
The Local Lemma is Tight for SAT

H. Gebauer ∗ T. Szabó † G. Tardos ‡

Abstract
We construct unsatisfiable k-CNF formulas where every
clause has k distinct literals and every variable appears in

at most
(

2
e

+ o(1)
)

2k

k
clauses. The lopsided Local Lemma

shows that our result is asymptotically best possible: every
k-CNF formula where every variable appears in at most
2k+1

e(k+1)
− 1 clauses is satisfiable. The determination of this

extremal function is particularly important as it represents
the value where the k-SAT problem exhibits its complexity
hardness jump: from having every instance being a YES-
instance it becomes NP-hard just by allowing each variable
to occur in one more clause.

The asymptotics of other related extremal functions are
also determined. Let l(k) denote the maximum number,
such that every k-CNF formula with each clause containing
k distinct literals and each clause having a common variable
with at most l(k) other clauses, is satisfiable. We establish
that the bound on l(k) obtained from the Local Lemma is

asymptotically optimal, i.e., l(k) =
(

1
e

+ o(1)
)
2k.

The constructed formulas are all in the class MU(1) of
minimal unsatisfiable formulas having one more clause than
variables and thus they resolve these asymptotic questions
within that class as well.

The SAT-formulas are constructed via the binary trees

of [10]. In order to construct the trees a continuous setting of

the problem is defined, giving rise to a differential equation.

The solution of the equation diverges at 0, which in turn

implies that the binary tree obtained from the discretization

of this solution has the required properties.

1 Introduction

The satisfiability of Boolean formulas is the archetypical
NP-hard problem. Somewhat unusually we define a k-
CNF formula as the conjunction of clauses that are the
disjunction of exactly k distinct literals. (Note that
most texts allow shorter clauses in a k-CNF formula,
but fixing the exact length will be important for us
later on.) The problem of deciding whether a k-CNF
formula is satisfiable is denoted by k-SAT, it is solvable
in polynomial time for k = 2, and is NP-complete for
every k ≥ 3 as shown by Cook [3].

∗Institute of Theoretical Computer Science, ETH Zurich, CH-

8092, Switzerland; mail: gebauerh@inf.ethz.ch.
†Department of Mathematics and Computer Science, Freie

Universität Berlin, 14195 Berlin, Germany; mail: szabo@zedat.fu-

berlin.de.
‡Simon Fraser University, Burnaby BC, Canada and Rényi

Institute, Budapest, Hungary; mail: tardos@cs.sfu.ca.

Papadimitriou and Yannakakis [18] have shown that
k-SAT is even MAX-SNP-complete for every k ≥ 2.

The first level of difficulty in satisfying a CNF
formula arises when two clauses share variables. For a
finer view into the transition to NP-hardness, a grading
of the class of k-CNF formulas can be introduced,
that limits how much clauses interact locally. A k-
CNF formula is called a (k, s)-CNF formula if every
variable appears in at most s clauses. The problem of
satisfiability of (k, s)-CNF formulas is denoted by (k, s)-
SAT.

Tovey [24] proved that while every (3, 3)-CNF for-
mula is satisfiable (due to Hall’s theorem), the problem
of deciding whether a (3, 4)-CNF formula is satisfiable
is already NP-hard. Dubois [5] showed that (4, 6)-SAT
and (5, 11)-SAT are also NP-complete.

Kratochv́ıl, Savický, and Tuza [15] defined the value
f(k) to be the largest integer s such that every (k, s)-
CNF is satisfiable. They also generalized Tovey’s result
by showing that for every k ≥ 3 (k, f(k) + 1)-SAT
is already NP-complete. In other words, for every
k ≥ 3 the (k, s)-SAT problem goes through a kind of
“complexity phase transition” at the value s = f(k).
On the one hand the (k, f(k))-SAT problem is trivial
by definition in the sense that every instance of the
problem is a “YES”-instance. On the other hand
the (k, f(k) + 1)-SAT problem is already NP-hard, so
the problem becomes hard from being trivial just by
allowing one more occurrence of each variable. For large
values of k this might seem astonishing, as the value of
the transition is exponential in k: one might think that
the change of just one in the parameter should have
hardly any effect.

