Turán's theorem in the hypercube

Noga Alon * Anja Krech ${ }^{\dagger}$ Tibor Szabó ${ }^{\ddagger}$

February 13, 2008

Abstract

We are motivated by the analogue of Turán's theorem in the hypercube Q_{n} : how many edges can a Q_{d}-free subgraph of Q_{n} have? We study this question through its Ramsey-type variant and obtain asymptotic results. We show that for every odd d it is possible to color the edges of Q_{n} with $\frac{(d+1)^{2}}{4}$ colors, such that each subcube Q_{d} is polychromatic, that is, contains an edge of each color. The number of colors is tight up to a constant factor, as it turns out that a similar coloring with $\binom{d+1}{2}+1$ colors is not possible. The corresponding question for vertices is also considered. It is not possible to color the vertices of Q_{n} with $d+2$ colors, such that any Q_{d} is polychromatic, but there is a simple $d+1$ coloring with this property. A relationship to anti-Ramsey colorings is also discussed.

We discover much less about the Turán-type question which motivated our investigations. Numerous problems and conjectures are raised.

1 Introduction

For graphs G and H, let $e x(G, H)$ denote the maximum number of edges in a subgraph of G which does not contain a copy of H. The quantity $e x(G, H)$ was first investigated in case G is a clique. Turán's Theorem resolves the problem precisely, when H is a clique as well.

In this paper, we study these Turán-type problems, when the base graph G is the n dimensional hypercube Q_{n}. This setting was initiated by Erdős [8] who asked how many edges can a C_{4}-free subgraph of the hypercube contain. He conjectured the answer is

[^0]$\left(\frac{1}{2}+o(1)\right) e\left(Q_{n}\right)$ and offered $\$ 100$ for a solution. The current best upper bound, due to Chung [6], stands at $\approx .623 e\left(Q_{n}\right)$. The best known lower bound is $\frac{1}{2}(n+\sqrt{n}) 2^{n-1}$ (for $n=4^{r}$) due to Brass, Harborth and Nienborg [5].

Erdős [8] also raised the extremal question for even cycles. Chung [6] obtained that $\frac{e x\left(Q_{n}, C_{4 k}\right)}{\left.e\left(Q_{n}\right)\right)} \rightarrow 0$ for every $k \geq 2$, i.e. cycles with length divisible by 4 , starting from 8 are harder to avoid than the four-cycle. She also showed that

$$
\frac{1}{4} e\left(Q_{n}\right) \leq e x\left(Q_{n}, C_{6}\right) \leq(\sqrt{2}-1+o(1)) e\left(Q_{n}\right) .
$$

Later Conder [7] improved the lower bound to $\frac{1}{3} e\left(Q_{n}\right)$ by defining a 3 -coloring of the edges of the n-cube such that every color class is C_{6}-free. On the other hand it is shown in [1] that for any fixed k, in any k-coloring of the edges of a sufficiently large cube there are monochromatic cycles of every even length greater than 6 . Note, however, that the Turán problem for cycles of length $4 k+2$ is still wide open. For $k \geq 2$, it is not even known whether $e x\left(Q_{n}, C_{4 k+2}\right)=o\left(e\left(Q_{n}\right)\right)$.

In the present paper we consider a generalization of the C_{4}-free subgraph problem in a different direction, which we feel is the true analogue of Turán's Theorem in the hypercube. For arbitrary d we give bounds on $e x\left(Q_{n}, Q_{d}\right)$. For convenience we will talk about the complementary problem: i.e., let $f(n, d)$ denote the minimum number of edges one must delete from the n-cube to make it d-cube-free. Obviously $f(n, d)=$ $e\left(Q_{n}\right)-e x\left(Q_{n}, Q_{d}\right)$. By a simple averaging argument one can see that for any fixed d the function $f(n, d) / e\left(Q_{n}\right)$ is non-decreasing in n, so a limit c_{d} exists. (In fact this limit exists for an arbitrary forbidden subgraph H, instead of Q_{d}). Erdős' conjecture then could be stated as $c_{2}=\frac{1}{2}$.

