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Bounding Klarner’s constant from above using a simple
recurrence

Vuong Bui

Abstract. Klarner and Rivest showed that the growth of the number of
polyominoes, also known as Klarner’s constant, is at most 2+2

√
2 < 4.83

by viewing polyominoes as a sequence of twigs with appropriate weights
given to each twig and studying the corresponding multivariate generating
function. In this short note, we give a simpler proof by a recurrence on
an upper bound. In particular, we show that the number of polyominoes
with n cells is at most G(n) with G(0) = G(1) = 1 and for n ≥ 2,

G(n) = 2

n−1∑

m=1

G(m)G(n − 1 − m).

It should be noted that G(n) has multiple combinatorial interpretations
in the literature.
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1. Introduction. Polyomino is a popular geometric figure that must have been
used either for practical or recreational purposes for a long time, either implic-
itly or explicitly. Rigorously speaking, a polyomino is an edge-connected set
of cells on the square lattice. A nice introduction and survey of polyominoes
can be found in the chapter “Polyominoes” [1] of “Handbook of Discrete and
Computational Geometry”. We work with fixed polyominoes in this article, in
the sense that two polyominoes are equivalent if one is a translate of the other.
The number of polyominoes with n cells can be found in the sequence A001168
of the on-line encyclopedia of integer sequences [2]. The study of the asymp-
totic growth of polyominoes starts with Klarner’s paper [3], which observes
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that the number A(n) of (fixed) polyominoes with n cells is supermultiplica-
tive. Together with the boundedness of n

√
A(n) (by A(n) ≤ (

3n
n−1

)
, see [4]), we

have a corollary that the growth constant is actually the limit

λ := lim
n→∞

n
√

A(n),

which is also called Klarner’s constant. Another corollary is the lower bound
that for every n,

λ ≥ n
√

A(n).

In particular, with the recent advance

A(70) = 18, 500, 792, 645, 885, 711, 270, 652, 890, 811, 942, 343, 400, 814

in [5], we have λ ≥ 70
√

A(70) > 3.76049. However, the state of the art for the
lower bound is λ > 4.0025, by a related notion of twisted cylinders [6]. The
lower bound is quite close to the (unproved) estimate 4.0625696 ± 0.0000005
by Jensen [7].

It turns out that obtaining upper bounds on λ seems to be harder, and the
bounds are in general far from the believed value. The first bound is due to
Eden [4] by an enumeration so that each polyomino can be seen as sequence
of twigs:

A(n) ≤
(

3n

n − 1

)
,

which is followed by

λ ≤ 27
4

= 6.75.

Klarner and Rivest [8] optimized the approach by enumerating polyominoes
with a set of 5 twigs, reduced from 8 twigs as in Eden’s implementation, so
that we immediately obtain the bound λ ≤ 5. This bound can be improved
by assigning appropriate weights to the twigs and studying the corresponding
multivariate generating function, by which they obtain

λ ≤ 2 + 2
√

2 < 4.83.

Also in the same article, Klarner and Rivest extended the approach with more
than 2 million twigs to obtain

λ ≤ 4.649551.

Using the power of computation nowadays with thousands of billion twigs and
some additional tricks, Barequet and Shalah [9] obtained

λ ≤ 4.5252.

In general, it seems to be very hard to obtain a good upper bound without
using huge computational power, even if we optimize certain steps. Therefore,
it may be interesting to look at the best upper bound that we can prove
manually (i.e., without extensive computation): λ ≤ 2 + 2

√
2. Although the

treatment in [8] gives a general framework, we will prove the bound using a
simpler and more straightforward way, by a recurrence of an upper bound on
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Figure 1. Two types of cells

A(n). This allows a simple investigation of an ordinary generating function,
as opposed to multivariate generating functions in [8]. Usually the approach
is to bound the quantity we need to study by another quantity which is more
well behaved, e.g., it satisfies some recurrence. This is a popular technique, for
example, one can find an instance in [10], or a more general application of the
technique in [11]. A merit of this work is that instead of working directly on
the original quantity A(n), we study the number of pairs of a polyomino and
a cell so that they satisfy some certain properties, which involve the neighbors
of the cell in the polyomino. On the one hand, although the number of such
pairs may be linearly many times larger than the original quantity, both still
grow at the same rate. On the other hand, by considering the neighbors, we
may have more useful recurrences. In the next section, we show that A(n) is
at most G(n), which is defined by G(0) = G(1) = 1 and for n ≥ 2,

G(n) = 2
n−1∑

m=1

G(m)G(n − 1 − m).

In fact, G(n) for n = 1, 2, . . . is the sequence A071356 of the on-line encyclope-
dia of integer sequences [2], which has multiple interpretations. For example,
G(n) is the number of Motzkin paths from (0, 0) to (n, 0) where the level and
up steps are bicolored [12]. The sequence can be related to other convolu-
tions of similar types, a familiar one being Catalan’s number. The proof that
A(n) ≤ G(n) involves decomposing a polyomino into smaller parts that still
guarantee some properties. It leads to the following natural question.

Question 1. Is there a simple injection from polyominoes to Motzkin paths
mentioned above (or any other equivalent combinatorial interpretation of
G(n))?

2. The recurrence. We prove that λ ≤ 2 + 2
√

2 by considering pairs (P, c)
where P is a polyomino of n cells and c is one of its cells.

Let f(n) be the number of pairs such that there is no cell in the row below
the marked cell c that lies in the same column or an adjacent column, i.e., there
is no cell at crossed positions if the marked cell is the black cell in Fig. 1(a).
We say that such a pair has Type (A).