The complexity hardness jump is even greater: the
problem of (k, s)-SAT is also MAX-SNP-complete for
every s > f(k) as was shown by Berman, Karpinski, and
Scott [2] (generalizing a result of Feige [7] who showed
that (3, 5)-SAT is hard to approximate within a certain
constant factor).

The determination of where this complexity hard-
ness jump occurs is the topic of the current paper.

For a lower bound the best tool available is the
Lovász Local Lemma. The lemma does not deal directly
with number of occurrences of variables, but rather
with pairs of clauses that share at least one variable.

We call such a pair an intersecting pair of clauses. A
straightforward consequence of the lemma states that
if every clause of a k-CNF formula intersects at most
2k/e − 1 other clauses, then the formula is satisfiable.
It is natural to ask how tight this bound is and for
that Gebauer et al. [9] define l(k) to be the largest
integer number satisfying that whenever all clauses of a
k-CNF formula intersect at most l(k) other clauses the
formula is satisfiable. With this notation the Lovász
Local Lemma implies that

l(k) ≥
⌊

2k

e

⌋

− 1.(1.1)

The order of magnitude of this bound is trivially
optimal: l(k) < 2k − 1 follows from the unsatisfiable
k-CNF consisting of all possible k-clauses on only k
variables.

In [9] a hardness jump is proved for the function
l: deciding the satisfiability of k-CNF formulas with
maximum neighborhood size at most max{l(k)+2, k+3}
is NP-complete.

As observed by Kratochv́ıl, Savický and Tuza [15]
the bound (1.1) immediately implies

f(k) ≥
⌊

l(k)

k

⌋

+ 1 ≥
⌊

2k

ek

⌋

.(1.2)

From the other side Savický and Sgall [21] showed

that f(k) = O
(

k0.74 · 2k

k

)

. This was improved by

Hoory and Szeider [12] who came within a logarithmic

factor: f(k) = O
(

log k · 2k

k

)

. Recently, Gebauer [10]

showed that the order of magnitude of the lower bound

is correct and f(k) = Θ(2k

k).
More precisely, the construction of [10] gave f(k) ≤

63
64 · 2k

k . The constant factor 63
64 was clearly an artefact

of the proof and seemed to be pushing the humanly
possible boundaries of the approach of [10] in the
sense that the technicalities of the proof became more
and more intricate and unmanageable with no hope
of converging to any conclusion. Determining f(k)
asymptotically remained an outstanding open problem
and there was no clear consensus about where the
correct asymptotics should fall between the constants
1/e of [15] and 63/64 of [10]. In fact several of
the open problems of the recent survey of Gebauer,
Moser, Scheder, and Welzl [9] is centered around the
understanding of this question.

In our main theorem we settle these questions from
[9] and determine the asymptotics of f(k). We show
that the lower bound (1.2) can be strengthened by a
factor of 2 and that this bound is tight.

Theorem 1.1.

f(k) =

(
2

e
+ O

(
1√
k

))
2k

k
.

For the upper bound we use the fundamental binary
tree approach of [10]. We define a suitable continuous
setting for the construction of the appropriate binary
trees, which allows us to study the problem via a
differential equation. The solution of this differential
equation corresponds to our construction of the binary
trees, which then can be given completely discretely.
The lower bound is achieved via the lopsided version
of the Lovász Local Lemma. The key of the proof is
to assign the random values of the variables counter-
intuitively: each variable is more probable to satisfy
those clauses where it appears as a literal with its less
frequent sign. The lower bound can also be derived
from a theorem of Berman, Karpinski and Scott [2]
tailored to give good lower bounds on f(k) for small
values of k. In [2] the asymptotic behavior of the bound
is not calculated, since the authors do not believe in
its optimality. In the Appendix we reproduce a simple
argument giving this asymptotics, because the proof of
[2] contains a couple of errors, so the unusual choice of
the probabilities is not apparent.