Trivially $f(d, d)=1$, so by the above $c_{d} \geq \frac{1}{d 2^{d-1}}$. On the other hand, if one deletes edges of the hypercube on every $d^{t h}$ level, one obtains a Q_{d}-free subgraph. For this, observe that every d-dimensional subcube must span $d+1$ levels. Thus $c_{d} \leq \frac{1}{d}$.

In the present paper we improve on these trivial bounds.

Theorem 1.

$$
\Omega\left(\frac{\log d}{d 2^{d}}\right)=c_{d} \leq \begin{cases}\frac{4}{(d+1)^{2}} & \text { if } d \text { is odd } \\ \frac{4}{d(d+2)} & \text { if } d \text { is even. } .\end{cases}
$$

We conjecture that our construction is essentially optimal for $d=3$.

Conjecture 2.

$$
c_{3}=\frac{1}{4} .
$$

The best known lower bound on c_{3} is $1-\left(\frac{5}{8}\right)^{1 / 4} \approx 0.11$ and follows from some property of the 4 -dimensional cube. (A Q_{3}-free subgraph of Q_{4} cannot contain more than 10 vertices of degree 4; see the paper of Graham, Harary, Livingston and Stout [10]).

For arbitrary d we are less confident; it would certainly be very interesting to determine how fast c_{d} tends to 0 , when d tends to infinity.

Problem 3. Determine the order of magnitude of c_{d}.
We tend to think that c_{d} is larger than inverse exponential, but feel that we are very far from understanding the truth. In fact all our arguments are set in the related Ramsey-type framework, rather than the original Turán-type. A coloring of the edges of Q_{n} is called d-polychromatic if every subcube of dimension d is polychromatic (i.e. it has all the colors represented on its edges). Let $p c(n, d)$ be the largest integer p such that there exists a d-polychromatic coloring of the edges of Q_{n} in p colors. Clearly, $p c(n, d) \leq d 2^{d-1}$ and $f(n, d) \leq e\left(Q_{n}\right) / p c(n, d)$. Since $p c(n, d)$ is a non-increasing function in n, it stabilizes for large n. Let p_{d} be this limit, then we have $c_{d} \leq 1 / p_{d}$. We can determine p_{d} up to a factor of 2 .
Theorem 4.

$$
\binom{d+1}{2} \geq p_{d} \geq \begin{cases}\frac{(d+1)^{2}}{4} & \text { if } d \text { is odd } \\ \frac{d(d+2)}{4} & \text { if } d \text { is even. }\end{cases}
$$

The lower bound implies the upper bound in Theorem 1. It would be interesting to resolve the following problem.
Problem 5. Determine the asymptotic behaviour of p_{d}.
The lower bound in Theorem 1 is a consequence of some known results on the analogous problem for vertices of the cube. Let $g(n, d)$ be the minimum number of vertices one must delete from the n-cube to make it d-cube-free. Clearly $g(n, d) \leq f(n, d)$. Again, simple averaging shows that for any fixed d the function $g(n, d) / 2^{n}$ is non-decreasing in n, so a limit c_{d}^{0} exists.

The problem of determining $g(n, d)$ was investigated early and widely by several research communities mostly in a dual formulation under the different names of t independent sets [12], qualitatively t-independent 2 -partitions [14] and (n, t)-universal vector sets [16], where $t=n-d$. These investigations mostly deal with the case when d is large, i.e. very close to n. The lone result we are aware of about $g(n, d)$ for d small compared to n is due to E. A. Kostochka [13], who proves that $c_{2}^{0}=1 / 3$ (the same result has been obtained later and independently by Johnson and Entringer [11]). In both papers it is also shown that the unique smallest set breaking all copies of Q_{2} is in the form of every third level of the cube. In general we know very little.

