
in Ip′(i) form an interval. Furthermore, let f = (p, p′′) be another edge in Tp, such that the cone
with apex p spanned by the edges e and f does not contain a third edge of Tp starting at p. Then
the indices of the vertices in Ip′(i) ∪ Ip′′(i) are again an interval.

Proof. For the first part of the lemma, consider two distinct vertices q, r ∈ Ip′(i), with lowest
common ancestor l in the shortest path tree. We assume that p and q are not contained in an
interval. Thus, we can find two vertices a, b ∉ Ip′(i), such that they lie on different polygonal
chains with endpoints q and r induced by the boundary of the i-th hole (see Figure 5.4). Then
there has to be a neighbour p̃ of p such that the following holds:

• p̃ lies on the shortest path from p to a or p to b in Tp and

• the shortest path from p̃ to a or the shortest path from p̃ to b crosses the first time either the
shortest path from l to q or the shortest path from l to r in Tp.

p p′

q

r

a
b

p̃

s′

t′
s

t

xl

y
z

Dδ(x)

Figure 5.4: The green line is the shortest path from p to a, whereas the red paths are the ”shortest” paths
from p to q and r. The blue line segment gives a shortcut from s to t′.

We consider always the first case and derive a contradiction. The other cases are analogously.
That means p̃ lies on the shortest path π from p to a and it crosses the shortest path π′ from l to
q. Let x be the first intersection of π and π′. The intersection x is not a vertex of P , because
otherwise Tp would have a cycle.

Assume that x is the intersection of two directed edges (s, t) and (s′, t′) in Tp, where s and
t lie on π and (s′, t′) on π′. Again, we have two cases and will only discuss the first one:
d(p, s) + ∣sx∣ ≤ d(p, s′) + ∣s′x∣ and vice versa. Since (s, t) and (s′, t′) are edges in Tp and
x ∈ intP , these edges hit the boundary of P only in their endpoints. Thus, we can find a δ > 0
such that Dδ(x) is contained in P . Now consider the intersection y of sx and the boundary of
Dδ(x) and the intersection z of t′x and the boundary of Dδ(x) (see again Figure 5.4). We have
yz ⊂ Dδ(x) ⊂ P and the triangle inequality yields ∣xy∣ + ∣xz∣ > ∣yz∣. Thus, the path syzt′ is a
shortcut from s to t′. This shortcut gives us a shorter path from p to q using the vertex p̃. Hence,
we have q ∈ Ip̃(i) ≠ Ip′(i) which contradicts the assumption.

37

Chapter 5 Routing in Polygons

For the second part of the lemma, the main argument remains the same. We consider two
vertices q, r ∈ Ip′(i) ∪ Ip′′(i) and two vertices a, b ∉ Ip′(i) ∪ Ip′′(i) that lie on two different
polygonal chains with endpoints q and r induced by the boundary of the i-th hole. Again, there has
to be a neighbour p̃ of p. This neighbour satisfies the conditions above, because it is not contained
in the cone with apex p spanned by the edges e and f . Then we derive again a contradiction and
hence the claim follows.

This powerful lemma gives the main idea for the routing table. We subdivide the surface
around p into cones with a certain angle. Thus, we set

t ∶= π/arcsin (0.5/ (1 + ε−1))

and use the subdivision described in the previous section. This subdivision provides a set C(p)
with a certain amount of cones. The following lemma specifies this amount.

Lemma 5.4. For t as above, we have t ≤ 2π (1 + ε−1) .

Proof. We have sin 0 = 0, sin′ 0 = 1 and sin′ x < 1 for 0 < x < 0.5. Thus we have sinx ≤ x for
0 < x < 0.5. Now for z > 2, we obtain the inequality sin(1/z) ≤ 1/z and by the monotonicity
of the sine function in the interval (0,0.5) we have arcsin(1/z) ≥ 1/z for z > 2. Thus, we can
substitute z = 2(1 + ε−1) to obtain the desired inequality.

