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Abstract

We put the final piece into a puzzle first introduced by Bollobás, Erdős and Szemerédi in

1975. For arbitrary positive integers n and r we determine the largest integer ∆ = ∆(r, n), for

which any r-partite graph with partite sets of size n and of maximum degree less than ∆ has an

independent transversal. This value was known for all even r. Here we determine the value for

odd r and find that ∆(r, n) = ∆(r − 1, n). Informally this means that the addition of an oddth

partite set does not make it any harder to guarantee an independent transversal.

In the proof we establish structural theorems which could be of independent interest. They

work for all r ≥ 7, and specify the structure of slightly sub-optimal graphs for even r ≥ 8.

1 Introduction

Let G be a graph, and suppose the vertex set of G is partitioned into r parts V (G) = V1 ∪ . . . ∪ Vr.

An independent transversal of G is an independent set in G containing exactly one vertex from each

Vi. Let ∆ = ∆(r, n) be the largest integer such that any such G has an independent transversal

whenever |Vi| = n for each i, and the maximum degree ∆(G) satisfies ∆(G) < ∆. Define ∆r =

limn→∞ ∆(r, n)/n, where the limit is easily seen to exist. Clearly any edges of G that lie inside the

classes Vi are irrelevant as far as the functions ∆(r, n) and ∆r are concerned, so for simplicity we

will consider only r-partite graphs.

The problem of determining the functions ∆(r, n) and ∆r was raised and first studied by Bollobás,

Erdős and Szemerédi [7] in 1975. This question is a very basic one, and it has come up in the study

of various other combinatorial parameters such as linear arboricity and strong chromatic number.

Throughout the years, continuing work on these problems has been done by several researchers

[4, 5, 11, 8, 9, 15, 2, 6, 14] and steady progress has been made.
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Trivially ∆(2, n) = n, thus ∆2 = 1. Graver (c.f. [7]) showed ∆3 = 1. In their original paper,

Bollobás, Erdős and Szemerédi [7] proved that

2

r
≤ ∆r ≤

1

2
+

1

r − 2
,

thus establishing µ = limr→∞ ∆r ≤ 1/2. They conjectured µ = 1/2. Alon [4] was the first to separate

µ from 0 by showing ∆r ≥ 1/(2e) for every r using the Local Lemma. This was improved to ∆r ≥ 1/2

in [9], which settled the conjecture of [7] and established µ = 1/2. Despite the significant progress on

the asymptotic behaviour of ∆r, knowledge about the exact values of ∆r, even for very small values

of r, was very sparse. Until very recently, the value of ∆r was known only for r = 2, 3, 4, 5 [11]. The

argument of Jin for 4- and 5-partite graphs, showing ∆4 = ∆5 = 2/3, is intricate and seems difficult

to generalize.

Besides proving lower bounds for r = 4 and 5, Jin [11] also gave promising examples (with low

maximum degree and no independent transversal), when r is a power of 2. (Later Yuster [15] also

found the same construction.) Jin in fact conjectured that these examples provide the extremum for

every r, i.e. ∆2j = ∆2j+i for any i ≤ 2j − 1. Recently Alon [6] observed that the method of [9],

which gives µ = 1/2, actually implies the slightly stronger bound ∆r ≥ r
2(r−1) . This implies Jin’s

construction [11] is optimal for powers of 2 and then one has ∆r = r
2(r−1) . For other integers r, Alon

gave improvements on the constructions of Jin, thus disproving his conjecture in general.

Very recently, a construction matching the r
2(r−1) lower bound was found [14] — but only for an

even number of parts. After this discovery, taking into account that ∆2 = ∆3 and ∆4 = ∆5, it was

natural to conjecture that ∆2t = ∆2t+1 for every t. Here we confirm this intuition by determining

not only ∆r, but all the values ∆(r, n) for every n when r is odd.

Theorem 1.1 For every integer n ≥ 1 and r ≥ 2 odd,

∆(r, n) = ∆(r − 1, n) =

⌈

(r − 1)n

2(r − 2)

⌉

.

In particular for every r odd we have

∆r =
r − 1

2(r − 2)
.

The construction of [14] determined ∆6 = 3/5, so we will concentrate on the case in which

r ≥ 7. Our argument consists of two parts. First we establish a structural theorem about minimal

counterexamples. It was known that every r-partite graph with parts of size n and no independent

transversal must have maximum degree at least r
2(r−1)n. What we prove here is that (for r ≥ 7)

any graph without an independent transversal, even if its maximum degree is a bit more then the

threshold r
2(r−1)n (but not more than r−1

2(r−2)n) is the vertex-disjoint union of r−1 complete bipartite

graphs together with some extra edges. Moreover if the graph is minimal with respect to not having

an independent transversal then it is the disjoint union of r − 1 complete bipartite graphs. This
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theorem, Theorem 3.7, is valid for any number of parts (≥ 7) and for an even number parts it proves

that any near-extremal example has this structure. We remark that this is in accordance with the

known independent transversal-free examples: The graphs of [11], [15], and [14] are all r − 1 copies

of Kr/2,r/2. It is worthwhile to note though that the extremal examples are not unique, at least not

for powers of 2. Although the graphs of Jin [11] and Yuster [15] are the same as the ones in [14], the

partitions are very different.

In the second part of our proof we show that if r is odd, G is the union of r−1 complete bipartite

graphs and ∆(G) < r−1
2(r−2)n, then G has an independent transversal.

The organization of the paper is the following. In Section 2 induced matching configurations are

introduced, which are the basic structural tool of our proof. The technical Theorem 2.2 is applied

in three different contexts throughout our paper, not always for the original graph with its vertex

partition. In Section 3 we still deal with r-partite graphs where r is not necessarily odd and prove

our structural theorems for independent transversal-free graphs. In Section 4 we prove Theorem 1.1.

Here we finally make use of the fact that r is odd in the sense that an integer is odd if and only if

every tree on r vertices could be considered a rooted tree in which every subtree not containing the

root has strictly fewer than half of the vertices.

Throughout the paper, the neighborhood of a vertex v is denoted by N(v). For a set T ⊆ V (G)

we write NT (v) = N(v) ∩ T and G[T ] for the subgraph of G induced by T . We denote the degree of

a vertex v by deg(v) = |N(v)| and write degT (v) = |NT (v)|. We say that a vertex v is dominated by

a set T if NT (v) 6= ∅. If NT (v) = ∅, then we say that v is independent of T .

