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Abstract

A typical problem in extremal combinatorics is the following. Given a large number n and a

set L, find the maximum cardinality of a family of subsets of a ground set of n elements such that

the intersection of any two subsets has cardinality in L.

We investigate the generalization of this problem, where intersections of more than 2 subsets

are considered. In particular, we prove that when k − 1 is a power of 2, the size of the extremal

k-wise oddtown family is (k − 1)(n− 2 log
2
(k − 1)). Tight bounds are also found in several other

basic cases.

1 Introduction

In this paper we study families F of subsets of an n-element ground set [n] = {1, 2, . . . , n}, for which

the size of the intersection of any k members of F is in a prescribed set of integers. On the most

general level our problem can be formulated as follows.

Given a positive integer n, a set L of integers, and an integer k = k(n) > 1 find the maximum

cardinality of a family of subsets of [n] such that the intersection of any k of these subsets has a

cardinality contained in L.

For k = 2, these types of questions have been attacked successfully using linear algebraic methods.

The excellent monograph [2] by Babai and Frankl contains a wide variety of results and applications.

In the following we list some of the most basic theorems. Sets of even (odd) cardinality are called

even (odd). A condition on the k-wise intersection is always about k pairwise distinct members of

the family.

Eventown Theorem (Berlekamp [5], Graver [11]) Let F ⊆ 2[n] be a family such that the intersection

of any two subsets in F is even. Then |F| ≤ 2bn/2c + δn, where δn = 1 if n is odd and 0 otherwise.
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Oddtown Theorem (Berlekamp [5]) Let F ⊆ 2[n] be a family of odd subsets, such that the inter-

section of any two subsets in F is even. Then |F| ≤ n.

Nonuniform Fischer Inequality (Majumdar [14]) Let F ⊆ 2[n] be a family such that the intersec-

tion of any two subsets in F has the same nonzero cardinality. Then |F| ≤ n.

Nonuniform Ray-Chaudhuri-Wilson Theorem (Frankl and Wilson [6]) Given a subset L of s

nonnegative integers, let F ⊆ 2[n] be a family such that the intersection of any two members of F

has a cardinality contained in L. Then |F| ≤
∑s

i=0

(n
i

)

.

It is important to note that all the above bounds are best possible.

The generalization of these theorems from pairwise to k-wise intersections seems completely

natural, still the adaptation of the arguments poses some nontrivial challenge. The reason for

this difficulty lies exactly where the beauty of the proofs for k = 2 is. Arguments about pairwise

intersections usually depend on the basic fact that the size of the intersection of two sets is equal

to the inner product of the two corresponding characteristic vectors, hence the machinery of linear

algebra can be invoked. The intrinsic difficulty of the k-wise case compared to the pairwise is the

lack of algebraic concepts describing the intersection of k sets when k > 2. In this paper we try to

circumvent this obstacle with additional combinatorial ideas while still making some use of linear

algebra.

The general problem of investigating k-wise intersection restrictions on families of sets for k ≥ 3

was posed in [15] by V. T. Sós. Füredi [8] has established a combinatorial connection between

the pairwise and k-wise case for t-uniform systems. He showed that for any fixed L, the order of

magnitude of the size of the extremal system for the pairwise and k-wise problem is the same. His

constants are very large, but depend only on k and t. The k-wise variant of specific intersection

problems were studied recently by the second author [16, 17], Grolmusz [12], and Grolmusz and

Sudakov [13].

An important feature of the linear algebra method is that the obtained results are often tight.

There are, usually quite simple, matching constructions complementing the algebraic upper bounds;

not just up to a constant factor or asymptotically, but precisely. Sharp results, just because of their

scarcity, are of particular interest in Extremal Combinatorics. In this paper we put the emphasis on

obtaining precise results for the k-wise version of some of the classical pairwise intersection theorems,

like the Oddtown Theorem, or the Nonuniform Fischer Inequality.

1.1 k-wise results

A precise bound for the k-wise version of the Eventown Theorem was given by the second author in

an earlier paper [16]. Here we quote this result for the sake of completeness.

Theorem 1.1 There is a positive constant c such that the following holds. If n ≥ c log2 k and

F ⊆ 2[n] is a family of maximum size such that the intersection of every k subsets in F is even, then
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|F| = 2bn/2c + δk,n, where δk,n = k − 1 if n is odd and 0 otherwise.

We call a family F ⊆ 2[n] k-wise oddtown, if every member of F is odd and the intersection of

any k members is even. The following is conjectured to be the optimal family if n is large enough

compared to k.