Proposition 6.

$$
\frac{1}{d+1} \geq c_{d}^{0} \geq \frac{\log d}{2^{d+2}} .
$$

Again, the Ramsey analogue of the problem is more clear. In fact we have here a precise result. A coloring of the vertices of Q_{n} is called d-polychromatic if every subcube of dimension d has all the colors represented on its vertices. Let $p c^{0}(n, d)$ be the largest integer p such that there exists a d-polychromatic coloring of the vertices of Q_{n} in p colors. Clearly, $p c^{0}(n, d) \leq 2^{d}$ and $g(n, d) \leq 2^{n} / p c^{0}(n, d)$. Since $p c^{0}(n, d)$ is a nonincreasing function of n, it stabilizes for large n. Let p_{d}^{0} be this limit, then we have $c_{d}^{0} \leq 1 / p_{d}^{0}$. We can determine p_{d}^{0} for every d.

Theorem 7.

$$
p_{d}^{0}=d+1 .
$$

1.1 Relation to rainbow colorings

In this subsection we point out a relation between the established notion of anti-Ramsey coloring and the one of polychromatic coloring introduced in this paper. We also note how Theorem 4 could be applied to improve a result of [2].

An edge-coloring $r: E(H) \rightarrow\{1,2, \ldots\}$ of a graph H is called rainbow if no two edges of H receive the same color. A coloring c of the edges of graph G is called H-antiRamsey if the restriction of c to any subgraph $H_{0} \subseteq G, H_{0} \cong H$, is not rainbow. Let $\operatorname{ar}(G, H)$ be the largest number of colors used in an H-anti-Ramsey coloring of G. The function $\operatorname{ar}(G, H)$ was introduced by Erdős, Simonovits and T. Sós [9]. It is well-known that $\operatorname{ar}(G, H) \leq e x(G, H)$ since taking one arbitrary edge from each color class of an H-anti-Ramsey coloring one must obtain an H-free subgraph of G.

For any graph G and H, we call a p-coloring $c: E(G) \rightarrow\{1, \ldots p\}$ of the edges of G H-polychromatic if every subgraph $H_{0} \subseteq G, H_{0} \cong H$, has all the p colors represented on its edges. Let $p c(G, H)$ be the largest number p such that there is an H-polychromatic coloring of the edges of G. The following proposition establishes a relationship between H-anti-Ramsey and H-polychromatic colorings.

Proposition 8.

$$
\operatorname{ar}(G, H) \geq\left(1-\frac{2}{p c(G, H)}\right) e(G)
$$

Proof. Given an H-polychromatic coloring c of G with $p=p c(G, H)$-colors, we define an H-anti-Ramsey coloring r of G with at least $(1-2 / p) e(G)$ colors. Let F be the set of edges formed by the union of the two smallest color classes of c. The coloring r will be chosen constant on F, say all edges in F receive color 1. All other edges of G will receive distinct colors. Then we used at least $\left(1-\frac{2}{p}\right) e(G)+1$ colors. Also, the coloring r defined this way is H-anti-Ramsey since each copy of H in G contains at least two edges of F, and thus at least two edges receive the color 1 in every copy of H.

In a recent paper [2], Axenovich, Harborth, Kemnitz, Möller, and Schiermeyer investigated Q_{d}-anti-Ramsey colorings of Q_{n}. Lower and upper bounds for $\operatorname{ar}\left(Q_{n}, Q_{d}\right)$ are found. In particular for fixed d, the leading terms of their bounds amount to

$$
\left(1-\frac{4}{d 2^{d}}\right) e\left(Q_{n}\right) \geq \operatorname{ar}\left(Q_{n}, Q_{d}\right) \geq\left(1-\frac{1}{d}\right) e\left(Q_{n}\right) .
$$

One can improve the upper bound applying Theorem 1, and the lower bound using the polychromatic coloring of Theorem 4 .

Corollary 9.

$$
\left(1-\Omega\left(\frac{\log d}{d 2^{d}}\right)\right) e\left(Q_{n}\right) \geq \operatorname{ar}\left(Q_{n}, Q_{d}\right) \geq\left(1-\frac{8}{d^{2}}-O\left(\frac{1}{d^{3}}\right)\right) e\left(Q_{n}\right) .
$$

Notation. We consider the cube as a set of n-dimensional $0-1$-vectors, where the coordinates are labeled by the first n positive integers, $[n]=\{1, \ldots, n\}$. A d-dimensional subcube of the n-dimensional cube is denoted by a vector from $\{0,1, \star\}^{n}$ which contains d *-entries; the stars represent the non-constant coordinates of the subcube. For a subcube D of the n-dimensional cube we denote by $\operatorname{ONE}(D), \operatorname{ZERO}(D)$, and $\operatorname{STAR}(D)$ the set of labels of those coordinates which are 1,0 , and \star, respectively.