2 Induced matching configurations

As in the introduction, we consider r-partite graphs G, and to avoid trivialities we assume each part

is nonempty. The notion of independent transversal naturally presupposes that the vertex partition

V (G) = V1 ∪ . . . ∪ Vr is fixed. However, for simplicity we will not refer explicitly to the vertex

partition when the term independent transversal is used, unless there is a danger of confusion. By

a partial independent transversal of G we mean an independent set U in G of size less than r, such

that |Vi ∩U | ≤ 1 for each i. Sometimes for emphasis we will refer to an independent transversal as a

complete independent transversal. Often we will use the abbreviation IT. The aim of this section is to

introduce and prove the existence of induced matching configurations, the basic structure employed

in our proof.

Let G be an r-partite graph with vertex partition V (G) = V1 ∪ . . .∪Vr. A class Vi is called active

for a subset I ⊆ V (G) of the vertices if Vi ∩ I 6= ∅, and S(I) denotes the set of active classes of I.

The class-graph GI of a subset I ⊆ V (G) of the vertices is obtained from G[I] by contracting all the

vertices of Vi ∩ I into one vertex, which, with slight abuse of notation, we also call Vi. Thus the

vertex set of GI is S(I).

A set of vertices I is called an induced matching configuration (IMC), if G[I] is a perfect matching
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and the graph GI is a tree on r vertices. In particular every class is active, |I| = 2(r − 1), and G[I]

has at most one edge joining each pair of classes (since a tree has no multiple edges). The following

Figure 1: An induced matching configuration

lemma is a simple but important observation. It describes circumstances under which a complete

independent transversal could be obtained from an IMC.

Lemma 2.1 Let G be an r-partite graph with vertex partition V (G) = V1 ∪ · · · ∪ Vr, and let I be an

IMC in G. For any index i ∈ [r], there is a partial independent transversal T I
i ⊆ I of G, such that

T I
i ∩ Vj = ∅ if and only if j = i.

Moreover, for any vertex v not dominated by I, there exists an independent transversal T I
v con-

taining v.

Proof. Consider the rooted tree produced from GI by selecting Vi as the root. For every j 6= i

include in T I
i the (unique) element of I ∩ Vj whose neighbour in I is in the parent class of Vj in GI .

For the second part, let v ∈ Vi be a vertex not dominated by I. Then T I
v := T I

i ∪ {v} is an

independent transversal. �

The main theorem of this section, Theorem 2.2, gives certain technical information about vertex-

partitioned graphs that do not have independent transversals. In particular, we show that they
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do have induced matching configurations if their maximum degree is not too large. The proof of

Theorem 2.2 we give here is based on the proof given in [10] that ∆r ≥ 1/2.

Before we state Theorem 2.2 we need to establish some definitions and notation. Let G be

an r-partite graph with vertex partition V (G) = V1 ∪ · · · ∪ Vr that does not have an independent

transversal. For a subset A ⊆ {V1, . . . , Vr} let TA be the set of partial independent transversals T

which satisfy |T ∩ Vi| = 1 iff Vi ∈ A. For a partial independent transversal T and a vertex v /∈ T , we

denote by C(v, T ) the vertex set of the component of G[{v} ∪ T ] that contains v (so G[C(v, T )] is

always a star with center v).

To prove the existence of an IMC we need to deal with the more general definition of a feasible pair

(which is slightly different and stronger than the one in [10]). Despite looking akwardly complicated,

the following definition captures a relatively simple concept (see Figure 2). Below by a nontrivial

star we mean a star with at least 2 vertices. We call the pair (I, T ) feasible if

(a) I ⊆ V (G) and T is a partial independent transversal of maximum size,

(b) S(I ∩ T ) = S(I) ∩ S(T ),

(c) G[I] is a forest, whose components are the |W | vertex disjoint nontrivial stars G[C(v, T )], with

v ∈ W , where W = I \ T ,

(d) (tree property) the graph GI is a tree on the vertex set S(I),

(e) (minimality property) there is no v0 ∈ W and T ′ ∈ TS(T ) with T ′∩W = ∅ such that |C(v0, T
′)| <

|C(v0, T )|, but C(v, T ′) = C(v, T ) for v ∈ W − {v0}.

Feasible pairs always exist, as (∅, T ) is feasible if T is any partial transversal of maximum size

(we consider the empty graph to be a tree).

The following theorem not only establishes the existence of an IMC, but it is used to derive our

structural theorem, when it is applied for an auxiliary vertex-partitioned graph different from G.

Theorem 2.2 Let G be an r-partite graph with vertex partition V (G) = V1 ∪ . . . ∪ Vr, and suppose

G does not have an independent transversal of these classes. Let (I0, T0) be a feasible pair for G.

Then there exists a feasible pair (I, T ) in G such that

(i) I0 ⊆ I, |S(I)| ≥ 2, and T ∩ Vi = T0 ∩ Vi for every Vi ∈ S(I0),

(ii) I dominates all vertices in the active classes
⋃

{Vi : Vi ∈ S(I)}.

In particular all vertices in
⋃

{Vi : Vi ∈ S(I)} are dominated by |I| ≤ 2|S(I)| − 2 vertices, and

each class Vi ∈ S(I) contains at least one of these dominating vertices from I.

If in addition r ≥ 3, |Vi| = n for i = 1, . . . , r, and the maximum degree ∆ of G satisfies ∆ < r−1
2(r−2)n,

then
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W :

I :

T :

Figure 2: A feasible pair

(iii) I is an IMC in G, that dominates every vertex of G.

Proof. To prove the theorem we apply the following algorithm.

ALGORITHM

Input: The feasible pair (I0, T0).

Maintain: A feasible pair (I, T ).

The set W = I \ T .

The set S = S(I) of active classes for I.

The set T ⊆ TS(T0) of transversals T ′ ∈ TS(T0), for which T ′ ∩ W = ∅ and C(v, T ) = C(v, T ′) for

every v ∈ W .

Initialization: I := I0, T := T0

Idea: Iteratively grow I and change T accordingly in the non-active classes of I.

Iteration: If I = ∅, select a vertex w ∈ ∪Vi /∈S(T )Vi and transversal T ′ ∈ T , such that degT ′(w)

is minimal. Update I by adding C(w, T ′), update T := T ′ and iterate.

If I dominates all vertices w ∈ ∪Vi∈SVi in its active classes, then stop and return (I, T ).

Otherwise select a vertex w ∈ ∪Vi∈SVi and transversal T ′ ∈ T , such that w is not dominated by

I and degT ′(w) is minimal. Update I by adding C(w, T ′), update T := T ′ and iterate.
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First we prove that the pair (I, T ) maintained by the algorithm is feasible throughout. Suppose

that (I, T ) is feasible, and w and T ′ are as defined in the Iteration. (Note that T 6= ∅ since T ∈ T .)