Construction A. [16] Let us consider b = dlog2(k − 1)e disjoint 2-element subsets of [n], say

Xi = {2i − 1, 2i} for i = 1, . . . , b. By taking the unions of some of these pairs, create k − 1 sets

Y1, . . . , Yk−1; say let Yi := Xj1 ∪ . . .∪Xjir
, where j1, . . . , jir are the nonzero coordinates in the binary

expansion of i − 1. Define

F = {Yi ∪ {x} : i = 1, . . . , k − 1;x = 2b + 1, . . . , n}.

Then |F| = (k − 1)(n − 2dlog2(k − 1)e) and F is k-wise oddtown. Indeed, no k-wise intersection

contains anything from {2b + 1, . . . , n}, while points from [2b] come in pairs. �

In the following theorem we confirm that for an infinite sequence of k Construction A is, indeed,

extremal. We also obtain an almost tight bound for every k.

Theorem 1.2 Let k = k(n) ≥ 3 be an integer and F ⊆ 2[n] be a k-wise oddtown family of maximum

size. If k = 2s + 1 for some integer s, then for every n ≥ 3 k−1
k−2 log2(k − 1)

|F| = (k − 1)(n − 2 log2(k − 1)).

Moreover, for every k and n ≥ 3(k − 1) + 2dlog2(k − 1)e − 2,

(k − 1)(n − 2dlog2(k − 1)e) ≤ |F| ≤ (k − 1)(n − blog2(k − 1)c − dlog2(k − 1)e).

We consider Theorem 1.2 the main contribution of our paper. Previously the asymptotics of the

size of the maximum family was established [16] for fixed k, but exact results were not known for

any k > 2.

We also prove the following precise k-wise version of the Nonuniform Ray-Chaudhuri-Wilson

Theorem for |L| = 1.

Theorem 1.3 Let F ⊆ 2[n] be a largest family such that the intersections of any k = k(n) subsets

in F has the same cardinality. If k − 1 > 2n−1, then |F| = 2n. Otherwise let s be the largest integer

such that
∑s−1

i=0

(n−1
i

)

≤ k − 1. Then

|F| =
s
∑

i=0

(

n

i

)

+

⌊(

k − 1 −
s−1
∑

i=0

(

n − 1

i

)

)

n

s + 1

⌋

. (1)

In particular for n ≥ k, we have

|F| =

⌊

k

2
n

⌋

+ 1.
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This theorem improves on the earlier bound of (k − 1)(n + 1) of Grolmusz and Sudakov [13].

For pairwise intersections, the Nonuniform Ray-Chaudhuri-Wilson Theorem is sharp only when

L = {0}. In case L 6= {0}, the Nonuniform Fischer Inequality improves the upper bound n + 1 to n.

A similar phenomenon occurs here as well: Theorem 1.3 is only sharp if all k-wise intersections are

empty. The following statement is a k-wise variant of the Nonuniform Fischer Inequality.

Theorem 1.4 Assume that F ⊆ 2X is a maximum size family such that the intersection of any

k = k(n) members of F has the same nonzero cardinality. Then

|F| =

{

f(k, n − 1) if k − 1 ≤ 2n−2

k − 1 otherwise

where f(k, n) is the quantity on the right hand side of (1).

Further questions one may want to consider are the k-wise variants of the famous modular

intersection theorems of Frankl and Wilson. The uniform version could be considered a far-reaching

generalization of the Oddtown Theorem. Here we discuss the nonuniform case.

Nonuniform Frankl-Wilson Theorem [6] Let p be a prime and L be the set of s residues

modulo p. If F ⊆ 2[n] is a family such that for every A ∈ F , |A| /∈ L (mod p) and for every

A,B ∈ F , |A ∩ B| ∈ L (mod p), then

|F| ≤
s
∑

i=0

(

n

i

)

.

In a recent paper [13], Grolmusz and Sudakov proved the upper bound (k − 1)
∑s

i=0

(n
i

)

for the

k-wise version of the above statement. Using an idea from the proof of Theorem 1.1, we can slightly

improve their bound.

Proposition 1.5 Let p be a prime and L be a set of s residues modulo p. Suppose F ⊆ 2[n] is a

family, such that for every A ∈ F , |A| /∈ L (mod p) and for every A1, . . . , Ak ∈ F , | ∩k
I=1 Ai| ∈ L

(mod p). If
∑s

i=0

(n
i

)

≥ blogp(k − 1)c, then

|F| ≤ (k − 1)
(

s
∑

i=0

(

n

i

)

− blogp(k − 1)c + 1
)

.