Here we only give the intuition of where the factor
two improvement is coming from and how to achieve it.
The lopsided version of the local lemma [6] allows for
a more restricted definition of “intersecting” clauses in
a CNF formula. Namely, one can consider two clauses
intersect only if they contain a common variable with
different sign and this still allows the same conclusion
as in the original Local Lemma. If all variables in
a (k, s)-CNF are balanced, that is they appear an
equal number of times with either sign, then each
clause intersects only at most ks/2 other clauses in
this restricted sense, instead of the at most k(s − 1)
other clauses it may intersect in the original sense
and the factor two improvement is immediate. To
handle the unbalanced case we consider a distribution
on assignments where the variables are assigned true
or false values with some bias. It would be natural to
favor the assignment that satisfies more clauses, but the
opposite turns out to be the distribution that works.
This is because the clauses with some variables receiving
the less frequent sign are those that intersect more
than average other clauses, so those are the ones whose
satisfiability should be boosted with the bias put on the
assignments.

Since the (lopsided) Lovász Local Lemma was
fully algorithmized by Moser and Tardos [17] we now
have that not only every (k, s)-CNF formula for s =
⌊2k+1/(e(k + 1))⌋ has a satisfying assignment but there

is also an algorithm that finds such an assignment in
probabilistic polynomial time. Moreover, for just a lit-
tle bit larger value of the parameter s one cannot find a
satisfying assignment efficiently simply because already
the decision problem is NP-hard.

Our construction also shows that the lower bound
(1.1) on l(k) is asymptotically tight.

Theorem 1.2.

l(k) =

(
1

e
+ O

(
1√
k

))

2k.

One may wonder how the lower bound on l(k)
implied by the (original) Local Lemma is tight and no
improvement can be achieved using the lopsided version.
This is no surprise when we see that in the formulas
we construct every pair of clauses that intersect in the
original sense also do in the more restricted sense.

2 Formal Definitions and the Informal
Continuous Construction

The proof of the upper bounds of Theorem 1.1 and 1.2
contain several technically involved arguments. In this
section we give most of the formal definitions and sketch
the main informal ideas behind the construction. Even
though the final construction can be formulated without
mentioning the underlying continuous context, we feel
that an informal description greatly helps in motivating
it.

2.1 Binary Trees We start by collecting the neces-
sary ingredients from [10]. We consider only binary trees
where every node has either two or no children. For ev-
ery such binary tree T with all leaves having depth at
least k one can construct a k-CNF formula F as follows.
For every non-leaf node v ∈ V (T) we create a variable
xv and label one of its children with the literal xv and
the other with x̄v. We do not label the root. With ev-
ery leaf w ∈ V (T) we associate a clause Cw by walking
along the path from w towards the root and collecting
the first k labels encountered (including the one at w).
The set of clauses Cw, over all leaves w of T , constitutes
the formula F .

Observation F is unsatisfiable.
Indeed, any assignment α of the variables defines a

path from the root to some leaf w, by always proceeding
to the unique child whose label is mapped to 0 by α; thus
Cw is violated by α.

Hence our task of constructing unsatisfiable formu-
las with low variable-degree can possibly be achieved
via constructing binary trees where each node has low
number of leaf descendants within distance k. Formally,
we say that a leaf w is l-close to a vertex v if v is an

ancestor of w, at distance at most l from v. We call a
binary tree T a (k, d)-tree if

(i) every leaf has depth at least k and

(ii) for every node u of T there are at most d leaves
that are k-close to u.

Note that this definition is slightly different from the
one in [10].

The next lemma states the connections between
(k, d)-trees and unsatisfiable k-CNF formulas with
bounded number of conflicts. It is a slight modification
of Lemma 1.6 in [10].

Lemma 2.1. Let T be a (k, d)-tree. Then there are
unsatisfiable CNF formulas F = F (T), F ′ = F ′(T) with
the following properties.

(a) F is a (k, d)-CNF formula. In particular f(k) ≤
d − 1.

(b) F ′ is a (k+1, 2d)-CNF formula where every clause
intersects at most (k + 1)d other clauses. In
particular l(k + 1) ≤ (k + 1)d − 1.