We claim that with I ′ = I ∪ C(w, T ′), (I ′, T ′) is feasible as well.

Suppose first that I = ∅. The conditions (a), (b), (d), (e) are satisfied, by definition of w and T ′.

For condition (c) we must check that the star G[C(w, T ′)] is nontrivial. This in fact is the case,

because otherwise T ′ ∪ {w} would be an independent transversal of size larger than |T |.

Suppose now that I 6= ∅. Condition (a) holds since |T ′| = |T |. For condition (b) note that

I ′ ∩ T ′ = (I ∩ T ) ∪ NT ′(w) and I ′ = I ∪ C(w, T ′). Then S(I ′ ∩ T ′) = S(I ∩ T ) ∪ S(NT ′(w)) =

(S(I)∩S(T ))∪S(NT ′(w)) = (S(I)∪S(NT ′(w)))∩(S(T )∪S(NT ′(w))) = (S(I)∪S(C(w, T ′))∩S(T ′) =

S(I ′) ∩ S(T ′).

For condition (c), consider the sets C(v, T ′) = C(v, T ) for v ∈ W ; these are pairwise disjoint

and of order at least 2. The last set C(w, T ′) is disjoint from any set C(v, T ′) (v ∈ W ), since w is

independent of I and T ′ agrees with T on the active classes of I.

Now assume for contradiction that |C(w, T ′)| = 1, i.e. degT ′(w) = 0. The class of w must

contain a vertex of T ′, otherwise T ′ is not a maximum independent transversal, because w could be

appended to it. Let u be the element of T ′ in the class of w. Since this class is active (we chose w

from an active class) and T and T ′ agree on active classes, u ∈ T as well. Then by (b) u ∈ I and the

degree of u in G[I] is exactly one by (c). Let v0 ∈ W be its neighbour. Then T ′′ = T ′ − {u} ∪ {w}

is a partial independent transversal in TS(T0) contradicting condition (e) of the feasibility of (I, T ).

Indeed, C(v0, T
′′) = C(v0, T

′) − {u} = C(v0, T ) − {u}, while C(v, T ′′) = C(v, T ′) = C(v, T ) for

v ∈ W − {v0}. Note also that w /∈ W because every v ∈ W is dominated by a vertex of I (in G[I]

there is no isolated vertex). So T ′′ ∩ W = ∅. Thus T ′′ provides the contradiction sought after, and

this proves property (c) for the feasibility of (I ′, T ′).

For condition (d), it is enough to observe that w is in a class active for I, while all its T ′-neighbours

are in non-active classes. That is we obtain GI′ from GI by appending degT ′(w) leaves.

Now we check that condition (e) holds for (I ′, T ′). Choose v0 ∈ W ∪ {w}, and suppose on the

contrary that there exists T ′′ ∈ TS(T0) with T ′′ ∩ (W ∪ {w}) = ∅ such that |C(v0, T
′′)| < |C(v0, T

′)|

and C(v, T ′′) = C(v, T ′) for every v ∈ W ∪ {w} \ {v0}. If v0 ∈ W then |C(v0, T
′′)| < |C(v0, T

′)| =

|C(v0, T )| and C(v, T ′′) = C(v, T ′) = C(v, T ) for all v ∈ W \ {v0}, contradicting condition (e) in the

fact that (I, T ) is feasible. If v0 = w then by definition T ′′ ∈ T , since then C(v, T ′′) = C(v, T ′) =

C(v, T ) for every v ∈ W . But |C(w, T ′′)| < |C(w, T ′)| contradicts our choice of T ′. Therefore no

such v0 can exist and we have verified that (I ′, T ′) is a feasible pair.

Thus the algorithm maintains and upon termination returns a feasible pair. Moreover the algo-

rithm always terminates because in each step I increases in size.

To prove part (i) for the feasible pair (I, T ) output by the algorithm, we note that the algorithm

constructs (I, T ) from (I0, T0) just by adding new vertices to I0 and changing the transversal only

outside of S(I0). Since I0 is the union of nontrivial stars, |S(I)| ≥ |S(I0)| ≥ 2 unless I0 = ∅. If I0 is
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empty, the first step of the algorithm adds a nontrivial star to it, thus |S(I)| ≥ 2 in this case as well.

Part (ii) is immediately implied by the stopping rule for the algorithm. The statement about

the domination of the active classes follows from the facts that GI is a tree on S(I) and that G[I]

contains no isolated vertices, so |I| ≤ 2|S(I)| − 2.

For part (iii), assume each Vi has size n and ∆ < r−1
2(r−2)n. We claim that the algorithm can

terminate only when every class is active, i.e. if |S| = r. Since I dominates every vertex in ∪Vi∈SVi,

we know | ∪Vi∈S Vi| = |S|n ≤ |I|∆ ≤ (2|S| − 2)∆. Therefore ∆ ≥ |S|
2|S|−2n. But if |S| ≤ r − 1 then

|S|
2|S|−2n ≥ r−1

2r−4n, contradicting our assumption. Hence |S| = r.

To complete the proof it remains to show that I induces a matching in G, in other words each

C(v, T ) with v ∈ W has size exactly 2. If this is not the case then |W | ≤ |I ∩ T | − 1 and thus

|I| = |W | + |I ∩ T | ≤ 2|I ∩ T | − 1 ≤ 2|T | − 1 ≤ 2r − 3. Then as above rn ≤ |I|∆ ≤ (2r − 3)∆,

since I now dominates the whole graph by part (ii). This implies ∆ ≥ r
2r−3n ≥ r−1

2r−4 for r ≥ 3, a

contradiction. Therefore I is an IMC. �

3 Structural results

Our aim in this section is to show that if G is an r-partite graph with no independent transversal

and ∆ is not too large then G is the union of vertex-disjoint complete bipartite graphs, together with

a few extra edges that can join two vertices in the same partite set, or cross between partite sets.

Moreover if G also does not contain any unnecessary edges, where unnecessary means “not preventing

an independent transversal”, then G is precisely a union of vertex-disjoint complete bipartite graphs.

Let G be an r-partite graph with vertex partition V1 ∪ . . . ∪ Vr, and let I be an IMC in G. We

define the sets Av of vertices, which are uniquely dominated by I. More formally, for v ∈ I let

Av(I) := {y ∈ V (G) : N(y) ∩ I = {v}}. If there is no possibility of confusion we omit from the

notation the reference to the IMC and write simply Av.