$2 \quad Q_{d}$-free subgraphs of Q_{n}

In this section we give a proof of the lower bound in Theorem 4.
Proof. First assume that d is odd. We define a $\frac{(d+1)^{2}}{4}$-coloring of the edges of Q_{n}, which is d-polychromatic.

We color the edges of Q_{n} with elements of $\mathbb{Z}_{\frac{d+1}{2}} \times \mathbb{Z}_{\frac{d+1}{2}}$ in the following way. The edge e with a star at coordinate a is colored with the vector whose first coordinate is $|\{x \in O N E(e): x<a\}|\left(\bmod \frac{d+1}{2}\right)$ and whose second coordinate is $\mid\{x \in O N E(e): x>$ $a\} \left\lvert\,\left(\bmod \frac{d+1}{2}\right)\right.$.
Now consider a d-dimensional subcube C of Q_{n} with $\operatorname{STAR}(C)=\left\{a_{1}, \ldots, a_{d}\right\}$, where $a_{1}<a_{2}<\cdots<a_{d}$. Let s be the vertex of C with the least number of ones. So for each vertex x of C we have that $O N E(s) \subseteq O N E(x) \subseteq O N E(s) \cup\left\{a_{1}, \ldots, a_{d}\right\}$.

We will show that all $\frac{(d+1)^{2}}{4}$ colors appear on edges of C whose star is at position $a_{\frac{d+1}{2}}$. Let (u, v) be an arbitrary element of $\mathbb{Z}_{\frac{d+1}{2}} \times \mathbb{Z}_{\frac{d+1}{2}}$.
Let $l:=\left|\left\{x \in \operatorname{ONE}(s): x<a_{\frac{d+1}{2}}\right\}\right|\left(\bmod \frac{d+1}{2}\right)$ and
$r:=\left|\left\{x \in \operatorname{ONE}(s): x>a_{\frac{d+1}{2}}\right\}\right|\left(\bmod \frac{d+1}{2}\right)$. Choose any $k \equiv u-l\left(\bmod \frac{d+1}{2}\right)$ elements K from $\left\{a_{1}, \ldots, a_{\frac{d+1}{2}-1}\right\}$ and any $p \equiv v-r\left(\bmod \frac{d+1}{2}\right)$ elements L from $\left\{a_{\frac{d+1}{2}+1}, \ldots, a_{d}\right\}$. Define s^{\prime} by $O N E\left(s^{\prime}\right)=O N E(s) \cup K \cup L$. Then the edge incident to s^{\prime} and having star at position $a_{\frac{d+1}{2}}$ has color (u, v).

For even d^{2} a similar construction works; the only difference is that we take the number of ones left of the label of the edge modulo $\frac{d}{2}$ and the number of ones to the right modulo $\frac{d+2}{2}$. Then one can prove that among the edges with label $\frac{d}{2}$ all colors appear.

3 Upper bound in the Ramsey problems.

First we prove the upper bound in Theorem 4.
Proof of Theorem 4 Suppose we have a d-polychromatic p-edge-coloring c of Q_{n} where n is huge. We will use Ramsey's theorem for d-uniform hypergraphs with $p^{d 2^{d-1}}$ colors. We define a $p^{d 2^{d-1}}$-coloring of the d-subsets of $[n]$. Fix an arbitrary ordering of the edges of Q_{d}. For an arbitrary subset S of the coordinates, define cube (S) to be the subcube whose \star coordinates are at the positions of S and all its other coordinates are 0 , i.e. $\operatorname{STAR}(\operatorname{cube}(S))=S$ and $\operatorname{ZERO}(\operatorname{cube}(S))=[n] \backslash S$. Let S be a d-subset of $[n]$ and define the color of S to be the vector whose coordinates are the c-values of the edges of the d-dimensional subcube cube (S) (according to the fixed ordering of the edges of $\left.Q_{d}\right)$. By Ramsey's theorem, if n is large enough, there is a set $T \subseteq[n]$ of $d^{2}+d-1$ coordinates such that the color-vector is the same for any d-subset of T. Let us now fix a set S of d particular coordinates from T : those ones which are the $(i d)^{t h}$ elements of T for some $i=1, \ldots, d$. Hence any two elements of S have at least $d-1$ elements of T in between.