The rest of the paper is organized as follows. In the next section, we describe some useful ideas

for the proof of Theorem 1.2 and prove Proposition 1.5. The proof of Theorem 1.2 follows in Section

3. In Section 4 we prove Theorems 1.3 and 1.4, while the last section contains several concluding

remarks and open questions.

Notation. The degree degF (x) of a point x in a family F is the number of members of F containing

x.
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In Sections 2 and 3 we use the language of linear algebra. For each subset A of [n], the charac-

teristic vector of A is the binary vector vA of length n, whose ith coordinate is 1 if i belongs to A

and 0 otherwise. The vector space generated by the characteristic vectors of the elements of F over

the two-element field GF (2) is denoted by V (F).

2 Warm-up

In this section, we describe some ideas which will be used in the proof of Theorem 1.2. First we

discuss a weaker upper bound, proved by the second author as a lemma to the proof of Theorem

1.1 ([16, Lemma 6]; see also [17, Lemma 3.2.4] for a more general statement). Then, we modify the

proof of this weaker bound to prove Proposition 1.5.

2.1 A weaker bound for the Oddtown problem

Lemma 2.1 [16] If F ⊆ 2[n] is a k-wise oddtown family and dimV (F) = d > blog2(k − 1)c then,

|F| ≤ (k − 1)(d − blog2(k − 1)c).

Proof. We use induction on d. The base case d = blog2(k − 1)c+ 1 is immediate, since in any finite

dimensional vector space over GF (2) at most half of the vectors have odd weight, thus

|F| ≤
1

2
|V (F)| = 2d−1 ≤ (k − 1).

Assume now that d > blog2(k−1)c+1. Let t be the largest integer such that there are t members

A1, . . . , At of F having an odd intersection A = ∩t
i=1Ai. Clearly t ≤ k−1. Then for every i = 1, . . . , t,

vAi
vA = |Ai ∩ A| = |A| ≡ 1 (mod 2).

Due to the maximality of t, for any set B ∈ F ′ = F\{A1, . . . , At}

vBvA = |B ∩ A| ≡ 0 (mod 2).

It thus follows that the vectors vAi
are not contained in the space V (F ′) generated by the family

F ′ = F\{A1, . . . , At}. Thus the dimension of V (F ′) ≤ d − 1 and this, together with the induction

hypothesis, yields

|F| = t + |F ′| ≤ (k − 1) + (k − 1)((d − 1) − blog2(k − 1)c)) = (k − 1)(d − blog2(k − 1)c),

completing the proof. �

Corollary 2.2 [16] Let F be a k-wise oddtown family on n > blog2(k − 1)c points. Then |F| ≤

(k − 1)(n − blog2(k − 1)c).
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Proof. It is clear that dimV (F) ≤ n. �

The consideration of the dimension of V (F) turns out to be a very useful concept and will play

a crucial role in the proof of Theorem 1.2. But first let us use the previous idea to show Proposition

1.5.

2.2 Proof of Proposition 1.5

Consider a family F as in Proposition 1.5. We mimic the method of Alon, Babai and Suzuki [1] for

the proof of the Frankl-Wilson Theorem and combine it with the ideas in the previous argument. Let

W be the vector space of all polynomials generated by the set {
∏

i∈S xi|S ⊂ {1, 2, . . . , n}, |S| ≤ s}

over the field GF (p). It is easy to see that the generating set forms a basis as well, thus the dimension

of W is
∑s

i=0

(n
i

)

.

To each set A ⊂ X, assign a polynomial f̃A(x) =
∏

l∈L(x · vA − l), where x denotes a vector in

GF n(p). Let fA(x) be the multilinear polynomial we obtain from f̃A(x) by replacing all powers xq
i

by the first power xi. Clearly fA(y) = f̃A(y) for any 0-1-vector y. Let d denote the dimension of the

subspace (of W ) spanned by the polynomials fB, B ∈ F . We shall prove, by induction on d, that if

d ≥ blogp(k − 1)c, then

|F| ≤ (k − 1)(d − blogp(k − 1)c + 1).

As d ≤ dim(W ) =
∑s

i=0

(

n
i

)

, our claim follows.

Let d = blogp(k − 1)c. A subspace of W with dimension d has pd vectors, so it follows that

|F| ≤ pd ≤ (k − 1),

concluding the proof of the base case.