Because the first few lemmas of this section will all have the same assumptions, to avoid repetition

we define the following. (Here by G[A,B] we mean the bipartite subgraph of G consisting of all edges

of G joining A and B.)

Setup. Let G be an r-partite graph with vertex partition V1 ∪ . . . ∪ Vr, where |Vi| = n for each i,

that does not have an IT. Denote the maximum degree of G by ∆. Let I = {vi, wi : 1 ≤ i ≤ r − 1}

be an IMC in G, where vi and wi are adjacent. Let Av = Av(I) for each v ∈ I.

Lemma 3.1 Let G be as in the Setup. Then

(i) for each i we have wi ∈ Avi
and vi ∈ Awi

, and G[Avi
, Awi

] is a complete bipartite graph,

(ii) for any a ∈ Avi
, b ∈ Awi

the set I ′ = I \ {vi, wi} ∪ {a, b} is an IMC,
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(iii) the number |V (G) \ ∪v∈IAv| of vertices that are dominated more than once by I satisfies

|V (G) \ ∪v∈IAv| ≤ 2(r − 1)∆ − rn,

(iv) for any subset S of {Av : v ∈ I} we have |
⋃

C∈S C| ≥ (|S| − 4r + 4)∆ + 2rn.

(To give an idea of the size of these quantities, when we use this lemma to prove our main structural

result Theorem 3.7, we have ∆ < r−1
2r−4n. Then the upper bound in (iii) becomes n

r−2 and the lower

bound in (iv) is |S|∆ − 2n
r−2 .)

Proof. The first assertion of part (i) holds since vi and wi are adjacent by definition, and I is an

induced matching.

Now we show that G[Avi
, Awi

] is a complete bipartite graph. We fix i, and for convenience write

v = vi, w = wi. The deletion of the edge vw disconnects the tree GI into two components Gv and

Gw, where Gu is the tree containing the class of u for u = v, w. Then I − {v, w} induces two IMCs

Iv and Iw on the two sets of classes corresponding to the vertices of Gv and Gw, respectively. Note

that it is possible that say Gw consists of only one class, in which case Iw is empty.

Let a ∈ Av, so its only neighbour in I is v. We claim that if the class of a were in Gv, then G

would have an independent transversal. To see this, note that a is not dominated by Iv and w is not

dominated by Iw, so we can apply Lemma 2.1. Then the union of transversals T Iv
a and T Iw

w is an

independent transversal in G, because a and w are not adjacent. This contradiction establishes our

claim. Therefore the class of a is in Gw. Similarly, if b ∈ Aw then the class of b is in Gv.

Now for any a ∈ Av and b ∈ Aw, if a and b were not adjacent, then the union of the transversals

T Iv

b and T Iw
a would be an independent transversal in G. Thus a and b are adjacent and G[Av , Aw] is

a complete bipartite graph.

For (ii), to prove that I ′ is an IMC we first note that by definition the only neighbour of a in

I ′ is b and vice versa, so I ′ is an induced matching. Also, by the previous discussion, the class of

a is in Gw and the class of b is in Gv (otherwise there is an IT), so the induced graph GI′ of I ′ is a

reconnection of the two subtrees Gv and Gw, thus a tree itself.

To establish (iii), we note that each element of I is adjacent to at most ∆ vertices, but by

Lemma 2.1 together they dominate V (G). Hence at most |I|∆ − rn = 2(r − 1)∆ − rn vertices can

be joined to more than one vertex from I.

For (iv), since each Av has size at most ∆, we see that S must contain in its union at least

rn − (2(r − 1)∆ − rn) − (2(r − 1) − |S|)∆ = (|S| − 4r + 4)∆ + 2rn vertices. �

Next we prove a couple of technical lemmas. Let H be the spanning subgraph of G obtained by

erasing all edges joining Avi
to Awi

for every i, and also all edges inside each Av, v ∈ I. For a subset

S of {Av : v ∈ I}, we denote by HS the induced subgraph of H on the vertex set ∪C∈SC. We will

consider HS as a vertex partitioned graph, where the partition classes are the partite sets C ∈ S

(and not related to the usual Vi).
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Lemma 3.2 Let G be as in the Setup, let S be a subset of {Av : v ∈ I}, and let H be as above.

Suppose we have a set Q of 2|S|− 2 vertices in HS such that each member of S contains at least one

of them. Then the number of vertices dominated by Q in HS is at most (|S| − 1)((4r − 4)∆ − 2rn).

(When ∆ < r−1
2r−4n this upper bound becomes (|S| − 1) 2n

r−2 .)

Proof. Fix an |S|-element subset Q′ of Q containing exactly one vertex from each member of S.

The partite sets opposite these |S| vertices are distinct and total at least (|S| − 4r + 4)∆ + 2rn

vertices by Lemma 3.1(iv). These represent neighbours of Q′ in G, which are lost in H, thus the

number of vertices dominated by Q′ in HS is at most |S|∆− ((|S| − 4r + 4)∆ + 2rn) = (4r − 4)∆−

2rn. The remaining |S| − 2 vertices lie in partite sets opposite partite sets whose sizes are at least

(5− 4r)∆ +2rn (since this is a lower bound on the size of any partite set by Lemma 3.1(iv)). Hence

each of these dominates at most ∆ − ((5 − 4r)∆ + 2rn) = (4r − 4)∆ − 2rn, for a total of at most

(|S| − 1)((4r − 4)∆ − 2rn). �

Lemma 3.3 Let G be as in the Setup, let S ⊆ [r − 1] and let S = {Avi
, Awi

: i ∈ S}. Suppose we

have vertices ai ∈ Avi
and bi ∈ Awi

for each i ∈ S, with the property that {ai, bi : i ∈ S} forms an

IT in HS. Then {vi, wi : i /∈ S} ∪ {ai, bi : i ∈ S} is an IMC in G.

Proof. Suppose ∅ ⊆ R ⊂ S and we know that {vi, wi : i /∈ R} ∪ {ai, bi : i ∈ R} is the vertex set

of an IMC IR in G. Let j be such that j ∈ S \ R. Then by definition of aj ∈ Avj
, bj ∈ Awj

, the

only neighbour of aj in {vi, wi : i /∈ R} is vj, and the only neighbour of bj in {vi, wi : i /∈ R} is

wj . Moreover, neither aj nor bj has a neighbour in {ai, bi : i ∈ R} because of the IT condition on

HS . Therefore aj ∈ Avj
(IR) and bj ∈ Awj

(IR), so by Lemma 3.1(ii) applied to IR we have that

{vi, wi : i /∈ R ∪ {j}} ∪ {ai, bi : i ∈ R ∪ {j}} is an IMC in G. Repeating this argument we obtain the

statement of the lemma. �

We will prove the first structural result stated at the beginning of this section in two steps. We

are now ready to make the first step, in which we show that for our fixed IMC I, each vertex that is

not in any Av, v ∈ I is completely joined to some Av , v ∈ I.

