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Abstract. A coloring is proper if each color class induces connected
components of order one (where the order of a graph is its number of
vertices). Here we study relaxations of proper two-colorings, such that
the order of the induced monochromatic components in one (or both) of
the color classes is bounded by a constant. In a (C1, C2)-relaxed coloring
of a graph G every monochromatic component induced by vertices of
the first (second) color is of order at most C1 (C2, resp.). We are mostly
concerned with (1, C)-relaxed colorings, in other words when/how is it
possible to break up a graph into small components with the removal of
an independent set.
We prove that every graph of maximum degree at most three can be
(1, 22)-relaxed colored and we give a quasilinear algorithm which con-
structs such a coloring. We also show that a similar statement cannot
be true for graphs of maximum degree at most 4 in a very strong sense:
we construct 4-regular graphs such that the removal of any independent
set leaves a connected component whose order is linear in the number of
vertices.
Furthermore we investigate the complexity of the decision problem
(∆, C)-AsymRelCol: Given a graph of maximum degree at most ∆, is
there a (1, C)-relaxed coloring of G? We find a remarkable hardness jump
in the behavior of this problem. We note that there is not even an obvious
monotonicity in the hardness of the problem as C grows, i.e. the hardness
for component order C + 1 does not imply directly the hardness for C.
In fact for C = 1 the problem is obviously polynomial-time decidable,
while it is shown that it is NP-hard for C = 2 and ∆ ≥ 3.
For arbitrary ∆ ≥ 2 we still establish the monotonicity of hardness of
(∆, C)-AsymRelCol on the interval 2 ≤ C ≤ ∞ in the following strong
sense. There exists a critical component order f(∆) ∈ N∪{∞} such that
the problem of deciding (1, C)-relaxed colorability of graphs of maximum
degree at most ∆ is NP-complete for every 2 ≤ C < f(∆), while deciding
(1, f(∆))-colorability is trivial: every graph of maximum degree ∆ is
(1, f(∆))-colorable. For ∆ = 3 the existence of this threshold is shown
despite the fact that we do not know its precise value, only 6 ≤ f(3) ≤ 22.
For any ∆ ≥ 4, (∆, C)-AsymRelCol is NP-complete for arbitrary C ≥ 2,
so f(∆) = ∞.
We also study the symmetric version of the relaxed coloring problem,
and make the first steps towards establishing a similar hardness jump.
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1 Introduction

A function from the vertex set of a graph to a k-element set is called a k-coloring.
The values of the function are referred to as colors. A coloring is called proper if
the value of the function differs on any pair of adjacent vertices. Proper coloring
and the chromatic number of graphs (the smallest number of colors which allow
a proper coloring) are among the most important concepts of graph theory. Nu-
merous problems of pure mathematics and theoretical computer science require
the study of proper colorings and even more real-life problems require the cal-
culation or at least an estimation of the chromatic number. Nevertheless, there
is the discouraging fact that the calculation of the chromatic number of a graph
or the task of finding an optimal proper coloring are both intractable problems,
even fast approximation is probably not possible. This is one of our motivations
to study relaxations of proper coloring, because in some theoretical or practical
situations a small deviation from proper is still acceptable, while the problem
could become tractable. Another reason for the introduction of relaxed colorings
is that in certain problems the use of the full strength of proper coloring is an
“overkill”. Often a weaker concept suffices and provides better overall results.

In this paper we study various relaxations of proper coloring, which allow
the presence of some small level of conflicts in the color assignment. Namely,
we will allow vertices of one or more color classes to participate in one conflict
or, more generally, let each conflicting connected component have at most C
vertices, where C is a fixed integer, not depending on the order of the graph.
Most of our results deal with the case of relaxed two-colorings.

To formalize our problem precisely we say that a two-coloring of a graph is
(C1, C2)-relaxed if every monochromatic component induced by the vertices of
the first color is of order at most C1, while every monochromatic component
induced by the vertices of the second color is of order at most C2. Note that
(1, 1)-relaxed coloring corresponds to proper two-coloring.