Note that Lemma 2.1 reduces the proof of the
upper bounds in Theorem 1.1 and Theorem 1.2 to the

construction of a
(

k,
(

2
e + O(1/

√
k)

)
2k

k

)

-tree and this

is what we concentrate on in the remaining of this
section.

2.2 Vectors and constructibility Given a tree T ,
we assign a leaf-vector ~dw = (x0, x1, . . . , xk) to each
node w ∈ V (T), where xi denotes the number of leaf-
descendants of w having distance i to w. E.g., for
a leaf w we have ~dw = (1, 0, . . . , 0), for the root w

of a full binary tree of depth l ≤ k we have ~dw =
(0, 0, . . . , 0, 2l, 0, . . . , 0). By definition, for every node

w of a (k, d)-tree we have ~dw = (x0, x1, . . . , xk) with

|~dw| :=
∑k

i=0 xi ≤ d.
For some vector ~x with |~x| ≤ d we define a (k, d, ~x)-

tree as a tree where (i) the root has a leaf-vector ~y
which is coordinate-wise dominated by ~x (i.e., yi ≤ xi

for every i), and (ii) each vertex has at most d leaf-
descendants that are k-close. E.g., a tree consisting
of a parent with two children is a (k, d, ~x)-tree, for

every ~x with x1 ≥ 2 and
∑k

i=0 xi ≤ d. A vector ~x
is (k, d)-constructible (or constructible if k and d are
clear from the context), if a (k, d, ~x)-tree exists. E.g.,
(1, 0, . . . , 0), or more generally (0, 0, . . . , 0

︸ ︷︷ ︸

l

, 2l, 0, . . . , 0)

are constructible as long as 2l ≤ d. Observe that the
constructibility of the vector (0, . . . , 0, r) for some r ≤ d
readily implies the existence of a (k, d)-tree.

If |~x| ≤ d then ~x is a (k, d)-vector. For a vector ~x =

(x0, . . . , xk) the weight w(~x) is
∑k

i=0 xi/2i. The next
lemma, which is a dual version of Kraft’s inequality,
gives a useful necessary condition for the constructibility
of a vector.

Lemma 2.2. Let ~x be a (k, d)-vector. If w(~x) ≥ 1 then
~x is constructible.

In this terminology the main result of [10] (giving a
weaker constant factor) established the constructibility
of the vector ~v = (0, . . . , 0, 1, 2, . . . , 2s), provided s =
k − log k + 1 and d ≥ 2s+1. This is an immediate
consequence of Lemma 2.2. By considering a full binary
tree T with all leaves at depth s and attaching a
(k, d, ~v)-tree to every leaf l of T (such that l is the
root) one can obtain the constructibility of (0, . . . , 0, 2s),
which directly implies the existence of a (k, d)-tree for

infinitely many k and d = 2k+2

k .
A non-leaf vertex v of a tree “distributes” its k-close

leaf descendants between its children w′ and w′′. That
is, if ~dw′ = (x′

0, x
′
1, . . . , x

′
k) and ~dw′′ = (x′′

0 , x′′
1 , . . . , x′′

k),
then we have

~dv = (0, x′
0 + x′′

0 , x′
1 + x′′

1 , . . . , x′
k−1 + x′′

k−1)(2.3)

We will consider two fundamentally different
kinds of way a parent vertex v with leaf-vector
~dv = (x0, x1, . . . , xk) can distribute its k-close leaf-
descendants between its children. First, a distribution is
even if x′

i = x′′
i = xi+1

2 for every i ∈ {1, . . . , k}. (Assume

for the moment that the coordinates of ~dv are even.)

Observation 2.3. Let m be an integer and let ~x =
(x0, x1, . . . , xk) be a (k, d)-vector
where xi is divisible by 2m, for every i ≥ m. Then
~x(m) = (xm

2m , xm+1

2m , . . . , xk

2m , d
2m , d

2m−1 , . . . , d
2) is a (k, d)-

vector. Moreover, if ~x(m) is constructible then ~x is
constructible.