Now assume d > blogp(k−1)c. Similar to the previous proof, let t be the largest integer such that

there are t members of F whose intersection has cardinality not in L modulo p. Let these members

be A1, . . . , At and let A = ∩t
i=1Ai. It follows that for every i = 1, . . . , t,

fAi
(vA) = f̃Ai

(vA) =
∏

l∈L

(|Ai ∩ A| − l) =
∏

l∈L

(|A| − l) 6≡ 0 (mod p).

On the other hand, due to the maximality of t, for any member B ∈ F ′ = F\{A1, . . . , At}, |B ∩

(∩t
i=1Ai)| = |B ∩ A| ∈ L. Therefore,

fB(vA) = f̃B(vA) =
∏

l∈L

(|B ∩ A| − l) ≡ 0 (mod p).

Hence for every i, 1 ≤ i ≤ t, fAi
∈ W is linearly independent from the subspace V ′ spanned by the

fB, B ∈ F ′. Thus dimV ′ ≤ d − 1 and we can conclude as in the previous proof. �
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3 k-wise Oddtown

In order to prove Theorem 1.2, we need to consider a more general scenario, where F is allowed

to contain sets with high multiplicity. This extension will provide room for us to consider a more

general induction hypothesis. To this end we need to introduce a few definitions. A collection F of

sets is called an l-multi-system if each set occurs in F with multiplicity at most l. A 1-multi-system

is called a family. We extend the definition of the k-wise oddtown property to multi-systems. A

multi-system F is said to have the k-wise oddtown property if

• |A| ≡ 1 (mod 2) for every A ∈ F and

• |A1 ∩ . . . ∩ Ak| ≡ 0 (mod 2) for every sub-multi-system {A1, . . . , Ak} of F .

That is, in the intersection property, Ai and Aj might be equal as sets, but they are distinct

members of the multi-system. Note that in a k-wise oddtown multi-system there cannot be a set

with multiplicity larger than k − 1.

Proof of Theorem 1.2. First we shall prove that for an extremal k-wise oddtown system F ,

dimV (F) should be at most n − dlog2(k − 1)e and then apply Lemma 2.1.

The following definition plays a crucial role in our argument.

Definition Let F be a multi-system of sets. A set M is called a basis set of F , if

(i) M is nonempty

(ii) |M | is even

(iii) M = A1 ∩ . . . ∩ Ak−1 for some sub-multi-system {A1, . . . , Ak−1} of F .

Observe, that the characteristic vector w of a basis set M = A1∩. . .∩Ak−1 is orthogonal to V (F).

Indeed, for any B ∈ F , B 6= Ai, i = 1, . . . , k−1, w ·vB = 0 since F is a k-wise oddtown system, while

w · vAi
= 0 because of (ii). Thus the vector space W (F), generated by the characteristic vectors of

the basis sets of F , is contained in the orthogonal complement V (F)⊥ of V (F). It is well-known

that for any subspace V , dimV + dimV ⊥ = n. Therefore d ≤ n − b, where b = dimW (F).

In the following theorem we prove that the maximum size of a k-wise oddtown family with

dimW (F) < dlog2(k − 1)e is asymptotically much less than (k − 1)(n − 2dlog2(k − 1)e), the lower

bound given by Construction A.

Theorem 3.1 Let k ≥ 3, l, n ≥ 1 be integers and F ⊆ 2[n] be a k-wise oddtown l-multi-system. Let

b ≤ k − 2 be the dimension of the vector space W (F) generated by the characteristic vectors of the

basis sets of F . Then

|F| ≤
b

max
i=0

{

2i+1l + k − 1

3
(n − 2i)

}

. (2)

Proof of Theorem 3.1 We proceed by induction on b. To check the base case b = 0, assume that

F is a family with no basis sets, that is all (k − 1)-wise intersections are either odd or empty. We
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use induction on n. For n = 1, the maximum size system contains the singleton min{l, k − 1} ≤

(2l + k − 1)/3-times.

Suppose now that n > 1.

Case 1. Every point is contained in at most k − 1 sets. Then

∑

A∈F

|A| =
∑

A∈F

∑

p∈A

1 =
∑

p

∑

p∈A∈F

1 ≤ n(k − 1).

The number of sets in F is maximized when (almost) all degrees are k − 1 and the sizes of the

sets are as small as possible. That is when F contains all the 1-element subsets with multiplicity

min{l, k−1} and a 3-uniform (almost-)regular hypergraph with maximum degree (k−1−min{l, k−

1}).1 Then |F| ≤ min{l, k − 1}n + (k − 1 − min{l, k − 1})n/3 ≤ (2l + k − 1)n/3.