Claim 10. The c-value of an edge e of cube (S) depends only on the number of 1 s to the left of the \star of e and the number of 1 s to the right of this \star.

Proof. Let e_{1} and e_{2} be two edges of $\operatorname{cube}(S)$ such that they have the same number of 1 s to the left of their respective star and the same number of 1 s to the right as well. We can find d coordinates S^{\prime} from T such that $S T A R\left(e_{2}\right) \cup O N E\left(e_{2}\right) \subseteq S^{\prime}$ (i.e., e_{2} is an edge of cube $\left(S^{\prime}\right)$), and the vector e_{2} restricted to S^{\prime} is equal to the vector e_{1} restricted to S. Indeed, there are enough unused 0-coordinates of e_{2} in T between any two elements of S.
Now, since every d-subset of T has the same color-vector, the corresponding edges of the cubes cube (S) and cube $\left(S^{\prime}\right)$ have the same c-value. In particular the colors of e_{1} and e_{2} are equal. The claim is proved.

To finish the proof of the upper bound in Theorem 4 we just note that there are exactly $1+\ldots+d=\binom{d+1}{2}$ many ways to separate at most $d-1$ s by a \star. By the Claim a d-polychromatic edge-coloring is not possible with more colors.

With a very similar argument one can prove the matching upper bound in the analogous question for vertices.

Proof of Theorem 7 Assume we have a d-polychromatic coloring of the vertices of Q_{n}. Let us define a $d^{2^{d}}$-coloring of the d-tuples of $[n]$. For a d-subset S let the color be determined by the vector of the 2^{d} colors of the vertices of the subcube cube (S) with $S T A R(\operatorname{cube}(S))=S$ and $Z E R O($ cube $(S))=[n] \backslash S$ (according to some fixed ordering of the vertex set of Q_{d}). By Ramsey's theorem there is a set T of $d^{2}+d-1$ coordinates such that the color-vector is the same for any d-subset of T. Let us again fix d coordinates S in T such that any two elements of S have at least $d-1$ elements of T in between (in a way similar to the one in the edge-coloring case).

Claim 11. The color of a vertex in cube (S) depends only on its number of 1 s .
Proof. Let v_{1} and v_{2} be two vectors from cube (S) such that $\left|O N E\left(v_{1}\right)\right|=\left|O N E\left(v_{2}\right)\right|$. We can find d coordinates S^{\prime} from T such that $O N E\left(v_{2}\right) \subseteq S^{\prime}$ and the vector v_{2} restricted to S^{\prime} is equal to the vector v_{1} restricted to S. Indeed, there are enough unused 0 -coordinates in T between any two elements of S to do this. Now, since T is monochromatic according to our color-vectors, the color of v_{1} and v_{2} is the same as well. The claim is proved.

To finish the proof of the upper bound in Theorem 7 we just note that there are exactly $d+1$ possible values for the number of $1 s$ on d coordinates. By the Claim a d-polychromatic coloring is not possible with more colors.

For the lower bound in Theorem 7 one can color each vertex of the cube by the number of its non-zero coordinates modulo $d+1$. This gives a d-polychromatic vertex coloring in $d+1$ colors.

4 A lower bound on c_{d}

The lower bound in Proposition 6 can be deduced from earlier results on the d-independent set problem and is essentially stated (implicitly) in [10]. For completeness we sketch the proof.