The first statement is immediate. For the second
statement, attach a copy of a (k, d, ~x(m))-tree to each
leaf of a full binary tree of depth m. This gives a
(k, d, ~x)-tree.

Secondly, a distribution is piecewise if there is some
threshold index t such that for i ≤ t− 1, x′

i = xi+1 and
x′′

i = 0, whereas for t ≤ i ≤ k−1, x′
i = 0 and x′′

i = xi+1.
If the last coordinates x′

k = x′′
k = 0 then ~x′ and ~x′′ are

(k, d)-vectors provided ~x is a (k, d)-vector. Furthermore
the constructibility of ~x′ and the constructibility of ~x′′

imply the constructibility of ~x.
We build our (k, d)-tree from the root down to the

leaves, starting with the vector (0, . . . , 0, 1, 2, . . . , d
2).

Here we assume that d is a large power of 2, and as d is

of the order 2k/k the number of 0s at the beginning is
about log k. The typical sub-routine we use to define the
leaf-vectors of the children of some node is the one we
call “cut at t and split”. This involves first a piecewise
distribution at t, such that Lemma 2.2 is applicable
for w′, that is

∑t−1
i=0 xi+1/2i ≥ 1. Then the even

distribution is applied to the child w′′ m = log xt+1-
times (c.f. Observation 2.3) to produce a leaf vector
(0, . . . , 0, 1, xt+2

2m , . . . , xk

2m , 0, d
2m , d

2m−1 , . . . , d
2) (assuming,

as we will have it, that all xis are large enough powers
of 2). In fact we produce 2m copies of this vector, but
since its constructibility implies the constructibility of
~x by Observation 2.3 we concentrate on producing one.

In the following we give an indication how, using
only the simple sub-routine of cut and split, can produce

a (k, d)-tree with 1
2−ǫ · 2k+1

k for every ǫ > 0. Then we
introduce a biased version of cuts which allows us to
push the bound on d to the limit.

2.3 Passing to continuous The goal of this subsec-
tion is to give motivation behind the formal proof of
the next section. Recall that our goal is to obtain a
(k, d)-tree for

d =
1

T

2k+1

k
(2.4)

where T should be as large as possible. By our lower
bound we know that we can not achieve T ≥ e, our goal
is to have T ≥ e − ǫ for every ǫ > 0.

After fixing a target constant T , it will be helpful
to consider the leaf-vectors in a normalized form, which
then will enable us to interpret them as continuous
functions on the [0, 1] interval. For a given target d
and leaf-vector x = (x0, . . . , xk) the normalized vector,

~y = ~y(~x) is defined as (y0, . . . , yk) with yj = 1
2j

2k+1

d xj ,
i.e., x̄ =
(2k+1 x0

d , 2k x1

d , . . . , xk+1−log d, 2xk+2−log d, . . . , 4
xk−1

d , 2xk

d).
We say that a normalized vector ~y(~x) is constructible
if ~x is constructible. The next observation follows
directly from Lemma 2.2 and (2.4).

Observation 2.4. Let ~y = (y0, y1, . . . , yk) be a nor-

malized vector. If
∑k

i=0 yi ≥ Tk then ~y is constructible.

The relationship between the normalized vectors of
a parent and its children is also described by an equation
similar to (2.3). The normalized vector of the parent is

(0,
y′
0 + y′′

0

2
,
y′
1 + y′′

1

2
, . . . ,

y′
k−1 + y′′

k−1

2
)(2.5)

We use this normalizing operation to help us see
the leaf-vectors more and more as functions, defined
on the [0, 1] interval, possibly in a continuous manner.
Indeed, if k is large enough then normalized vectors can
be represented as step-functions.

For example the normalizing operation transforms
the leaf-vector
(0, . . . , 0, 1, 2, . . . , 2s) with 2s = d/2, into the normalized
(0, . . . , 0, 1, 1, . . . , 1). If s = k − log k, then only o(k)
entries are 0 and most entries are 1. We want to
disregard this small error and consider this normalized
vector as the constant 1 function defined on the interval
[0, 1].