Case 2. There is a point x with degree at least k.

Then there are some A1, ..., Ak , such that their intersection contains x. Since this intersection is

even, it must contain another element y 6= x. But A1 ∩ ... ∩ Ak−1 is then not empty, thus it is odd

(remember that b = 0), so N = A1 ∩ ... ∩ Ak−2 contains at least three elements.

Consider those members E of F (E 6= Ai, i = 1, ..., k−2) for which E∩N is not empty, thus odd.

There are at most |N | of such E’s. (For any two E1, E2, N ∩ E1 ∩ E2 is even. This implies that an

odd intersection N ∩ E determines E uniquely. Then one can use the pairwise Oddtown Theorem

within N for the sets N ∩ E, when this intersection is odd.)

All other members of F are disjoint from N , thus they form a system on n − |N | points. So by

induction

|F| ≤
(2l + k − 1)(n − |N |)

3
+ |N | + k − 2 =

=
2l + k − 1

3
n −

|N |

3
(2l + k − 4) + k − 2 ≤

2l + k − 1

3
n,

since |N | ≥ 3 and l ≥ 1.

This completes the proof of the base case b = 0. Now let us assume that b > 0. Let us choose a

minimal basis set M = A1 ∩ . . . ∩ Ak−1.

If |M | = 2, then by the k-wise oddtown property each element of F either contains or is disjoint

from M . Then the multi-system F \ M = {E \ M : E ∈ F} is a k-wise oddtown 2l-multi-system

on n − 2 points. The dimension of W (F \ M) is b − 1. (More precisely, W (F) is equal to the direct

product W (F \ M) × 〈vM 〉. If there is a basis set B of F \ M which is not a basis set of F , then

B ∪M is a basis set of F , thus the characteristic vector of B is in W (F). On the other hand if B is

basis set of F then B \ M is a basis set of F \ M .) Thus, by the induction hypothesis,

|F| = |F \ M | ≤
b−1
max
i=0

{

2i+1 · 2l + k − 1

3
((n − 2) − 2i)

}

=
b

max
j=1

{

2j+1 · l + k − 1

3
(n − 2j)

}

.

1Remark: In case k ≤
`

n−1

2

´

+2, Baranyai’s Theorem ensures that this actually can be achieved, such that, depending

on the remainder of n modulo 3, only 0, 1 or 2 points have degree smaller than the maximum.
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Suppose now that |M | ≥ 4.

Case 1. There is an index j such that ∩i6=jAi \ Aj = ∅.

Then the (k − 2)-wise intersection N = ∩i6=jAi would be equal to M and would not contain any

other basis set because of the minimality of M . Thus, again, every member of F either contains or

is disjoint from M , implying that F \ M is a k-wise 2l-multi-system. Similarly, by the induction

hypothesis,

|F| = |F \ M | ≤
b−1
max
i=0

{

2i+1 · 2l + k − 1

3
((n − |M |) − 2i)

}

≤
b

max
j=1

{

2j+1 · l + k − 1

3
(n − 2j)

}

.

Case 2. For every index j = 1, . . . , k − 1., the sets Cj = ∩i6=jAi \ Aj are not empty.

Let us choose some k − 2 sets from {A1, . . . Ak−1} such that their intersection does not contain

any other basis set, but M . This is possible because of a simple counting argument. We say that a

basis set B 6= M ruins an index j if B ⊆ ∩i6=jAi. In case index j is ruined, let us fix an arbitrary

basis set Bj ruining j. Then the minimality of M implies Bj ∩ Cj 6= ∅. Since the nonempty Cjs

are pairwise disjoint by definition, the set of characteristic vectors {vBj
: j is ruined} is linearly

independent. Hence b, the dimension of the space of the characteristic vectors of basis sets, cannot

be less than (actually it is equal to) the number of indices ruined. Since b ≤ k− 2, we have an index,

say k − 1, which is not ruined by any basis set. Then N = ∩k−2
i=1 Ai does not contain any other basis

set, but M .

In particular, the intersection of any member of F \ {A1, . . . , Ak−2} with N is either odd, or M ,

or empty. Let

FN = {A1, . . . , Ak−2},

F0 = {E ∈ F \ FN : E ∩ N = ∅},

F1 = {E ∈ F \ FN : |E ∩ N | ≡ 1 (mod 2)},

F2 = {E ∈ F \ FN : 0 6= |E ∩ N | ≡ 0 (mod 2)} = {E ∈ F \ FN : E ∩ N = M}.