In the present paper we deal with the two most natural cases of relaxed
two-colorings. We say symmetric relaxed coloring when C1 = C2 and asym-
metric relaxed coloring when C1 = 1. Symmetric relaxed colorings were first
studied by Alon, Ding, Oporowski and Vertigan [1] and implicitly, even ear-
lier, by Thomassen [18] who resolved the problem for the line graph of 3-regular
graphs initiated by Akiyama and Chvátal [2]. Asymmetric relaxed colorings were
introduced in [5].

Related relaxations of proper colorings. There are several other types of coloring
concepts related to our relaxation of proper coloring.

In a series of papers Škrekovski [17], Havet and Sereni [8], and Havet, Kang,
and Sereni [9] investigated the concept of improper colorings over various families
of graphs. A coloring is called (k, l)-improper if none of the at most k colors
induces a monochromatic component containing vertices of degree larger than l.
Hence in an improper coloring the amount of error is measured in terms of the
maximum degree of monochromatic components rather than in terms of their
order.



Linial and Saks [15] studied low diameter graph decompositions, where the
quality of the coloring is measured by the diameter of the monochromatic com-
ponents. Their goal was to color graphs with as few colors as possible such that
each monochromatic connected component has a small diameter.

Haxell, Pikhurko and Thomason [11] study the fragmentability of graphs
introduced by Edwards and Farr [7], in particular for bounded degree graphs. A
graph is called (α, f)-fragmentable if one can remove α fraction of the vertices
and end up with components of order at most f . For comparison, in a (1, C)-
relaxed coloring one must remove an independent set and end up with small
components.

The problems. We study relaxed colorings from two points of view, extremal
graph theory and complexity theory, and find that these points eventually meet
for asymmetric relaxed colorings. We also make the first steps for a similar
connection in the symmetric case. To demonstrate our problems, in the next
few paragraphs we restrict our attention to asymmetric relaxed colorings; the
corresponding questions are asked and partially answered for symmetric relaxed
colorings, but there our knowledge is much less satisfactory.
On the one hand there is the purely graph theoretic question:

For a given maximum degree ∆ what is the smallest component order
f(∆) ∈ N∪{∞} such that every graph of maximum degree ∆ is (1, f(∆))-
relaxed colorable?

On the other hand, for fixed ∆ and C one can study the computational com-
plexity question:

What’s the complexity of the decision problem: Given a graph of maxi-
mum degree ∆, is there a (1, C)-relaxed coloring?

Obviously, for the critical component order f(∆) which answers the extremal
graph theory question, the answer is trivial for the complexity question: every
instance is a YES-instance. Note also, that for C = 1 the complexity question
is polynomial-time solvable, as it is equivalent to testing whether a graph is
bipartite.

In this paper we investigate the complexity question in the range between
1 and the critical component order f(∆). We establish the monotonicity of the
hardness of the problem in the interval C ≥ 2 and prove a very sharp “hardness
jump”. By this we mean that the problem is NP-hard for every component order
2 ≤ C < f(∆), while, of course, the problem becomes trivial (i.e. all instances
are “YES”-instances) for component order f(∆). It is maybe worthwhile to note
that at the moment we do not see any a priori reason why the hardness of
the decision problem should even be monotone in the component order C, i.e.
why the hardness of the problem for component order C + 1 should imply the
hardness for component order C. In fact the problem is obviously polynomial-
time decidable for C = 1, while for C = 2 we show NP-completeness.

The other main contribution of the paper concerns the extremal graph theory
question and obtains significant improvements over previously known bounds



and algorithms. This result becomes particularly important in light of our NP-
hardness results, as the exact determination of the place of the jump from NP-
hard to trivial gets within reach.

To formalize our theorems we need further definitions. Let us denote by
(∆, C)-AsymRelCol the decision problem whether a given graph G of maximum
degree at most ∆ allows a (1, C)-relaxed coloring. Analogously, let us denote
by (∆, C)-SymRelCol the decision problem whether a given graph G of maxi-
mum degree at most ∆ allows a (C, C)-relaxed coloring. Note here that both
(∆, 1)-AsymRelCol and (∆, 1)-SymRelCol is simply testing whether a graph of
maximum degree ∆ is bipartite.