In general we will talk about real functions on
the interval [0, 1] and will routinely ignore the little
o(1) sized pieces — by choosing k large enough the
normalized vectors are approximated well by the real
functions and the o(1) errors will be insignificant.

The following is a reformulation of Observation 2.4
into the continuous setting. (The ⋆ denotes that this is
not a formal statement.)

Lemma⋆ 2.5. If
∫ 1

x=0
f(x) dx ≥ T then f is con-

structible.

We say that f is easy constructible if Lemma⋆ 2.5
applies.

First we take a look at how the sub-routine “cut and
split” of the previous subsection can be pushed to give
an easily constructible function with target T = 2 − ǫ.

In the continuous the subroutine will be called
”cut at v and split” which, given a function
f on [0, 1] and a value v between 0 and 1,
creates the following two functions (corresponding
to the two leaf-vectors in the previous section):

fright(x) =

{
2f(x + v) x ∈ [0, 1 − v)
1 x ∈ [1 − v, 1]

fleft(x) =

{
2f(x) x ∈ [0, v)
0 x ∈ [v, 1]

As in the cut and split subroutine of the previ-
ous section, where the child w′ is expected to use
Lemma 2.2, here we want that the function fleft is able
to use Lemma⋆ 2.5 and hence is easily constructible.

Starting with the constant 1 function f and per-
forming a cut at 1 − δ with any constant δ < ǫ/4, we
obtain that the integral of fleft is at least 2 − ǫ, hence
Lemma⋆ 2.5 applies. The other child, fright on the other
hand is significantly improved compared to his parent
(as it should be!): its value on the interval [0, δ) is not
1, but 2. Hence we are able to cut fright at 1 − 2δ and
have the left child large enough integral. It turns out
that repeatedly cutting at vi = 1 − iδ the right-child
functions for i = 1, 2 . . . the left-functions can always
immediately use Lemma⋆ 2.5 with target T = 2− ǫ and
be easily constructible. At the same time it is easy to
see that the integral of the right-functions grows in ev-
ery step and by the time cut point vi reaches 1/3 it gets
larger than 2 and thus Lemma⋆ 2.5 applies to it.

In order to reach target T = e − ǫ we need a
generalization of the cut and split subroutine of above.

Our goal is to create a subroutine which for a given
function f creates two functions fleft, fright in which fleft

is easily constructible. The idea is to cut very close
to 0, and distribute the possibly very little gain in the
integral of fright more evenly on the whole interval [0, 1].
In order to be able to cut very close to 0 and still being
able to use Lemma⋆ 2.5 we need to multiply the value
of the function left of the cut by a large number (we will
use 2l) to compensate for the shortness of the cut. We
do that by actually distributing the function f into 2l

functions averaging f , out of one will be the left part
multiplied by 2l and all the others will be the right part
multiplied by 1 + 1/(2l − 1). This can be done by a
depth l full binary tree connecting the corresponding
trees. At the end such an “l-deep cut at v and split”
subroutine will create from a given function f on [0, 1]
two functions:

fright(x) =

{
2l

2l−1f(x + v) x ∈ [0, 1 − v)

1 x ∈ [1 − v, 1]

fleft(x) =

{
2lf(x) x ∈ [0, v)
0 x ∈ [v, 1]

We can cut very close to 0 and this is what we
will do. On the other hand, the improvement in the
value of the right-function is then hardly visible, but
is very evenly distributed and is tailored for continuous
analysis.

We define a function that approximates well how
the right-functions develop if we repeatedly cut very
close to 0. For this we will define a two variable function
F (t, x) where t represents the time that has elapsed
since we started our process and x ∈ [0, 1] is the variable
of our current right-function. We will have the initial
conditions F (0, x) = 1 (we start with the constant 1
function) and F (t, 1) = 1 (after a cut, always 1 enters
from the right side during a split). For each t, F (t, x)
should be a good approximation of the right-function
that we get by starting with the constant 1 function
and cut always at infinitesimally small values until our
cumulative cut is t.