The family F ′
1 = {E ∩N : E ∈ F1} is a pairwise oddtown family on |N | points, so |F1| = |F ′

1| ≤

|N |.

Any element E of F0 ∪F2 is either disjoint from N or intersects it in M . Then (F0 ∪ F2) \ N =

{E \ N : E ∈ F0 ∪F2} is a k-wise oddtown 2l-multi-system on n− |N | points. Let the dimension of

W ((F0 ∪ F2) \ N) be b′. If B is a basis set of (F0 ∪ F2) \ N then either B itself or B ∪ M is a basis

set of F . In any case the characteristic vector vB is in W (F). Hence W ((F0 ∪ F2) \ M) ⊆ W (F).
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Thus b′ ≤ b − 1, since vM ∈ W (F) \ W ((F0 ∪ F2) \ M). By the induction hypothesis,

|F| = |FN | + |F1| + |F0 ∪ F2| ≤ k − 2 + |N | +
b′

max
i=0

{

2i+1 · 2l + k − 1

3
(n − |N | − 2i)

}

=

=
b′

max
i=0

{

2i+2l + k − 1

3
(n − 2(i + 1)) − |N |

2i+2l + k − 4

3
+

2i+3l + 2k − 2 + 3k − 6

3

}

≤

≤
b′

max
i=0

{

2i+2l + k − 1

3
(n − 2(i + 1)) − 5

2i+2l + k − 4

3
+

2i+3l + 5k − 8

3

}

=

=
b′

max
i=0

{

2i+2l + k − 1

3
(n − 2(i + 1)) −

3 · 2i+2l − 12

3

}

≤

≤
b′

max
i=0

{

2i+2l + k − 1

3
(n − 2(i + 1))

}

≤
b

max
j=1

{

2j+1l + k − 1

3
(n − 2j)

}

Here we used that |N | ≥ 5, since |M | ≥ 4 and Cj 6= ∅. �

The proof of Theorem 1.2 is now immediate by applying Theorem 3.1 with l = 1. Suppose first

that k−1 = 2s for some positive integer s. The size of the family from Construction A is larger than

the upper bound in (2) for sufficiently large n. Indeed, (k−1)(n−2s) is larger than 2b+1+k−1
3 (n−2b)

for every b < s if n ≥ 3 log2(k − 1) · k−1
k−2 . Hence for an extremal system F , the dimension of W (F)

cannot be less than log2(k − 1), which implies that dimV (F) ≤ n − log2(k − 1). Then the first part

of Theorem 1.2 is a consequence of Lemma 2.1.

Assume now that 2s + 1 ≤ k − 1 < 2s+1. Our argument is similar to the above, except the range

of validity is somewhat smaller. For any n ≥ 3(k−1)+2dlog2(k−1)e−2, the size of the family from

Construction A is greater than the dominating term 2s+1+k−1
3 (n − 2s) in the upper bound (2). So,

again, dimV (F) ≤ n − dlog2(k − 1)e and the second part of Theorem 1.2 follows from Lemma 2.1.

�

4 k-wise Nonuniform Fischer-inequality

In this section we prove Theorems 1.3 and 1.4.

It is convenient to introduce the following definition. We say that F is a k-wise l-Fischer family

if the intersection of any k members of F contains exactly l elements. Let mk
l (n) be the largest

possible size of a k-wise l-Fischer setsystem. First we determine mk
0(n) exactly for every n and k.

Lemma 4.1

mk
0(n) =

{

∑s
i=0

(n
i

)

+
⌊(

k − 1 −
∑s−1

i=0

(n−1
i

)

)

n
s+1

⌋

if k − 1 ≤ 2n−1

2n if k − 1 > 2n−1,

where s is the largest integer such that
∑s−1

i=0

(n−1
i

)

≤ k − 1 (provided s exists, i.e. k − 1 ≤ 2n−1).
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Proof. For a family H let us denote by D(H) the sum of the degrees:

D(H) :=
∑

v∈V

degH(v) =
∑

A∈H

|A|.

The heart of the proof is the following trivial observation.

Observation. A family is k-wise 0-Fischer if and only if each point has degree at most k − 1.