The asymmetric problem. For ∆ = 2 already (2, 2)-AsymRelCol is trivial. For
∆ = 3, it was shown in [5] that every cubic graph admits a (1, 189)-relaxed color-
ing, making (3, 189)-AsymRelCol trivial. In the proof the vertex set of the graph
was partitioned into a triangle-free and a triangle-full part, then the parts were
colored separately, finally the two colorings were assembled amid some technical
difficulties. In our first main theorem we greatly improve on this result by using
a different approach, which avoids the separation. Our method also implies a
quasilinear time algorithm (as opposed to the Θ(n7) algorithm implicitly con-
tained in [5]). One still has to deal with the inconveniences of triangles, but the
obtained component order is much smaller.

Theorem 1. Any graph G with ∆(G) ≤ 3 is (1, 22)-relaxed colorable, i.e.

f(3) ≤ 22.

Moreover there is an O(n log4 n) algorithm which finds such a 22-relaxed color-
ing.

A lower bound of 6 on f(3) was established in [5].
In our next theorem we show that (3, C)-AsymRelCol exhibits the promised

hardness jump.

Theorem 2. For the integer f(3) we have that
(i) (3, C)-AsymRelCol is NP-complete for every 2 ≤ C < f(3);
(ii) any graph G of maximum degree at most 3 is (1, f(3))-relaxed colorable.

In [5] it was shown that for any ∆ ≥ 4 and positive C, (∆, C)-AsymRelCol
never becomes “trivial”, i.e. for every finite C there is a “NO” instance, so
f(4) = ∞. We show here however that the monotonicity of the hardness of
(4, C)-AsymRelCol still exists for C ≥ 2.

Theorem 3. (4, C)-AsymRelCol is NP-complete for every 2 ≤ C < f(4) = ∞.

Obviously, this implies that (∆, C)-AsymRelCol is NP-complete for every
∆ > 4 and 2 ≤ C < f(∆) = ∞.

Remark. Let f(∆, n) be the smallest integer f such that every n-vertex
graph of maximum degree ∆ is (1, f)-relaxed colorable. Then f(∆) = sup f(∆, n).
While f(3) is finite, our graph Gk on Figure 2 provides a simple example for f(4)



being non-finite in a strong sense: in any asymmetric relaxed coloring of Gk there
is a monochromatic component whose order is linear in the number of vertices.
This is in sharp contrast with the examples of [1, 5] where the monochromatic
component order is only logarithmic in the number of vertices. It would be in-
teresting to determine the exact asymptotics of the function f(4, n); we only
know of the trivial upper bound f(4, n) ≤ 3

4
n and the lower bound f(4, n) ≥ 2

3
n

because of Gk.

Combining arguments of [5] and the present paper we are able to prove a tight
upper bound on the component order for graphs of maximum degree 3 in which
every vertex is contained in a triangle.

Theorem 4. Let G be a graph of maximum degree 3, in which every vertex is
contained in a triangle. Then G has a (1, 6)-relaxed coloring.

The proof of this theorem will appear in the full version of the paper [4]. An
example in [5] shows that the component order 6 is best possible. We note that
a 6-relaxed coloring of triangle-free graphs was already proved in [5].

The symmetric problem. Investigations about relaxed vertex colorings were orig-
inally initiated for the symmetric case by Alon, Ding, Oporowski and Vertigan
[1]. They showed that any graph of maximum degree 4 has a two-coloring such
that each monochromatic component is of order at most 57. This was improved
by Haxell, Szabó and Tardos [10], who showed that a two-coloring is possible even
with monochromatic component order of 6, and such a (6, 6)-relaxed coloring can
be constructed in polynomial time (the algorithm of [1] is not obviously polyno-
mial). In [10] it is also proved that the family of graphs of maximum degree 5
is (17617, 17617)-relaxed colorable. This coloring is using the Local Lemma and
it is not known whether there is a constant C and a polynomial-time algorithm
which constructs a (C, C)-relaxed coloring of graphs of maximum degree 5. Alon
et al. [1] showed that a similar statement cannot be true for the family of graphs
of maximum degree 6, as for every constant C there exists a 6-regular graph GC

such that in any two-coloring of V (GC) there is a monochromatic component of
order larger than C.