Let F (t, x) be our current right-function (defined
on the [0, 1] interval with variable x) for some fixed t.
What happens if we cut at some infinitesimally small
δ ∈ [0, 1] with a cut of sufficiently large depth? In order
to have the left child use Lemma⋆ 2.5 immediately the
integral of the function on the interval [0, δ], times 2l

should be at least T : approximating the integral with
2lδF (t, 0) ≥ T , so l = log2(T/(δF (t, 0))). After this cut
the right-function F (t + δ, x) is 1 on the infinitesimally
small interval [1 − δ, 1]. On the long interval our old
right-function is multiplied by a factor depending on δ,

which in turn depends on the depth of the cut giving
the factor (1+1/(2l−1)) ≈ 1+(δF (t, 0))/T . Imagining
that our function changes with unit speed over time

F (t + δ, x − δ) = F (t, x)(1 +
δF (t, 0)

T
).

This gives us an equation on the derivative of F (t, x) (in
direction (−1, 1)) which describes how fast the function
values tend to change

F ′(t, x)

F (t, x)
=

F (t, 0)

T
.

Integrating on the segment from (s − 1, 1) to (s, 0) we
obtain ∫

(ln F)′ =
1

T

∫ s

s−1

F (t, 0)dt.

The left side evaluates to ln F (s, 0) by the initial
condition. Estimating F (s, 0) gives that F (s, 0) ≥
exp(1

T F (s − 1, 0)). Hence the function F (s, 0) tends to
infinity if the constant T is less than e, showing the
right-function can also use Lemma⋆ 2.5 after a while.

The above continuous heuristic is the underlying
idea of the construction described in the Appendix. It
provides a good approximation to what happens in the
discrete case, even though a large number of small errors
must be introduced and the handling of all of them is
quite technical. Crucially the number of these errors
depends only on the given ǫ and hence one can plan for
them in advance.

3 The Class MU(1) and Outlook

3.1 The class MU(1) The function f(k) is not
known to be computable. In order to still be able
to upper bound its value, one tries to restrict to
a smaller/simpler class of formulas. When looking
for unsatisfiable (k, s)-CNF formulas it is naturally
enough to consider minimal unsatisfiable formulas, i.e.,
unsatisfiable CNF formulas that become satisfiable if
we delete any one of their clauses. The set of minimal
unsatisfiable CNF formulas is denoted by MU. As
observed by Tarsi (c.f. [1]), all formulas in MU have
more clauses then variables, but some have only one
more. The class of these MU formulas, having one more
clauses than variables is denoted by MU(1). This class
has been widely studied (see, e.g., [1], [4], [13], [16], [23]).
Hoory and Szeider [11] considered the function f1(k),
denoting the largest integer such that no (k, f1(k))-
CNF formula is in MU(1), and showed that f1(k) is
computable. Their computer search determined the
values of f1(k) for small k: f1(5) = 7, f1(6) = 11,
f1(7) = 17, f1(8) = 29, f1(9) = 51. Via the trivial
inequality f(k) ≤ f1(k), these are the best known upper

bounds on f(k) in this range. In contrast, even the value
of f(5) is not known.

It is an interesting open problem whether f(k) =
f1(k) for every k. Our upper bound construction from
Theorem 1.1 does reside in the class MU(1) and hence
shows that f(k) and f1(k) are equal asymptotically:
f(k) = (1 + o(1))f1(k).

Scheder [22] showed that for almost disjoint k-CNF
formulas (i.e. CNF-formulas where any two clauses have
at most one variable in common) the two functions are
not the same. That is, if f̃(k) denotes the maximum
s such that every almost disjoint (k, s)-CNF formula is
satisfiable, for k large enough every unsatisfiable almost
disjoint (k, f̃(k) + 1)-CNF formula is outside of MU(1).