Let G be a set of g vertices which intersects all d-cubes of the n-cube. This happens if and only if, interpreting these vertices as subsets of an n-element base set X, G shatters
all $(n-d)$-element subsets of X. (A family \mathcal{F} of subsets shatters a given subset K, if all the $2^{|K|}$ subsets of K can be represented as $K \cap F$ for some $F \in \mathcal{F}$.) Now let M_{G} be the $g \times n 0-1$-matrix whose rows correspond to the elements of G. Then the columns of M_{G} can be interpreted as a family L of n subsets of a g-element base set Y, such that all the 2^{n-d} parts of the Venn diagram of any $n-d$ members of L are nonempty. (A family L satisfying this property is usually called $(n-d)$-independent.)

Thus determining $g(d+t, d)$ is the same problem as determining the largest size of a t-independent family. This was first done by Schönheim [15] and Brace and Daykin [4] for $t=2$ and later reproved and generalized by many others, e.g. Kleitman and Spencer [12].

It is known that $g(d+2, d) \geq \log d$ and thus the lower bound on c_{d}^{0} follows by the monotonicity of $g(n, d) / 2^{n}$. The lower bound in Theorem 1 also follows since $f(d+2, d) \geq$ $g(d+2, d)$ and $f(n, d) / e\left(Q_{n}\right)$ is non-decreasing.

5 Remarks and More Open Problems

Remark. The following Claim shows that if c_{d} is indeed larger than inverse exponential, then one has to search for the evidence in very large, i.e. doubly exponential, dimensions.

For simplicity we write here the proof for c_{d}^{0} (the vertex version); the argument for c_{d} follows along similar lines.
Claim. For any $p \leq \frac{2^{d}}{2 d}$, there is a d-polychromatic p-coloring of the n-cube, with $n=\frac{1}{2} \exp \left\{\frac{2^{d}}{2 d p}\right\}$. In particular, for any $\epsilon>0$ and $n \leq \frac{1}{2} \exp \left\{2^{(1-\epsilon) d}\right\}$,

$$
g(n, d) \leq \frac{2 d}{2^{\epsilon d}} \cdot 2^{n}
$$

Proof. We randomly color the vertices of Q_{n} with p colors. For each vertex v select a color uniformly at random from $\{1, \ldots, p\}$, choices being independent from the choices on all other vertices. For a d-cube D, let A_{D} be the event that there is a color which does not appear on the vertices of D. The probability of A_{D} is at most $p(1-1 / p)^{2^{d}}$. Each d-cube intersects less than $2^{d}\binom{n}{d}$ other d-cubes. Obviously A_{D} is independent from the set of all events $A_{D^{\prime}}$ where D^{\prime} is disjoint from D.

For $p \leq \frac{2^{d}}{2 d}$ and $n=\frac{1}{2} \exp \left\{\frac{2^{d}}{2 d p}\right\}$,

$$
e \cdot p\left(1-\frac{1}{p}\right)^{2^{d}} 2^{d}\binom{n}{d} \leq e^{1+\log p-\frac{2^{d}}{p}+d \log 2 n}=o_{d}(1) .
$$

Hence the Local Lemma implies that with nonzero probability all p colors are represented on all d-cubes.

For the second part of the Claim, choose $p=2^{\epsilon d} / 2 d$ and leave out the vertices of the sparsest color class in a d-polychromatic p-coloring of the n-cube.

Open Problems. Since $f(n, 2)$ is known to be strictly larger than one third of the number of edges in Q_{n} for large $n[6]$, it is clear that $p_{2}=2$. Bialostocki [3] proved that in
any 2-polychromatic edge-two-coloring of Q_{n} the color classes are asymptotically equal. The next natural question is the determination of p_{3}, which is either 4,5 or 6 . Once p_{3} is known, it would be interesting to generalize Bialostocki's theorem and decide whether in any 3-polychromatic p_{3}-edge-coloring of Q_{n}, each color class contains approximately $\frac{1}{p_{3}} e\left(Q_{n}\right)$ edges.

Everything above could be generalized, quite straightforwardly, but would not answer the following problems:

Turán-type: Let $f^{(l)}(n, d)$ be the smallest integer f such that there is a family of f l-faces of Q_{n}, such that every d-face contains at least one member of this family. Again, $f^{(l)}(n, d) /\binom{n}{l} 2^{n-l}$ is non-decreasing, so there is a limit $c_{d}^{(l)}$. Determine it!