For the problem (∆, C)-SymRelCol we make progress in the direction of
establishing a sudden jump in hardness. By taking a max-cut one can easily
see that (3, C)-SymRelCol is trivial already for C = 2, so the first interesting
maximum degree is ∆ = 4. From the result of [10] mentioned earlier it follows
that (4, 6)-SymRelCol is trivial. Here we show that (4, C)-SymRelCol is NP-
complete for C = 2 and C = 3. We do not know about the hardness of the
problem for C = 4 and C = 5. Again, we do not know any direct reason for the
monotonicity of the problem. I.e., at the moment it is in principle possible that
(4, 4)-SymRelCol is in P while (4, 5)-SymRelCol is again NP-complete.

Theorem 5. The problems (4, 2)-SymRelCol and (4, 3)-SymRelCol are
NP-complete.

The proof of the theorem appears in the full version of the paper [4].



Related work. Similar hardness jumps of the k-SAT problem with limited oc-
currences of each variable were shown by Tovey [19] for k = 3 and Kratochv́ıl,
Savický and Tuza [14] for arbitrary k. Let k, s be positive integers. A Boolean
formula in conjunctive normal form is called a (k, s)-formula if every clause con-
tains exactly k distinct variables and every variable occurs in at most s clauses.
Tovey showed that every (3, 3)-formula is satisfiable while the satisfiability prob-
lem restricted to (3, 4)-formulas is NP-complete. Kratochv́ıl, Savický and Tuza
[14] generalized this by establishing the existence of a function f(k), such that
every (k, f(k))-formula is satisfiable while the satisfiability problem restricted to
(k, f(k) + 1)-CNF formulas is NP-complete. By a standard application of the

Local Lemma they obtained f(k) ≥
⌊

2
k

ek

⌋

. After some development [14, 16] the

most recent upper estimate on f(k) is only a log-factor away from the lower
bound and is due to Hoory and Szeider [12]. Recently new bounds were also
obtained on small values of the function f(k) [13]. Observe that the monotonic-
ity of the hardness of the satisfiability problem for (k, s)-formulas is given by
definition.

Notation. The order of a graph G is defined to be the number of vertices of G.
Similarly, the order of a connected component C of G is the number of vertices
contained in C. A graph G is r-regular if all its vertices have degree r. A graph
G is called k-edge-connected if there is no edge-cut (a subset of the edges of G
that disconnects G) of size at most k − 1.

The subgraph of a graph G induced by a vertex set U ⊆ V (G) is denoted
throughout by G[U ]. Connected components in an induced subgraph G[U ] are
called U -components and neighbors of a vertex v ∈ V (G) in the induced sub-
graph G[U ] are called U -neighbors.

2 Trivial (3, C)-AsymRelCol – bounding f(3)

Proof (of Theorem 1.). In this section and the next one we simplify our notation
by saying C-relaxed coloring instead of (1, C)-relaxed coloring.

All graphs we consider have maximum degree three. The main part of the
proof is to establish the statement for 2-edge-connected 3-regular graphs. One
can then easily extend this argument to arbitrary graphs of maximum degree 3.
More details will be included in the full version of the paper [4].

Lemma 1. Every 2-edge-connected, 3-regular graph has a vertex partition I ∪
X ∪ B = V (G) such that

(i) I∪X induces a graph where each I-vertex has degree 0 and each X-vertex
has degree 1.

(ii) No triangle contains two vertices from X.
(iii) Every B-component is of order at most 6.

Observe that it is easy to argue that without loss of generality G is diamond-free,
where a diamond is a graph consisting of two triangles sharing an edge. Hence
in the proof we consider only graphs where no two triangles intersect.



First let us see how Lemma 1 implies Theorem 1 for 2-edge-connected 3-
regular graphs. Let I, X, B be such as promised by Lemma 1. We do a postpro-
cessing in two phases, during which we distribute the vertices of X between I
and B. For each adjacent pair vw of vertices in X we put one of them to B and
the other into I . When this happens we say that we distributed the X-edge vw.
In the first phase some vertices contained in B will be moved to I , but once a
vertex is in I , it stays there during the rest of the postprocessing.