This lemma and Observation 5.1 show immediately ∣C(p)∣ ∈ O(ε−1). For each cone Cj(p) ∈
C(p) and each hole we collect all the indices Ip′(i) with p′ ∈ Cj(p). With Lemma 5.3 it is known
that these indices form an interval. This interval contains all indices of vertices whose shortest
path starts in the cone Cj(p). To use less space, we save for each cone the intervals of h + 1
holes and the label of the vertex that has the shortest distance to p in Cj(p). An interval needs
O(logn) bits, because we store only the boundaries of the interval. Furthermore, in each cone
we have O(h) intervals and one label with size O(logn). Thus, the size of the routing table is
O(ε−1h logn).

The routing function is quite obvious. Starting at a vertex p, we search the label l(q) of the
target vertex q in the routing table ρ(p). The search of the label gives a cone and the label of
the corresponding shortest neighbour of p. We travel then from p to this neighbour (see again
Figure 5.3).

5.3 Analysis

In this section we want to prove the stretch factor and give an upper bound on the preprocessing
time. Thus, let P be a polygon with n points and h holes. Additionally, let 1 + ε, ε > 0, be the
desired stretch factor and let t be as in the last section. First, we want to show that during the
routing each step shortened the distance to the target vertex. However, it is not obvious that the
routing scheme terminates.

Lemma 5.5. Let p and q be two vertices in P . Furthermore, let p′ be the next vertex computed
by the routing scheme that routes a data package from p to q. Then we have d(p′, q) ≤ d(p, q) −
∣pp′∣/(1 + ε).

38

Chapter 5 Routing in Polygons

Proof. First, we look at the routing table of p to find the label l(q). This query supplies a cone and
the label of the corresponding vertex p′. Thus, we walk to the vertex p′. However, it is possible
that this vertex p′ is not located on a shortest path from p to q. But due to our construction, we
know that the next vertex q′ on the shortest path from p to q is contained in the same cone as p′.
We can apply the triangle inequality and Lemma 5.2 which yields

d(p′, q) ≤ d(p′, q′) + d(q′, q)

≤ ∣pq′∣ − (1 − 2 sin
π

t
) ∣pp′∣ + d(q′, q)

= d(p, q) − (1 − 2 sin
π

t
) ∣pp′∣

= d(p, q) − (1 −
1

1 + 1/ε
) ∣pp′∣

= d(p, q) − ∣pp′∣/(1 + ε).

This lemma immediately implies the correctness of the routing scheme, because the distance
from the vertices to q decreases strictly (d(p′, q) < d(p, q)) in each step and since there is a finite
number of vertices in the polygon, we can find an m ≤ n such that π = p0p1 . . . pm is the path
computed by the routing scheme with p = p0 and q = pm. Finally, we can bound the stretch of the
routing scheme.

Lemma 5.6. Let p and q be two vertices of P . Then we have dρ(p, q) ≤ (1 + ε)d(p, q).

Proof. Let π = p0p1 . . . pm be the path from p = p0 to q = pm computed by the routing scheme.
By Lemma 5.5 we have d(pi+1, q) ≤ d(pi, q) − ∣pipi+1∣/(1 + ε). Thus, we have

dρ(p, q) =
m

∑
i=0

∣pipi+1∣

≤ (1 + ε)
m

∑
i=0

(d(pi, q) − d(pi+1, q))

= (1 + ε) (d(p0, q) − d(pm, q))

= (1 + ε)d(p, q).

This finishes the proof for the bound of the stretch.

Finally, we have to discuss the details of the preprocessing and its time complexity.

Lemma 5.7. The preprocessing time for the scheme described above is O(n3 + nhε−1).

Proof. Let p be a vertex of P . First of all, we compute the shortest path tree Tp. Using the
algorithm of Dijkstra and Fibonacci Heaps [10], this can be done in amortized time O(n2). Now
we make a post-order traversal of Tp to compute the intervals for each child of p. Given a node q
in Tp we look at all children of q. The post-order traversal provides at most h different intervals.