For k − 1 ≥ 2n−1 the lemma follows easily from our observation since the degree of any point in

2[n] is 2n−1 ≤ k − 1. Suppose now that
∑s−1

i=0

(n−1
i

)

≤ k − 1 <
∑s

i=0

(n−1
i

)

. First we construct an

appropriate family F of the desired size. Let us denote by
(

[n]
i

)

the family of all i-element subsets

of [n]. The family ∪s
i=0

([n]
i

)

is (
∑s−1

i=0

(n−1
i

)

)-regular. Thus we can include all of ∪s
i=0

([n]
i

)

in F and

could still have some “available degree”; i.e. d = k − 1 −
∑s−1

i=0

(

n−1
i

)

at each vertex.

We add to F several more sets, of size s+1, while making sure that the degree of no point grows

above k − 1, i.e. no point is contained in more than d of these newly included (s + 1)-element sets.

To achieve this goal, we use a special case of the celebrated theorem of Baranyai [3], due to Katona.

Lemma 4.2 [4, Lemma, p. 179] Let a ≤
(

n
r

)

be an arbitrary nonnegative integer. Then there exists

an almost regular subhypergraph H ⊆ Hr
n (that is the degrees of any two vertices in H differ by at

most one) with |E(H)| = a edges.

By choosing r = s + 1, a = bd n
s+1c, Lemma 4.2 provides us with an almost regular (s + 1)-uniform

hypergraph H with a edges.

∑

v∈V

degH(v) = D(H) = a(s + 1) ≤ dn.

As H is almost regular, no vertex has degree larger than d in H. Therefore F = (∪s
i=0

([n]
i

)

) ∪H is a

k-wise 0-Fischer family with the required number of edges.

Let us assume now that there exists a k-wise 0-Fischer family F ′ with |F ′| = |F| + 1. As

F contains the first |F| smallest subsets of [n],
∑

A∈F ′ |A| is larger than
∑

A∈F |A| by at least

max{|A| : A ∈ F ′} ≥ s + 1,

D(F ′) ≥ D(F) + s + 1.

By our observation D(F ′) ≤ (k − 1)n, giving us D(F) ≤ (k − 1)n − (s + 1).

On the other hand by the definition of F ,

D(F) =

⌊

d
n

s + 1

⌋

(s + 1) + (k − 1 − d)n >

(

dn

s + 1
− 1

)

(s + 1) + (k − 1 − d)n = (k − 1)n − (s + 1),

a contradiction.

Hence we proved that F is a k-wise 0-Fischer family of maximum size. �

The next theorem determines mk
l (n) for most of the triples (n, k, l); in particular when k is fixed

and n is large enough. It reveals the fact that extremal k-wise l-Fischer families are not too exciting,
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as they are usually obtained from extremal k-wise 0-Fischer families by the addition of l new points

to each member. The proof is basically identical to the one in Füredi [7]; we include an adaptation

to our formulation of the statement.

Theorem 4.3 Let 2n + 1 ≥ k ≥ 2, n ≥ l ≥ 1 be positive integers. Then

mk
l (n) = max{mk

0(n − l), k − 1} if k + l > n,

mk
l (n) ≤ max{mk

0(n − l), n} if k + l ≤ n,

Proof. Clearly mk
l (n) ≥ mk

0(n − l), since from any k-wise 0-Fischer family on n − l points one can

construct a k-wise l-Fischer family on n points just by adding the same l new points to each member.

Consider a k-wise l-Fischer family F = {A1, . . . , Am} of size m = mk
l (n).

Case 1. There are k − 1 sets in F whose intersection B is of size l.

Then every member of F must contain B. Thus the family F \B := {A \B : A ∈ F} is a k-wise

0-Fischer family on n − l points, so |F| = |F \ B| ≤ mk
0(n − l). Hence m = mk

0(n − l).

Case 2. The intersection of any k − 1 members of F contains at least l + 1 points.

Assume first that k + l > n. The value of m cannot be less than k − 1, since any collection of

k − 1 sets is a k-wise 0-Fischer family. If m > k − 1 then there exists an l-element set B, which is

the intersection of k members A1, . . . Ak of F . There are at most k − 1 points in [n] \ B, so there

exists an index j ≤ k, such that the intersection of the k − 1 sets A1, . . . , Aj−1, Aj+1, . . . , Ak is also

B. This contradicts the assumption of Case 2 and proves m = k − 1.

Assume now that k + l ≤ n. Then clearly k − 1 < n − l + 1 = m2
0(n − l) ≤ mk

0(n − l) ≤ m. Let

A1, . . . , Ak−2 ∈ F be members such that the cardinality of B = A1∩ . . .∩Ak−2 is as small as possible.