For the first phase let us say that a vertex v is ready for a change if v ∈ B
and all its neighbors are in B ∪ X . Once we find a vertex v ready for a change
we move v to I , and distribute the X-edges it is adjacent to by moving all X-
neighbors of v into B (and their X-neighbors into I). We iteratively make this
change until we find no more vertex ready for a change, at which point the first
phase ends. Property (ii) ensures that the rules of our change are well-defined.
It is not possible that an X-neighbor of v is instructed to be placed in B, while
it could also be the X-neighbor of another X-neighbor of v which would instruct
it to be in I . After each change the property (i) stays true simply because some
of the edges in X had their endpoints distributed one into I and one into B.

Crucially, at the end of the first phase every B-component is a path. As a
result of one change no two B-components are joined, possibly a vertex u from
X which changed its color to B is now stuck to an old B-component. In case
this happens both of the other neighbors of u are in I (and stay there).

Let C be a B-component after the first phase. We claim that all vertices
adjacent to C are in I except possibly two: one-one at each endpoint of C. By
(iii) there is an at most 6-long path C ′ in C which used to be in a B-component
before the first phase. So we can distinguish three cases in terms of how many
X-neighbors can C have besides its I-neighbors.
Observations. After the first phase every B-component is one of the following:
(a) C is either a path of length at most 6 with one X-neighbor at each of its
endpoints, or
(b) C is a path of length at most 7 with one X-neighbor at one of its endpoints,
or
(c) C is a path of length 8 with no X-neighbors.

In the second phase we distribute the vertices that are still in X between
I and B in such a way that the connected components in G[B] don’t grow
too much. This is done by finding a matching transversal in an auxiliary graph
H . The graph H is defined on the vertices of X , V (H) = X . There is an edge
between two vertices u and v in H iff u and v are incident to the same component
of G[B].

Claim. ∆(H) ≤ 2.

Proof. Let us pick an arbitrary vertex y from X = V (H). We aim to show
that each of the two edges e1, e2 that are not incident to another X-vertex is
”responsible” for at most one neighbor of y in H . That is, the component in
G[B] incident to y via such an e1 or e2 is incident to at most one other vertex
from X .



Indeed, by the Observation above each B-component is a path, possibly ad-
jacent to X-vertices through its endpoints, but not more than to two.

The following Lemma guarantees a transversal inducing a matching.

Lemma 2 ([10], Corollary 4.3). Let G be a graph with ∆(G) ≤ 2 together
with a vertex partition P = {P1, . . . , Pm} into 2-element subsets. Then there is
a transversal T ((T ∩ Pi) 6= ∅, for all i ∈ {1, . . . , m}) with ∆(G[T ]) ≤ 1.

We remark that the proof of this Lemma in [10] involves a linear time algorithm
which constructs the transversal.

We apply Lemma 2 and find such a transversal T of H on the partition
defined by the edges in G[X ], P = E(G[X ]).

Now the second phase of our postprocessing consists of moving all vertices of
T into B and moving X \T into I . Since ∆(H(T )) ≤ 1 we connect at most three
connected components Q1and Q2 and Q3 of G[B] by moving an edge {u, v} of H
into B, with u incident to Q1 and Q2 and v incident to Q2 and Q3. Obviously,
Q1 and Q3 are incident to at least one vertex of H (u and v respectively) and Q2

is incident to at least two vertices from H (u and v) before moving the vertices
of T . According to the Observation above the largest B-component created this
way is of order at most 7 + 1 + 6 + 1 + 7 = 22. Lemma 1(i) guarantees that I is
independent so the defined coloring is 22-relaxed.

ut
It remains to show that the partition of V (G), promised in Lemma 1 indeed

exists and can be found in time O(n log4 n). The complete proof of Lemma 1 is
relegated to the full version of this paper [4].

Let us here only informally discuss the main ideas of the algorithm that
partitions the vertex set of G and denote it by PA(G).