39

Chapter 5 Routing in Polygons

For each hole we unify the intervals among the children. Lemma 5.3 shows that the union of these
intervals is again an interval. This union can be done in timeO(h ⋅outdeg(q)), where outdeg(q)
is the number of children of q in Tp. Summarizing among all sites in Tp this post-order traversal
needs O(hn) time and is thus insignificant, because h ≤ n.

Let q1 . . . qk be the children of p and α1 . . . αk the corresponding angles spanned by the ray
r0(p) and the edge (p, qj). We sort the qj by increasing angle αj . This needs time O(n logn).
Moreover, we insert into this sorted sequenceL the rays ri(p). By Lemma 5.4 and Observation 5.1
the sequence L contains O(ε−1 + outdeg(p)) elements. Next, we walk through L. Between two
rays ri−1(p) and ri(p) we join all the corresponding intervals. Again by Lemma 5.3 these unions
are intervals. Furthermore, we compute the point that is closest to p. Finally, we store the label of
the closest point and the h intervals in the i-th row of the routing table ρ(p). This last step takes
time O(h(ε−1 + outdeg(p))) = O(hε−1 + hn).

Thus, the computation time for one point is O(n2 + hε−1) and we need preprocessing time
O(n3 + nhε−1).

Combining the last two lemmas and the discussion in Section 5.2 we obtain the following
theorem.

Theorem 5.8. Let P be a polygon with n vertices and h holes. For any ε > 0 we can preprocess
P into a routing scheme for VG(P) with labels of size O(logn) bits and routing tables of size
O(ε−1h logn) bits. For any two sites p, q ∈ P , the scheme produces a routing path with stretch
≤ (1 + ε)d(p, q). The header is always empty and the preprocessing time is O(n3 + nhε−1).

Proof. Again, we only have to say something about P and VG(P). If P is the input of our
routing scheme, we first have to compute VG(P). Naively, this needs time O(n3), because for
each pair of vertices p, q on the boundary of P we can decide in time O(n) if there is an edge e,
such that pq hits the interior of e. In this case, {p, q} is not an edge in VG(p).

5.4 Improvement for simple Polygons

Let P be a simple polygon with n vertices. Again, let 1 + ε, ε > 0, be the stretch factor. In this
last section we would like to find an improvement of the preprocessing time for polygons without
holes. The problem of the previous section consists in the computation of each shortest path tree,
which needs time O(n3). In polygons without holes, we can use another technique to avoid this
large computation. The routing function, the labelling of the sites and the structure of the routing
table remain the same. Certainly, the computation of the routing table is different. Thus, we have
to prove that the preprocessing provides the same properties as in the previous section.

First of all, let p be a vertex of P . We compute its visibility polygon vis(p). This computation
provides a sequence of consecutive points v0v1 . . . vk with p = v0 = vk+1. Some points of this
sequence are perhaps not vertices of P . We assume that the sequence is sorted clockwise. Thereby,
the points are sorted by increasing angle αj that is spanned by the ray r0(p) and the edge {p, vj}
(1 ≤ j ≤ k).

Now si is the point of the intersection of ri(p) and vis(p) with smallest distance to p. The
corresponding edge ei ⊂ P with si ∈ ei ∩ ri(p) can be found by using the sorted sequence of
vertices of vis(p) (see Figure 5.5).

40

Chapter 5 Routing in Polygons

p

ri−1(p)

ri(p)

ei−1

ei

p′

si−1

si

Figure 5.5: The boundaries of Ci(p) hit ∂P in the points si−1 and si. The site p′ is the point in Ci(p)
with shortest distance to p.

Now let Ci(p) ∈ C(p) be a cone. Recall that the boundaries of Ci(p) are the rays ri−1(p) and
ri(p). The vertices related to this cone accrue in the following manner: starting from si−1 we
walk along the boundary of P until we meet si and collect all the visited vertices. Obviously, this
collection forms a (possibly empty) interval, called I(i). Moreover, we look for the vertex p′

with smallest distance to p among the points of I(i). Analogue to the version of our problem
with holes, we store the interval boundary of I(i) together with the label of the vertex p′ in the
routing table of p. This needsO(logn) bits as well. Again, by Lemma 5.4, the size of the routing
tables are O(ε−1 logn) bits. This result is the same as in the previous section.