If there were i > j > k−2 such that Ai∩B = Aj∩B, that would imply l = |A1∩ . . . Ak−2∩Ai∩Aj | =

|B∩Ai|, contradicting our assumption that there are no k−1 members of the family having l-element

intersection. Thus Ai ∩ B determines Ai uniquely. The family FB = {Bi : Bi = Ai ∩ B, i > k − 2},

defined on |B| points, is pairwise l-Fischer. Therefore the pairwise Nonuniform Fischer Inequality

implies that it could have at most |B| members. Since |F| = m ≥ k, there exists sets Ak−1, Ak ∈ F .

Every one of the n− l points in [n]−∩k
i=1Ai is not contained in at least one of the Ajs, 1 ≤ j ≤ k. A

simple averaging argument then shows that the smallest (k − 2)-wise intersection B has cardinality

at most l + 2
k (n − l) = n − k−2

k (n − l). So

|F| = |FB | + |{A1, . . . , Ak−2| ≤ n −
k − 2

k
(n − l) + (k − 2) ≤ n − (k − 2)

(

k

n − l
− 1

)

≤ n

�

Now Theorems 1.3 and 1.4 are simple corollaries of Lemma 4.1 and Theorem 4.3. We only remark

that mk
0(n) is monotone increasing in n and even mk

0(n − 1) dominates both k − 1 and n in their

respective range of interest.
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5 Remarks and Open Questions

• We believe that Construction A is optimal for every k ≥ 3 provided n is large enough. The first

unknown case is that of the 4-wise oddtown families, where the size of the extremal family is between

3n − 12 and 3n − 9.

• When a specific L is given, it looks plausible that one can improve the constant multiplier 1 of the

logarithm in Proposition 1.5. It is not clear what the sharp bound in this problem is, but probably

the bound varies with L.

In the special case L = {0} one can generalize Construction A which provides a family with (k −

1)(n− p log2(k − 1)) members, such that the cardinality of any member is not divisible by p but the

cardinality of the intersection of any k members is. We believe that (as in the case p = 2) this lower

bound is tight. However, there are nontrivial obstacles in modifying the proof of Theorem 1.2 to

show this.

• A generalization of the construction in Theorem 1.3 for arbitrary s = |L| is the following. Let

L = {0, 1, . . . , s−1}. Let Gs,k be a maximum packing of (s+1)-element sets, such that each s-element

set is contained in at most k− 2 members of Gs,k. The trivial combinatorial upper bound on |Gs,k| is

(k−2)
(n

s

)

/(s+1). For s = 2 and k = 3, the infinite family of Steiner triple systems match this upper

bound. In general, the existence of such tactical configurations is not known, but asymptotically

optimal families could easily be constructed for every k and s = o(n) by generalizing the construction

of [9, Theorem 8.1]. Let

Gα =

{

C ∈

(

[n]

s + 1

)

:
∑

c∈C

c ≡ α (mod n)

}

,

where α is an integer. Then for any k−2 distinct integers 0 ≤ α1 < α2 < . . . < αk−2 < n, ∪k−2
i=1 Cαi

is

a family covering each s-set at most (k−2)-times. By averaging, there exists a choice of αis for which

G = Gs,k := ∪k−2
i=1 Cαi

has at least (k − 2)
( n
s+1

)

/n members. Thus for s = o(n), |G| = ( k−2
s+1 + o(1))

(n
s

)

.

Then in the family F = ∪s
i=1

(

[n]
i

)

∪ G every s-set is contained in at most k − 1 members, i.e. all

the k-wise intersections are in L. The size of F is ( s+k−1
s+1 + o(1))

(n
s

)

. It is not hard to prove with a

method similar to the one in Theorem 1.3 that for L = {0, . . . , s − 1} F , indeed, is asymptotically

optimal. We conjecture that it is actually optimal for any L, |L| = s.

• One question we know very little about is the k-wise variant of the uniform Ray-Chaudhuri-Wilson

Theorem. Suppose we are given a set L of s integers. What is the size of a maximum family F

of l-element sets, such that the cardinality of the intersection of any k members of F is in L. The

upper bound is still the usual (k − 1)
(n

s

)

, while we don’t know any construction having more than

(1 + o(1))
(

n
s

)

elements.

Acknowledgment We are grateful to N. Alon and B. Sudakov for helpful discussions.

Note added in proof. Our above conjecture about the optimality of the size ( s+k−1
s+1 + o(1))

(n
s

)

of

the L-intersecting family F was settled recently by Füredi and Sudakov [10].
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[7] Z. Füredi, On a problem of Deza and Frankl, Ars Combinatorica 13 (1982), 221-222.
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