Ramsey-type: A coloring of the l-faces of Q_{n} is d-polychromatic if for every d-face S and color s there is an l-face of S with color s. Let $p c^{(l)}(n, d)$ be the largest number of colors with which there is a d-polychromatic coloring of the l-faces of Q_{n}. Again, the limit $p_{d}^{(l)}$ of $p c^{(l)}(n, d)$ exists. Determine it!

Acknowledgment. We would like to thank an anonymous referee for pointing out reference [2] to us.

References

[1] N. Alon, R. Radoičić, B. Sudakov, and J. Vondrák, A Ramsey-type result for the hypercube, Journal of Graph Theory, to appear.
[2] M. Axenovich, H. Harborth, A. Kemnitz, M. Möller, I. Schiermeyer, Rainbows in the hypercube, Graphs and Combinatorics, to appear.
[3] A. Bialostocki, Some Ramsey type results regarding the graph of the n-cube, Ars Combinatoria, 16-A (1983) 39-48.
[4] A. Brace and D. E. Daykin, Sperner type theorems for finite sets, Proceedings of the British Combinatorial Conference, Oxford, (1972), 18-37.
[5] P. Brass, H. Harborth, and H. Nienborg, On the maximum number of edges in a C_{4}-free subgraph of Q_{n}, Journal of Graph Theory, 19 (1995), 17-23.
[6] F. Chung, Subgraphs of a hypercube containing no small even cycles, Journal of Graph Theory, 16 (1992), 273-286.
[7] M. Conder, Hexagon-free subgraphs of hypercubes, Journal of Graph Theory, $\mathbf{1 7}$ (1993), 477-479.
[8] P. Erdős, Some problems in graph theory, combinatorial analysis and combinatorial number theory, Graph Theory and Combinatorics, B. Bollobás, ed., Academic Press (1984), 1-17.
[9] P. Erdős, M. Simonovits, V. T. Sós, Anti-Ramsey theorems, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol II, 633-643. Colloq. Math. Soc. János Bolyai, 10, North-Holland, Amsterdam, 1975.
[10] N. Graham, F. Harary, M. Livingston, and Q. Stout, Subcube fault-tolerance in hypercubes, Information and Computation, 102 (1993), 280-314.
[11] K.A. Johnson and R. Entringer, Largest induced subgraphs of the n-cube that contain no 4-cycles, Journal of Combinatorial Theory, Series B, 46 (1989), 346355.
[12] D. Kleitman and J. Spencer, Families of k-independent sets, Discrete Mathematics, 6 (1973), 255-262.
[13] E. A. Kostochka, Piercing the edges of the n-dimensional unit cube. (Russian) Diskret. Analiz Vyp. 28 Metody Diskretnogo Analiza v Teorii Grafov i Logiceskih Funkcii (1976), 55-64.
[14] A. Rényi, Foundations of Probability, Wiley New York, 1971.
[15] J. Schönheim, A generalization of results of P. Erdős, G. Katona, and D. J. Kleitman concerning Sperner's theorem, Journal of Combinatorial Theory, Series A, 11 (1971), 111-117.
[16] G. Seroussi, N.H. Bshouty, Vector sets for exhaustive testing of logic circuits, IEEE Transactions on Information Theory, 34 (1988), 513-522.

[^0]: *Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel and IAS, Princeton, NJ 08540, USA. Email: nogaa@tau.ac.il. Research supported in part by a USA-Israel BSF grant, by the Israel Science Foundation, by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University and by the Von Neumann Fund.
 ${ }^{\dagger}$ Department of Mathematics and Theoretical Computer Science, Free University Berlin, D-14195 Berlin, Germany. E-mail: krech@math.fu-berlin.de
 ${ }^{\ddagger}$ Institute of Theoretical Computer Science, ETH Zentrum, CH-8092 Zürich, Switzerland. E-mail: szabo@inf.ethz.ch.