With this we obtain the following lemma.

Lemma 5.9. Let p, q be two vertices of P and (p, p′) the first edge on the shortest path from p to
q. If q ∈ I(i), then p′ ∈ Ci(p).

Proof. Consider the opposite that is p′ ∉ Ci(p). Since q is in I(i), the shortest path π from p
to q has to cross psi−1 or psi at least twice. The first intersection is p itself. Let s ≠ p be the
second intersection and π′ the subpath of π from p over p′ to s. By the triangle inequality we
have ∣ps∣ < d(π′) (see Figure 5.6). Thus, we can find a shortcut from p to s and hence a shorter
path from p to q. This contradicts the assumption that π is a shortest path from p to q and finishes
the proof.

This lemma proves that the routing function behaves as our first algorithm. Thereby, we proved
the correctness. Finally, we obtain the last theorem of this thesis.

Theorem 5.10. Let P be a simple polygon with n vertices. For any ε > 0 we can preprocess
P into a routing scheme for VG(P) with labels of size O(logn) bits and routing tables of size
O(ε−1 logn) bits. For any two sites p, q ∈ P , the scheme produces a routing path with stretch
≤ (1 + ε)d(p, q). The header is always empty and the preprocessing time is O(n2 + nε−1).

41

Chapter 5 Routing in Polygons

q

p

p′ s

Figure 5.6: The red line is the ”shortest” path from p to q with p′ as first step, whereas the green dashed
line represents a shortcut from p to s.

Proof. First, we compute the visibility graph. Using the visibility polygon for each vertex p
we can do this in time O(n2), because we can check in constant time for each vertex of vis(p)
whether it is a vertex in P .

Now, let L be the sequence of vertices of vis(p) sorted by increasing angle. Using L, we can
find in time O(n+ ε−1) all intersecting points si and corresponding edges ei of P . Thus, for each
ray ri(p), we can find in constant time the boundaries of ei. Finally, let Ci(p) be a cone. We
can find in constant time the interval boundaries of I(i) and in O(∣I(i)∣) time the point with the
smallest distance in I(i) to p. We store the interval and the label of the point in the i-th row of
the routing table of p. Among all cones, this step costs O(n + ε−1). In the end, we do the same
procedure for all vertices and obtain the running time O(n2 + nε−1).

42

CHAPTER 6
Conclusion

We have presented two efficient routing schemes: one for the disk graphs and one for the visibility
graph of a polygon. Both routing schemes produce a routing path whose length can be made
arbitrarily close to the optimum. For the disk graph, we used the fact that the well-separated
pair decomposition is small. Nevertheless, the small size of the decomposition depends on the
constant radius ratio. Moreover, we can look at the hop-distance dh(⋅, ⋅) of a graph. In this model,
all edges have length 1. Now let S be a set of sites and let diamh(S) denote the diameter of
S using the hop-distance. Since diamh(S) ≤ ∣S∣ − 1 and ∣pq∣ ≤ 2φdh(p, q) hold for every two
sites p, q ∈ S for disk graphs with constant radius ratio, the well-separation conditions imply also
separation with respect to the hop-distance. Thus, we can find a routing scheme for disk graphs
that approximates the number of hops used in the routing path.

We still have various open questions for the routing schemes for polygons. First of all, it
would be interesting, if there is a routing scheme that approximates the hop-distance in polygons.
Using our routing scheme we can find examples, where the stretch is in Ω(n) (see Figure 6.1).
Moreover, it would be interesting to know, whether the preprocessing time or the size of the
routing table can be improved, using perhaps a recursive strategy.

p q
Ci(p)

Figure 6.1: In this polygon, the hop-distance between p and q is 1, because they can see each other. Our
routing scheme routes from one spire to the next. Thus, the stretch is in Θ(n).