Lemma 3.4 Let G be as in the Setup, and suppose r ≥ 7. Suppose the maximum degree ∆ of G

satisfies ∆ < r−1
2r−4n. Let x be a vertex lying outside

⋃

v∈I Av. Then x is joined to every vertex in Av

for some v ∈ I.

Proof. For convenience we set C = {Av : v ∈ I}. For v ∈ I let A′
v ⊆ Av be those vertices in Av not

adjacent to x. Suppose on the contrary that x is not joined completely to any Av, i.e. each A′
v is

nonempty. We claim that there exist ai ∈ A′
vi

and bi ∈ A′
wi

forming an IT in the subgraph H ′
C of HC

induced by V (H ′
C) =

⋃

v∈I A′
v, with vertex classes {A′

v : v ∈ I}. This would then be an IT in HC ,

and would by Lemma 3.3 be an IMC in G, which, by definition, would not dominate x. Lemma 2.1

then implies that there is an independent transversal in G, a contradiction.
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Suppose there is no IT in H ′
C . Let I0 = ∅ and T0 be a partial transversal of H ′

C of maximum size.

Then by Theorem 2.2(ii) applied to H ′
C with (I0, T0) and vertex classes {A′

v : v ∈ I}, we know that

there exists a subset S of C and 2|S| − 2 vertices in
⋃

C∈S C ′ (each member of S containing at least

one of them), that dominate all vertices in
⋃

C∈S C ′ in HS . Therefore these vertices together with

x dominate all of HS . But x dominates at most ∆, and the rest dominate at most (|S| − 1)((4r −

4)∆ − 2rn) by Lemma 3.2. Hence HS , which contains at least (|S| − 4r + 4)∆ + 2rn vertices by

Lemma 3.1(iv), has size at most (|S|−1)((4r−4)∆−2rn)+∆. This implies (|S|−4r+4)∆+2rn ≤

(|S| − 1)((4r − 4)∆ − 2rn) + ∆, from which we conclude |S|2rn ≤ ∆((4r − 5)|S| + 1). But then
|S|2rn

(4r−5)|S|+1 ≤ ∆ < r−1
2r−4n giving (r − 5)(|S| − 1) < 4.

Note that by Theorem 2.2(i) we have |S| ≥ 2. For |S| ≥ 3 we have a contradiction because

r ≥ 7. Suppose that |S| = 2. Observe that S 6= {Avi
, Awi

} for any index i, since otherwise HS

would have no edges, so there would be no dominating set either. Assume without loss of generality

that S = {Avi
, Avj

} for some i 6= j. Let Q = {qi, qj} be a set dominating A′
vi

and A′
vj

in HS . By

Theorem 2.2(ii) they must be in different partite sets, say qi ∈ A′
vi

and qj ∈ A′
vj

. Then qi, qj and x

dominate the four partite sets Avi
, Avj

, Awi
, Awj

. Thus the size of these four partite sets, which is

at least 2rn − (4r − 8)∆ by Lemma 3.1(iv), must be at most 3∆. We conclude 2rn ≤ (4r − 5)∆, a

contradiction for r ≥ 5.

Our contradiction implies the existence of the IT in HC , which is an IMC in G, not dominating

x, a contradiction. �

Finally we can complete the proof by showing that extra vertices such as x in the previous lemma

that are completely joined to Avi
are also adjacent to all extra vertices y joined completely to Awi

.

For convenience we state the lemma below for i = 1, but the same argument gives the result for

each i.

Lemma 3.5 Let G be as in the Setup. Suppose r ≥ 7 and ∆ < r−1
2r−4n. Suppose a is adjacent to all

of Aw1
, and b to all of Av1

. Then a is adjacent to b.

Proof. Suppose on the contrary that a and b are not joined. Now for v ∈ I \ {v1, w1} let A′
v ⊆ Av

be those vertices not adjacent to a nor to b. Certainly these sets are all nonempty because otherwise

a and b together would dominate three members of {Av : v ∈ I}, which by Lemma 3.1(iv) have total

size at least (7 − 4r)∆ + 2rn, which is impossible since ∆ < r−1
2r−4n implies (7 − 4r)∆ + 2rn < 2∆.

We claim that there exist ai ∈ A′
vi

and bi ∈ A′
wi

forming an IT in HC̃ , where C̃ = {Av : v ∈

I \ {v1, w1}}. If not then by Theorem 2.2(ii) we know there exists a nonempty subset S of C̃ and

2|S| − 2 vertices in
⋃

C∈S C ′ that dominate
⋃

C∈S C ′, and each member of S contains at least one of

them. But then these vertices together with a and b dominate all of
⋃

C∈S C∪Av1
∪Aw1

. Here a and

b can each dominate at most ∆ (and they dominate Av1
and Aw1

), and the rest dominate at most

(|S|−1)((4r−4)∆−2rn) in
⋃

C∈S C by Lemma 3.2. But |
⋃

C∈S C∪Av1
∪Aw1

| ≥ (|S|−4r+6)∆+2rn

by Lemma 3.1(iv). Thus we conclude (|S|− 4r +6)∆+2rn ≤ (|S|− 1)((4r − 4)∆− 2rn)+ 2∆ which
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implies |S|2rn ≤ (4r − 5)|S|∆. But this contradicts our assumption on ∆ for r ≥ 5. Therefore the

ai and bi exist as claimed.

Now by Lemma 3.3 applied with the subset C̃, we find that I ′ = {v1, w1}∪ {ai, bi : 2 ≤ i ≤ r− 1}

is an IMC of G, with the property that all neighbours of a and b in I ′ lie in {v1, w1}. First we

note that neither a nor b is completely joined to both Av1
(I ′) and Aw1

(I ′). Indeed, if this were true

then its degree would be at least 2rn − (4r − 6)∆ by Lemma 3.1(iv). But then this would imply
2r

4r−5n ≤ ∆, contradicting our assumption on ∆.