In a first step the algorithm PA(G) finds a perfect matching M in G. Thus
G−M consists of disjoint cycles only. Moreover M is chosen such that G−M is
triangle-free. Such a matching can be found in O(n log4 n) time, see Biedl, Bose,
Demaine and Lubiw [6]. (Note that the algorithm in [6] only yields some perfect
matching. In order to obtain a perfect matching M such that G−M is triangle-
free we first contract all triangles in G yielding a new graph G′. Then we apply
the algorithm to G′ instead and get a perfect matching M ′ of G′. We observe
that this perfect matching M ′ can easily be extended to a perfect matching M
of G where each triangle of G contains exactly one edge of M . Thus G − M is
triangle-free.) This is in fact the bottleneck of our algorithm all other parts are
done in linear time. The unique neighbor of a vertex v in M is called the partner
of v.

Next, PA(G) colors iteratively all vertices of G, one cycle of G − M after
another, by traversing each cycle in a predefined direction. As a default PA(G)
tries to color the vertices of a cycle with the colors I and B alternatingly. Its
original goal is to create a proper two-coloring this way. Of course there are
several reasons which will prevent PA(G) from doing so. One main obstacle is
when the partner of the currently processed vertex v is already colored, and it is
done so with the same color we just gave to v. If the conflict would be in color I



then the algorithm resolves this by changing both v and its partner to X . The
algorithm generally decides not to care if the conflict is in B.

Of course there is a complication with this rule when the partner is within
the same triangle as v, since Lemma 1 does not allow two X-vertices in the same
triangle. This and other anomalies (like the coloring of the last vertex of a cycle
when the first and next-to-last vertex have distinct colors) are handled in the
full version of this paper [4] by a (hopefully) well-designed set of exceptions in
place.

After having colored cycle C the algorithm immediately proceeds with the
cycle containing the partner v of the last vertex colored in C unless v is already
colored. Otherwise the algorithm looks for vertices in C with an uncolored part-
ner by stepping backwards along the order in which the vertices of C have been
colored and eventually starts to color such a partner. If none of the vertices of
C have an uncolored partner the algorithm starts with a vertex whose partner
is colored.

3 Hard (3, C)-AsymRelCol

Proof (of Theorem 2 and 3). For a C-relaxed coloring we denote the color class
forming an independent set by I and the color class spanning components of
order at most C by B.

Definition 1. Let C ≥ 2 and ∆ ≥ 1 be integers. A graph G is called (∆, C)-
forcing with forced vertex f ∈ V (G) if
(i) ∆(G) ≤ ∆ and f has degree at most ∆ − 1,
(ii) G is C-relaxed colorable, and
(iii) f is contained in I for every C-relaxed two-coloring of G.

Lemma 3. For any non-negative integer ∆ and integer C ≥ 2 the decision prob-
lem (∆, C)-AsymRelCol is NP-complete provided a (∆, C)-forcing graph exists.

The proof is detailed in the full version of the paper [4]. In the proof we establish a
reduction from the 3-SAT Problem using appropriate gadgets built from (∆, C)-
forcing graphs.

3.1 (3, C)-forcing graphs

All graphs we consider in this subsection have maximum degree at most three.
Let GC denote the family of graphs of maximum degree at most three that are
not C-relaxed two-colorable.

Lemma 4. For all C ≥ 2, if GC 6= ∅ then there is a (3, C)-forcing graph.

Proof. Let us assume first that C ≥ 6. By a lemma of [5] we can assume that
any member of GC contains a triangle.

Lemma 5 ([5]). Any triangle-free graph of maximum degree at most 3 has a
6-relaxed coloring.



Let us fix a graph G ∈ GC which is minimal with respect to deletion of edges.
Let T be a triangle in G (guaranteed by Lemma 5) with V (T ) = {t1, t2, u} and
e = {u, v} be the unique edge incident to u not contained in T . We split e into
e1, e2 with e1 = {u, f} and e2 = {f, v} and denote this new graph by H . H
is C-relaxed colorable since the minimality of G ensures that G − e has a C-
relaxed coloring while the non-C-relaxed-colorability of G ensures that the colors
of u and v are the same on any C-relaxed coloring of G − e. So any C-relaxed
coloring χ of G − e can be extended to a C-relaxed coloring of H by coloring f
to the opposite of the color of u and v. Moreover any such extension is unique.
If χ(u) = χ(v) = I , then obviously χ(f) = B. If χ(u) = χ(v) = B = χ(f) and χ
is a C-relaxed coloring of H , then χ restricted to V (G) is a C-relaxed coloring
of G, a contradiction.