Finally, we have many open questions for the disk graphs. First of all, it would be interesting
to improve the size of the routing table. Here we have several parameters to achieve this. One
problem is the large exponent of the ε−1 that we have to introduce when going from bounded to
unbounded density. Perhaps there is a smarter way to pick out the bridges or to bound the number
of bridges. Furthermore, the size of the routing tables depends on the size of the well-separated
pair decomposition. Traditional well-separated pair decompositions have only O(c2n) pairs,

43

Chapter 6 Conclusion

while the version for unit disk graphs needs an additional logarithmic factor. Whether this factor
can be avoided, is still an open problem. Any improvements on the number of pairs would
decrease the size of the routing table. Not forgetting, we are interested in the size of the header.
Many routing schemes do not need this header. In our case, we have a recursive approach and
have to handle the associated stack. It would be interesting to know, whether it is possible to
avoid this stack. Last but not least, our routing scheme works only for disk graphs with constant
bounded density, because the well-separated pair decomposition provides a sub-quadratic size
only for this case. If the radius ratio is unbounded, the size can be quadratic (see Figure 6.2).
It would be interesting, if there are well-separated pair decompositions for general disk graphs
that depend on φc with c ≈ 2. If so, we could generalise the routing scheme to disk graphs with
unbounded radius ratio.

Figure 6.2: This disk graph has unbounded density and needs Θ(n2) well-separated pairs.

There is one more open question for routing schemes in general: what is the running time
that is needed by a data package during its travel through the graph? In particular, it would be
interesting how much time a data package needs at one single node. It would be a sightly different
but important measure of routing schemes.

44

Bibliography
[1] Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes

with affine stretch. In International Symposium on Distributed Computing, pages 404–415.
Springer, 2011.

[2] Sunil Arya, David M Mount, and Michiel Smid. Randomized and deterministic algorithms
for geometric spanners of small diameter. In Foundations of Computer Science, 1994
Proceedings., 35th Annual Symposium on, pages 703–712. IEEE, 1994.

[3] Takao Asano, Tetsuo Asano, Leonidas Guibas, John Hershberger, and Hiroshi Imai. Visibil-
ity of disjoint polygons. Algorithmica, 1(1-4):49–63, 1986.

[4] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved routing
strategies with succinct tables. Journal of Algorithms, 11(3):307–341, 1990.

[5] Reuven Bar-Yehuda and Bernard Chazelle. Triangulating disjoint jordan chains. Interna-
tional Journal of Computational Geometry & Applications, 4(04):475–481, 1994.

[6] Paul B Callahan. Optimal parallel all-nearest-neighbors using the well-separated pair
decomposition. In Foundations of Computer Science, 1993. Proceedings., 34th Annual
Symposium on, pages 332–340, Nov 1993.

[7] Paul B Callahan and S Rao Kosaraju. Algorithms for dynamic closest pair and n-body
potential fields. In Proceedings of the sixth annual ACM-SIAM symposium on Discrete
algorithms, pages 263–272. Society for Industrial and Applied Mathematics, 1995.

[8] Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90,
January 1995.

[9] Shiri Chechik. Compact routing schemes with improved stretch. In Proceedings of the 2013
ACM symposium on Principles of distributed computing, pages 33–41. ACM, 2013.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, third edn. 2009.

[11] Lenore J Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170–
183, 2001.

[12] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low stretch
factor. Journal of Algorithms, 46(2):97–114, 2003.

45

Bibliography

[13] Jeff Erickson. Dense point sets have sparse Delaunay triangulations: or. . . but not too nasty.
In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 125–134. Society for Industrial and Applied Mathematics, 2002.

[14] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In International Colloquium on
Automata, Languages, and Programming, pages 757–772. Springer, 2001.

[15] Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric
and its applications. SIAM Journal on Computing, 35(1):151–169, 2005.

[16] Silvia Giordano and Ivan Stojmenovic. Position based routing algorithms for ad hoc
networks: A taxonomy. In Ad hoc wireless networking, pages 103–136. Springer, 2004.

[17] Joachim Gudmundsson, Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Ap-
proximate distance oracles for geometric graphs. In Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 828–837. Society for Industrial and
Applied Mathematics, 2002.

[18] Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1-4):209–233, 1987.

[19] Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Traveling with a pez dispenser (or,
routing issues in mpls). SIAM Journal on Computing, 34(2):453–474, 2005.