Now if we can find v′1 ∈ Av1
(I ′) and w′

1 ∈ Aw1
(I ′), such that v′1 is not adjacent to a and w′

1 is not

adjacent to b, then by Lemma 3.1(ii) I ′′ = {v′1, w
′
1} ∪ {ai, bi : 2 ≤ i ≤ r − 1} is an IMC in which a is

joined only to w′
1 and b is joined only to v′1. Thus a ∈ Av1

(I ′′) and b ∈ Aw1
(I ′′), so by Lemma 3.1(i)

they are adjacent.

Therefore to complete the proof, we just need to show that such v ′
1 and w′

1 exist. If not, then

(without loss of generality) each of a and b is completely joined to Av1
(I ′). Recall that Aw1

is defined

to be the set of vertices joined only to w1 in I. But v1 ∈ I and each vertex of Av1
(I ′) is joined to

v1 by definition, so we conclude Aw1
∩ Av1

(I ′) = ∅. Then since by assumption a is joined to all of

Aw1
∪ Av1

(I ′) we find deg(a) ≥ |Aw1
| + |Av1

(I ′)|.

To estimate |Av1
(I ′)| we observe that each vertex of Av1

\ Av1
(I ′) is joined to v1, and hence by

definition also joined to another vertex of I ′. Therefore by Lemma 3.1(iii) we know |Av1
\Av1

(I ′)| ≤

2(r − 1)∆ − rn, and so |Av1
(I ′)| ≥ |Av1

| − |Av1
\ Av1

(I ′)| ≥ |Av1
| − 2(r − 1)∆ + rn. Therefore

deg(a) ≥ |Aw1
| + |Av1

| − 2(r − 1)∆ + rn ≥ (6 − 4r)∆ + 2rn − 2(r − 1)∆ + rn by Lemma 3.1(iv),

which tells us that ∆ ≥ (8 − 6r)∆ + 3rn. But then ∆ ≥ 3r
6r−7n, which contradicts our assumption

on ∆ for r ≥ 7. Therefore v′1 and w′
1 exist as required. �

Now we are ready to prove that every minimal counterexample to Theorem 1.1 has to be the

vertex-disjoint union of complete bipartite graphs. The following lemma is an easy consequence of

Theorem 2.2.

Lemma 3.6 Let G be an r-partite graph with vertex partition V1 ∪ . . . ∪ Vr that does not have an

IT, and suppose |Vi| = n for each i and ∆ < r−1
2r−4n. Let e be an edge of G and suppose e prevents

an IT (i.e. G − e has an IT). Then e lies in an IMC.

Proof. Let U = {v1, . . . , vr}, vi ∈ Vi, be an almost independent transversal inducing the lone

edge e = v1v2. Then T0 = {v2, . . . , vr} is a maximum size partial independent transversal. Let

I0 := {v1, v2}. The pair (I0, T0) is easily seen to be feasible, because the failure of condition (e)

would immediately imply the existence of an IT in G.

We now apply Theorem 2.2 with (I0, T0), to obtain a feasible pair (I, T ). Then by Theo-

rem 2.2(iii), I is an IMC. Moreover Theorem 2.2(i) implies that I contains e. �

Putting the above results together gives the structural theorem of minimal counterexamples.
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Theorem 3.7 Let G be an r-partite graph with vertex partition V1 ∪ . . . ∪ Vr, where r ≥ 7 and

|Vi| = n for each i. Suppose G has no independent transversal, but the deletion of any edge creates

one. If ∆ < r−1
2r−4n, then G is a union of r − 1 vertex-disjoint complete bipartite graphs.

Proof. By Theorem 2.2(iii), there is an IMC I0 in G. Fix one, say I0 = {vi, wi : 1 ≤ i ≤ r − 1}

where vi is adjacent to wi for each i. Then by Lemmas 3.4 and 3.5 we have that the vertex set

of G is partitioned into partite sets A∗
1, . . . , A

∗
r−1, B

∗
1 , . . . , B∗

r−1, where each G[A∗
i , B

∗
i ] is a complete

bipartite graph, and Avi
(I0) ⊆ A∗

i and Awi
(I0) ⊆ B∗

i for each i.

Suppose G has an edge xy that does not lie in any of the bipartite subgraphs G[A∗
i , B

∗
i ]. By

Lemma 3.6 we know that xy lies in some IMC I. Let us assume without loss of generality that

x ∈ A∗
1, then y /∈ B∗

1 .

Suppose first that y ∈ A∗
1. Then the whole class B∗

1 is dominated more than once by the IMC I.

Therefore by Lemma 3.1(iii) the number of vertices in B∗
1 is at most 2(r−1)∆−rn. On the other hand

|B∗
1 | ≥ |Aw1

(I0)| ≥ (5 − 4r)∆ + 2rn by Lemma 3.1(iv), giving us (2r − 2)∆− rn ≥ (5 − 4r)∆ + 2rn.

This implies ∆ ≥ 3r
6r−7n, a contradiction for r ≥ 7.

Suppose now that y ∈ C for some C ∈ {A∗
2, . . . , A

∗
r , B

∗
2 , . . . , B∗

r}, say without loss of generality

y ∈ A∗
2. By Lemma 3.1(i) and (iv), the edge xy lies in a complete bipartite graph J with a total of

at least (6 − 4r)∆ + 2rn vertices, and with at least (5 − 4r)∆ + 2rn vertices in each class Jx and

Jy. Here Jx and Jy denote the partite sets of J containing x and y respectively, and Jx contains all

vertices whose only neighbour in I is y, and Jy contains all those whose only neighbour in I is x.

Suppose first that both Jy ∩B∗
1 and Jx ∩B∗

2 are non-empty and let u ∈ Jy ∩B∗
1 and w ∈ Jx ∩B∗

2

be arbitrary vertices. Then deg(w) + deg(u) ≥ (|A∗
2| + |Jy ∩ B∗

1 |) + (|A∗
1| + |Jx ∩ B∗

2 |) ≥ |A∗
2| +

|Jy| + |B∗
1 | − |Jy ∪ B∗

1 | + |A∗
1| + |Jx| + |B∗

2 | − |Jx ∪ B∗
2 |. But since |Jy ∪ B∗

1 | ≤ deg(x) ≤ ∆ and

|Jx ∪ B∗
2 | ≤ deg(y) ≤ ∆ we find by Lemma 3.1(iv)

2∆ ≥ deg(w) + deg(u) ≥ (|Jy | + |Jx|) + (|A∗
1| + |A∗

2| + |B∗
1 | + |B∗

2 |) − 2∆

≥ (6 − 4r)∆ + 2rn + (8 − 4r)∆ + 2rn − 2∆ = (12 − 8r)∆ + 4rn.