Thus in any C-relaxed coloring χH of H , (χH(u), χH(f), χH(v)) is either
(I, B, I) or (B, I, B).

We denote by v1, v2 the neighbors of t1 and t2, respectively, not contained in
T (might be t1 = t2). See also Figure 1. Suppose the vertices (u, f, v) of H can
be colored with (I, B, I). But then χH(t1) = χH(t2) = B.

t1
G H

u f vvu

t1

t2 t2

Fig. 1. Splitting e = {u, v} into e1 = {u, f} and e2 = {f, v}

[Case (i):] If χH(v1) = χH(v2) = I then we define a C-relaxed coloring χG for
G as follows:
χG(x) = χH(x) for all x ∈ V (G) \ {u} and χG(u) = B.
[Case (ii):] Without loss of generality χH(v1) = B. We define a C-relaxed
coloring χG for G as follows:
χG(x) = χH(x) for all x ∈ V (G) \ {t1, u}, χG(t1) = I , and χG(u) = B. Indeed,
the B-component containing t2 did not increase, since χG(t1) = χG(v) = I and
in H χH(t1) = B.

This contradicts the fact that G is not C-relaxed two-colorable. Thus in any
C-relaxed coloring of H the vertices (u, f, v) are colored (B, I, B). The vertex
f is contained in I and is of degree 2, hence H is a (3, C)-forcing graph with
forced vertex f .

In the full version of this paper [4] we provide explicit constructions of (3, C)-
forcing graphs with 2 ≤ C ≤ 5. ut

Note that (3, C)-AsymRelCol is obviously trivial for all C with GC = ∅, so
Theorem 2 follows immediately from Lemma 4 and Lemma 3. ut



3.2 (4, C)-forcing graphs

Lemma 6. For all ∆ ≥ 4 and all C ≥ 2 there is a (∆, C)-forcing graph.

The graph Gk − {v1,1, v1,2} is (4, 2k − 2)-forcing. A proof can be found in the
full version of this paper [4]. Combining Lemma 6 and Lemma 3 concludes the

v3,2

v2,3

v1,1

v1,3

v2,1 v3,1 vk−1,1 vk,1

v1,2 v2,2 vk−1,2 vk,2

v3,3
vk−1,3 vk,3

Fig. 2. Gk with one B-component of order 2k

proof of Theorem 3. ut

4 Summarizing Overview and Open Problems.

It would be interesting to determine exactly the critical monochromatic compo-
nent order f(3) from where the problem (3, C)-AsymRelCol becomes trivial.

We conjecture that there is a sudden jump in the hardness of the problem
(4, C)-SymRelCol. Such a result would particularly be interesting, since here
the determination of the critical component order is even more within reach
(between 4 and 6.) As a first step one could try to prove the monotonicity of the
problem.

The similar problem is wide open for graphs with maximum degree 5: Does
SymRelCol exhibit a monotone behavior for C ≥ 2? Is there a “jump in hard-
ness”? Is there a constant C and a polynomial-time algorithm which finds a
(C, C)-coloring of graphs of maximum degree 5? We only know the existence of
such colorings.

For colorings with more than two colors we know much less. Even the graph
theoretic questions about interesting maximum degrees are open. We list here
three of the most important questions: Is there a constant C such that every
graph with maximum degree 9 can be three-colored such that every monochro-
matic component is of order at most C? The answer is “yes” for graphs with
maximum degree 8 and “no” for graphs of maximum degree 10 (see [10]). Is there
a constant C such that every graph of maximum degree 5 can be red/blue/green-
colored such that the set of red vertices and the set of blue vertices are both
independent while every green monochromatic component is of order at most C?
The answer is “yes” for graphs with maximum degree 4 and “no” for graphs of
maximum degree 6 (see [5]). Determine asymptotically the largest ∆k for which
there exists a constant Ck such that every graph of maximum degree ∆k can
be k-colored such that every monochromatic component is of order at most Ck.
The current bounds are 3 < ∆k/k ≤ 4 (see [10]).
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