[20] John Hershberger and Subhash Suri. An optimal algorithm for euclidean shortest paths in
the plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.

[21] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in unit disk
graphs. In Evangelos Kranakis, Gonzalo Navarro, and Edgar Chávez, editors, LATIN 2016:
Theoretical Informatics - 12th Latin American Symposium, Ensenada, Mexico, April 11-15,
2016, Proceedings, volume 9644 of Lecture Notes in Computer Science, pages 536–548.
Springer, 2016.

[22] Sanjiv Kapoor and SN Maheshwari. Efficient algorithms for euclidean shortest path and
visibility problems with polygonal obstacles. In Proceedings of the fourth annual symposium
on Computational geometry, pages 172–182. ACM, 1988.

[23] Sanjiv Kapoor, SN Maheshwari, and Joseph SB Mitchell. An efficient algorithm for
euclidean shortest paths among polygonal obstacles in the plane. Discrete & Computational
Geometry, 18(4):377–383, 1997.

[24] Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Improved algorithms for
constructing fault-tolerant spanners. Algorithmica, 32(1):144–156, 2002.

[25] Joseph SB Mitchell. A new algorithm for shortest paths among obstacles in the plane.
Annals of Mathematics and Artificial Intelligence, 3(1):83–105, 1991.

46

Bibliography

[26] Joseph SB Mitchell. Shortest paths among obstacles in the plane. International Journal of
Computational Geometry & Applications, 6(03):309–332, 1996.

[27] Giri Narasimhan and Michiel Smid. Approximating the stretch factor of euclidean graphs.
SIAM Journal on Computing, 30(3):978–989, 2000.

[28] Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University
Press, 2007.

[29] Mark H Overmars and Emo Welzl. New methods for computing visibility graphs. In
Proceedings of the fourth annual symposium on Computational geometry, pages 164–171.
ACM, 1988.

[30] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables.
Journal of the ACM (JACM), 36(3):510–530, 1989.

[31] Liam Roditty and Roei Tov. New routing techniques and their applications. In Proceedings
of the 2015 ACM Symposium on Principles of Distributed Computing, pages 23–32. ACM,
2015.

[32] Liam Roditty and Roei Tov. Close to linear space routing schemes. Distributed Computing,
29(1):65–74, 2016.

[33] Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks. The computer
journal, 28(1):5–8, 1985.

[34] Micha Sharir and Amir Schorr. On shortest paths in polyhedral spaces. SIAM Journal on
Computing, 15(1):193–215, 1986.

[35] James A Storer and John H Reif. Shortest paths in the plane with polygonal obstacles.
Journal of the ACM (JACM), 41(5):982–1012, 1994.

[36] Kenneth J Supowit. The relative neighborhood graph, with an application to minimum
spanning trees. Journal of the ACM (JACM), 30(3):428–448, 1983.

[37] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM (JACM), 51(6):993–1024, 2004.

[38] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures, pages 1–10. ACM, 2001.

[39] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

[40] Emo Welzl. Constructing the visibility graph for n-line segments in O(n2) time. Informa-
tion Processing Letters, 20(4):167–171, 1985.

[41] Chenyu Yan, Yang Xiang, and Feodor F Dragan. Compact and low delay routing labeling
scheme for unit disk graphs. Computational Geometry, 45(7):305–325, 2012.

47

Bibliography

[42] Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

48

	Abstract
	Contents
	List of Figures
	List of Algorithms
	Introduction
	Disk Graphs
	Polygons
	Structure of this Thesis

	Preliminaries
	Basic Definitions
	Routing Schemes
	Disk Graphs
	Polygons

	Well-separated Pair Decomposition
	Computing the Well-separated Pair Decomposition
	Analysis
	Further Properties and a first step towards arbitrary Density

	Routing in Disk Graphs
	Preprocessing the Disk Graph
	The Routing Scheme
	Analysis
	Extension to arbitrary Density

	Routing in Polygons
	Cones in Polygons
	The Routing Scheme
	Analysis
	Improvement for simple Polygons

	Conclusion
	Bibliography