This implies ∆ ≥ 2r
4r−5 , a contradiction for r ≥ 5.

Suppose now that Jx ∩B∗
2 is empty. (The case when Jy ∩B∗

1 = ∅ is similar.) This means that all

vertices in B∗
2 are dominated more than once by I, since they are dominated by y and Jx contains

all those dominated only by y. The number of such vertices is at most 2(r − 1)∆ − rn by Lemma

3.1(iii), while the size of one partite set is at least (5 − 4r)∆ + 2rn by Lemma 3.1(iv). This implies

(2r − 2)∆ − rn ≥ (5 − 4r)∆ + 2rn, giving ∆ ≥ 3r
6r−7n, a contradiction for r ≥ 7.

Therefore no such edge xy can exist, and G must be the union of vertex-disjoint complete bipartite

graphs. �

13



4 Proof of Theorem 1.1

In this section we focus on the case of odd number of parts. From the previous section we know that

any minimal counterexample to our main theorem has to be the vertex-disjoint union of complete

bipartite graphs. By proving the following theorem we finish the proof of Theorem 1.1.

Theorem 4.1 Let r = 2t + 1 be an odd integer. Let G be the union of 2t vertex disjoint complete

bipartite graphs, with a vertex r-partition V (G) = V1∪· · ·∪Vr into classes of size n. If the maximum

degree ∆(G) < t
2t−1n then G has an independent transversal of the classes V1, . . . , Vr.

Proof. Suppose on the contrary that G has no independent transversal. By Theorem 2.2(iii) there

is an IMC I that induces r − 1 edges, which defines a tree structure GI on the classes of G. Let

us choose a root-class, for which all subtrees not containing the root have order at most t (for any

tree of order 2t + 1 one can find such a vertex; this is basically the only time we use the fact that

the number of parts is odd). We color the vertices of I according to the tree structure: for an edge

induced by I we color the vertex in the parent class white and the vertex in the child class black. We

call these 2t black and 2t white vertices distinguished and denote them by b1, . . . b2t and w1, . . . , w2t,

respectively, where bi is adjacent to wi. The root contains only white vertices and all other classes

contain exactly one black vertex. We call the white neighbour of the unique black vertex in class C,

the parent vertex of C. By Lemma 2.1 the set T of black vertices is an almost complete independent

transversal, which is only missing a vertex from the root class. For a white vertex w, we define

the subtree Gw of w to be the subtree of the class-graph GI that contains all the classes that are

descendants of the class of the black neighbour of w (including the class of the black neighbour).

Our plan is to change the black vertices in some classes such that we still have a partial indepen-

dent transversal, but now we are able to make a black/white switch on a path to the root and create

a complete independent transversal.

Note that, since G is the vertex-disjoint union of r − 1 complete bipartite graphs, each edge

induced by I lies in a distinct complete bipartite graph. Therefore every vertex of G has exactly

one distinguished neighbour, and every component of G contains exactly one black vertex. This

immediately implies the following.

Fact 1. Let Z and X be disjoint sets of black vertices. Then NG(Z) ∪ X is an independent set.

We also note here two more technical facts that we will need in the proof.

Fact 2. The unique distinguished neighbour of a vertex v is either a white vertex on the path from

the class of v to the root class, or a black vertex in a class that is not on the path from the class of

v to the root.

Proof. For distinguished vertices the statement is true by definition. Let v ∈ Vi be non-distinguished

and suppose the statement is false. Although v is dominated by I, so Lemma 2.1 cannot be applied

directly, by our assumption the lone distinguished neighbour of v is not in T I
i (as it is defined in the

proof of Lemma 2.1). So the transversal T I
i ∪ {v} is independent, a contradiction. �

14



Fact 3. No set L of at most t classes is dominated by fewer than 2|L| vertices. In particular, for

any white vertex wi there is a non-distinguished vertex u ∈
⋃

{Vi : Vi ∈ V (Gwi
)} in the classes of the

subtree Gwi
of wi, which has a distinguished neighbour w 6= wi in a class outside the classes of Gwi

.

Proof. A set of 2|L| − 1 vertices can dominate at most (2|L| − 1)∆ vertices, and (2|L| − 1)∆ <

(2|L| − 1) t
2t−1n ≤ (2|L| − 1) |L|

2|L|−1n = |L|n.

For the second part, by Fact 2 the black vertex bi cannot dominate any vertex in any class of Gwi
.

Thus the |Gwi
| ≤ t classes in Gwi

cannot be completely dominated by the 2|Gwi
| − 1 distinguished

vertices in I ∩ (
⋃

{Vi : Vi ∈ V (Gwi
)} ∪ {wi} − {bi}). �

In our proof we define a sequence of vertices z1, u1, z2, u2, . . . , zq, uq with the following properties.

• The zi are distinct black vertices; the ui are not black.

• zi and ui are in the same class. Note that this implies the ui are all distinct.

• For i = 1, . . . , q − 1, ui is adjacent to zi+1.

The construction of the sequence goes as follows (see Figure 3). Let w1 be an arbitrary white

vertex in the root-class. (Here for convenience we may re-number the vertices bi and wi.) We define

z1 = b1, the black neighbour of w1. By Fact 3 there is a non-distinguished vertex g1 in the classes of

the subtree Gw1
that has a distinguished neighbour w 6= w1 outside the subtree Gw1

. By Fact 2, w

must be black, say w = b2. The initial segment z1, u1, . . . , zi1 , ui1 of our sequence is then defined by

ui1 = g1, the zk’s for k ≤ i1 are the black vertices in the classes on the path from the class of b1 to

the class of g1 in GI in the same order, while uk for 1 ≤ k ≤ i1 − 1 is the white neighbour of zk+1.

In general, if bj is defined, we define gj to be the (existing) non-distinguished vertex in a class

in the subtree Gwj
of wj, that has a distinguished neighbour w 6= wj outside of Gwj

. (If more

than one such vertex exists we just choose one arbitrarily.) We then define the next segment

zij−1+1, uij−1+1, . . . , zij , uij of our sequence by zij−1+1 = bj , uij = gj , the zk’s for ij−1 < k ≤ ij

are the black vertices in the classes that are on the path from the class of bj to the class of gj in G,

while uk for ij−1 + 1 ≤ k ≤ ij − 1 is the white neighbour of zk+1.

If any of these new black vertices participated already in our sequence, we stop the sequence right

before the repetition, so the last vertex is uq, and the candidate for zq+1 is already some zi in the

sequence.