Let g(n) be the number of pairs with the same forbidden cells together with
the forbidden cell to the left of the marked cell, as in Fig. 1(b). We say that
such a pair has Type (B).

Note that f(n) and g(n) are still the same if we rotate or flip the forbidden
cells around the marked cells. For example, if we let the additional forbidden
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cell be the cell to the right of the marked cell instead, as in Fig. 1(b’), the
number of pairs is still g(n).

Before bounding f(n) and g(n) from above, we note that f(n) and g(n)
are both upper bounds on the number A(n) of polyominoes of n cells by
considering pairs (P, c) where c is the leftmost cell in the bottommost row of
P . However, all these three numbers have the same growth constant since

A(n) ≤ f(n) ≤ nA(n), A(n) ≤ g(n) ≤ nA(n).

Let F (n) and G(n) be defined by: F (0) = F (1) = G(0) = G(1) = 1 and for
n ≥ 2,

F (n) = G(n) +
∑

�,m≥1, �+m=n

G(�)G(m),

G(n) = F (n − 1) + G(n − 1) +
∑

�,m≥1, �+m=n−1

G(�)G(m).

We obtain upper bounds on f(n) and g(n) as follows.

Theorem 1. Setting f(0) = g(0) = 1, we have f(n) ≤ F (n) and g(n) ≤ G(n)
for all n.

Proof. The relations are trivial for n = 0, 1. Suppose that they are true up to
n − 1, the same will be proved for n as follows.

• The number of pairs (P, c) of Type (B) with no cell to the right of c is at
most f(n−1) ≤ F (n−1), see Fig. 2(a). The number of pairs with no cell
immediately above c is at most g(n−1) ≤ G(n−1), see Fig. 2(b). If there
are two cells, one cell d to the right and the other e immediately above c,
we can split P after excluding c into two parts P1 and P2 of some � and
m cells (�,m ≥ 1, �+m = n−1) such that (P1, d) and (P2, e) are both of
Type (B) (after rotating/flipping appropriately), see Fig. 2(c). Hence,

g(n) ≤ F (n − 1) + G(n − 1) +
∑

�,m≥1, �+m=n−1

G(�)g(m) = G(n). (1)

• The number of pairs (P, c) of Type (A) with no cell to the left of c
is at most g(n) ≤ G(n), see Fig. 3(a). (Note that g(n) ≤ G(n) is not
due to the induction hypothesis but (1).) If there is a cell d to the left
of c, we can split P into two parts P1 and P2 of some � and m cells
(�,m ≥ 1, � + m = n) such that (P1, c) and (P2, d) are both of Type (B)
(after rotating/flipping appropriately), see Fig. 3(b). Hence,

f(n) ≤ G(n) +
∑

�,m≥1, �+m=n

G(�)G(m) = F (n).

The conclusion is therefore valid for every n by induction. �
In fact, G(n) can be written so that it depends on itself as follows.

Proposition 1. For n ≥ 2,

G(n) = 2
n−1∑

m=1

G(m)G(n − 1 − m).
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Figure 2. Neighbors for cells of Type (B)

Figure 3. Neighbors for cells of Type (A)

Proof. Indeed,

G(n) = F (n − 1) + G(n − 1) +
∑

�,m≥1, �+m=n−1

G(�)G(m)

= G(n − 1) +
∑

�,m≥1, �+m=n−1

G(�)G(m) + G(n − 1) +
∑

�,m≥1, �+m=n−1

G(�)G(m)

= 2

⎛

⎝G(n − 1) +
∑

�,m≥1, �+m=n−1

G(�)G(m)

⎞

⎠

= 2

n−1∑

m=1

G(m)G(n − 1 − m).

�
We proceed with calculating the generating function

ζ(n) =
∑

n≥0

G(n)xn.

Proposition 2.

ζ(x) =
2x + 1 − √

1 − 4x − 4x2

4x
.

Proof. For n ≥ 2,

G(n) =

(
2

n−1∑

m=0

G(m)G(n − 1 − m)

)
− 2G(n − 1),

therefore,

ζ(x) = 1 + x +
∑

n≥2

G(x)xn
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= 1 + x +

⎛

⎝
∑

n≥2

n−1∑

m=0

2G(m)G(n − 1 − m)xn

⎞

⎠ −
∑

n≥2

2G(n − 1)xn

= 1 + x + 2x([ζ(x)]2 − 1) − 2x(ζ(x) − 1)

= 1 + x + 2x[ζ(x)]2 − 2xζ(x).

Out of the two solutions of the equation

2x[ζ(x)]2 − (2x + 1)ζ(x) + (x + 1) = 0

of ζ(x), we choose the solution in the conclusion since it is the one that gives
limx→0 ζ(x) = 1. (The other one 2x+1+

√
1−4x−4x2

4x diverges as x → 0.) �

Since the condition for the discriminant 1 − 4x − 4x2 to be nonnegative is
(−√

2 − 1)/2 ≤ x ≤ (
√

2 − 1)/2, the radius of convergence is (
√

2 − 1)/2. The
growth constant of G(n) is therefore 2/(

√
2 − 1) = 2 + 2

√
2, which in turn is

also an upper bound on Klarner’s constant.
Although we are mainly interested in a simpler proof of the result of Klarner

and Rivest in this article, we close the article with the following question.

Question 2. Can we turn the approach into a more general framework as in
the work of Klarner and Rivest?
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