If the distinguished neighbour w of gj is black, say w = bj+1, then we go on and construct the

next segment of our sequence.

We can build our sequence as long as we don’t repeat a black vertex zi and the distinguished

neighbour of gj outside the subtree Gwj
is not white. Since our graph is finite, so will be our sequence.

Case 1. Our sequence ends, because zq+1 would be equal to some zi, i ≤ q. We improve on

the almost complete independent transversal T of black vertices by making switches (see Figure 3).

Let zt be the black vertex whose class Vt is closest to the root among all zj , i ≤ j ≤ q, i.e. its
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Figure 3: Case 1, before and after the switch
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path P to the root is shortest. Let b(P ) denote the set of black vertices in the classes of P , and let

w(P ) denote their white neighbours. (Note then that b(P ) ∩ {zi . . . , zq} = zt and w(P ) contains a

vertex in the root class.) We form the set T ′ by removing Z = {zi, . . . , zq}∪ b(P ) from T and adding

U = {ui, . . . , uq} ∪ w(P ). We claim that T ′ is a (complete) independent transversal of G. To see

that T ′ is independent, apply Fact 1 to the sets Z and X = T \ Z of black vertices, and observe

that U ⊆ N(Z) because uq is adjacent to zi. To check that T ′ is a transversal, recall that uj and zj

were in the same class for each j, and note that w(P ) contains a vertex of each class of P including

the root class, except for Vt. But Vt contains the vertex ut ∈ T ′. Therefore T ′ is an independent

transversal as claimed.

Case 2. Our sequence stops, because the distinguished neighbour w 6= wk of gk = uik outside

the subtree Gwk
is white. Note then that k ≥ 2.

By Fact 2, the class of w is above the class of uik = uq in the class-graph tree GI . Since it is

outside the subtree of wk, w is also above bk (but w 6= wk!).

We identify the last time our sequence entered the subtree Gw. By the property of the sequence,

the last vertex in our sequence not contained in this subtree is not black, say uj (note this vertex

exists since k ≥ 2). Then we claim w 6= uj. To see this, note that if w = uj then for some index l ≤ k,

the vertex bl = zil−1+1 would be in a class above (or equal to) the class of w, while gl = uil would

be in a class below w. So l < k, since bk is below w. But then by definition zil+1, the distinguished

neighbour of gl, is outside of the subtree of wl, and thus outside of the subtree of w as well. This is

a contradiction, since then the entry of the sequence into Gw from uj was not the last one.

We create a complete independent transversal T ′ as follows (see Figure 4). Let P denote the path

from the class Vj containing uj to the root class, then since Vj is not in Gw we know that none of the

classes containing {uj+1, . . . , uq} are in P . Let b(P ) denote the set of black vertices in the classes of

P , and let w(P ) denote their white neighbours (again w(P ) contains a vertex in the root class). We

form the set T ′ by removing Z = {zj+1, . . . , zq} ∪ b(P ) from T and adding U = {uj , . . . , uq} ∪w(P ).

We claim that T ′ is a (complete) independent transversal of G. It is a transversal because ui replaces

zi for each j + 1 ≤ i ≤ q, and each class of P including the root class gets a vertex of w(P ), except

for Vj . But Vj contains the vertex uj ∈ T ′, so every class of G contains an element of T ′.

To check that T ′ is independent, first apply Fact 1 to the sets Z and X = T \Z of black vertices,

and observe that U \ {uq} ⊆ N(Z). Thus it remains only to show that uq is not adjacent to any

vertex of T ′ \ {uq}. Since uq is adjacent to w, it is certainly independent of X = T \ Z because it

has exactly one distinguished neighbour. Let b denote the black neighbour of w. Suppose on the

contrary that uq is adjacent to some x ∈ U . Let z denote the black neighbour of x, then z ∈ Z,

and x, z, w and b are all in the same component of G. But then we must have z = b because this

component contains only one black vertex, say z = zs where j + 1 ≤ s ≤ q. Now s = j + 1 is not

possible, since otherwise by construction the next non-distinguished vertex in the sequence will be

uv for some v ≤ q, and the distinguished neighbour zv+1 of uv will be outside Gw and not equal
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to w. This would contradict the fact that this is the last time the sequence enters Gw. Therefore

j + 2 ≤ s ≤ q. Then x = us−1 ∈ T ′ must be a non-distinguished vertex in our sequence, since w is

the only distinguished neighbour of zs = b. But all non-distinguished vertices in U \ {uj} that are

candidates for us−1 are in classes below b = zs, so by Fact 2 they cannot be adjacent to zs (which is

black). Thus uq cannot have any such neighbour x ∈ U , giving that T ′ is an independent transversal,

and thus contradicting our assumption on G. This completes the proof of the theorem. �

5 Open problems

An intriguing problem remains unsolved regarding the number of independent transversals if the

maximum degree is below the threshold ∆r(n). In particular, Bollobás, Erdős and Szemerédi in-

troduced the function fr(n) which is the largest number f such that every r-partite graph with

parts of size n and maximum degree ∆r(n) − 1 has at least f independent transversals. Trivially

f2(n) = n. In [7] Bollobás, Erdős and Szemerédi determined f3(n) precisely and obtained that, quite

surprisingly, f3(n) = 4 for every n ≥ 4. Jin [12] proved that f4(n) = Θ(n3), but the behaviour of

the function fr(n) for r ≥ 5 is a complete mystery. For r even we conjecture that fr(n) = Θ(nr−1).

For odd r the only thing we dare to predict is that fr(n) = O(nr−2); for the threshold ∆(r, n) is so

“unnaturally” high for odd r. At this point even fr(n) = Θ(1) is a possibility. It would certainly be

very interesting to gain more information; maybe the structural theorems of the present paper could

be of use.

Another, less precise goal is related to the alternative proof of ∆r ≥ r
2(r−1) through labeled

triangulations and Sperner’s Lemma, a method developed by Aharoni and others in e.g. [1] and [2].

It would be very desirable to understand the difference between the even and odd case by means of

the topological properties of odd and even dimensional triangulated spheres.

Finally, we only stated the structural theorems of Section 3 for r ≥ 7. It should certainly

be possible to extend our methods and obtain results about the structure of slightly sub-optimal

independent transversal-free examples for r ≤ 6, that is for r = 4, 6. Also, we did not investigate the

stability of the optimal examples in the case of odd r. For r = 3, 5 the example is not unique; there

are examples where the base graph is not the union of r − 2 bipartite graphs. We do not know what

happens for odd r ≥ 7.
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