3.2 Constructing binary trees and MU(1) for-
mulas The structure of MU(1) formulas is well under-
stood and it is closely related to binary trees. In partic-
ular, given any finite rooted binary tree T with the prop-
erty that each non-leaf vertex has exactly two children
we associate with it certain CNF formulas. Similarly
to the previous section we start with assigning distinct
literals to the vertices, assigning the negated and non-
negated form of the same variable to the two children
of any non-leaf vertex. We do not assign any literal to
the root. For each leaf of T select a clause that is the
disjunction of some literals along the path from the root
to that leaf and consider the CNF formula F that is the
conjunction of one clause for each leaf. Clearly, F is un-
satisfiable and it has one more clauses than the number
of variables associated with T . Note that in our con-
struction for proving the upper bound in Theorem 1.1
we restrict to formulas obtained from binary trees by
selecting on every root-leaf path the k vertices farthest
from the root.

As proved in [4] F is a MU(1) formula if and only
if all literals associated to vertices of T do appear in F ,
furthermore every formula in MU(1) can be obtained
from a suitable binary tree this way. Similarly, if a
(k, d)-tree T is minimal with respect to the number of
leaves then the corresponding k-CNF formula F = F (T)
we consider in our construction is in MU(1).

Let f2 be the largest integer d such that no (k, d)-
tree exist. Then, clearly, f(k) ≤ f1(k) ≤ f2(k) and we
show f(k) = (1 + o(1))f2(k).

3.3 On the size of unsatisfiable formulas By the
size of a tree we mean the number of its leaves and by
the size of a CNF formula we mean the number of its
clauses. With this notation the size of a (k, d)-tree and
the size of the corresponding (k, d)-CNF in MU(1) are
the same.

When proving the upper bound of Theorem 1.1 we

constructed (k, d)-trees for d ≈ 2k+1

ek . Their size and
therefore the size of the corresponding (k, d)-CNF in
MU(1) is at most 2h, where h is the height of the tree:
the largest root-leaf distance. In fact, the size of the
trees we constructed are very close to this upper bound.
Therefore it makes sense to take a closer look at the
height.

Recall that we associated with a vertex v of a
(k, d)-tree the (k, d)-vector (x0, . . . , xk), where xj is the
number of leaf-descendants of v of distance j from v.
A minimal (k, d)-tree has no two vertices along the
same branch with identical vectors, so the height of a
minimal (k, d)-tree is limited by the number of (k, d)-
vectors, less than (d + 1)k+1. For d = f(k) + 1 this

is 2Θ(k2). The same bound for minimal (k, d)-CNF
formulas in MU(1) is implicit in [11]. There is numerical
evidence that the size of the minimal (k, f(k) + 1)-tree
and the minimal (k, d)-CNF in MU(1) might indeed
be doubly exponential in k (consider the size of the
minimal (7, 18)-tree and the minimal (7, 18)-CNF in
MU(1) mentioned below).

A closer analysis of the proof of Theorem 1.1 shows
that the height of the (k, d)-tree constructed in it is at
most kd. While this is better than the general upper
bound above it still allows for trees with sizes that are
doubly exponential in k.

This height can, however, be substantially de-
creased if we allow the error term in d to slightly grow.

If we allow d = (1 + ǫ)2k+1

ek for a fixed ǫ > 0, then a
more careful analysis shows that the height of the tree
created becomes O(k). This bounds the size of the tree
and the corresponding formula by a polynomial in d.

Let us define f1(k, d) for d > f1(k) to be the size of
the smallest (k, d)-CNF in MU(1) and let f2(k, d) stand
for the size of the smallest (k, d)-tree, assuming d >
f2(k). While f1(k, f1(k)+1) and similarly f2(k, f2(k)+
1)) are probably doubly exponential in k, for slightly
larger values of d f1(k, d) and f2(k, d) are polynomial in
d (and thus simply exponential in k).

Finally we mention the question whether f1(k) =
f2(k) for all k. In other words, we ask whether we lose
by selecting the k vertices farthest from the root when
making a MU(1) k-CNF formula from a binary tree.
As mentioned above, f(k) = f1(k) is also open, but
f1(k) = f2(k) seems to be a simpler question as both
functions are computable. Computing their values up
to k = 8 we found these values agreed. To gain more
insight we computed the corresponding size functions
too and found that f1(k, d) = f2(k, d) for k ≤ 7 and
all d > f1(k) with just a single exception. We have
f1(7) = 17 and f1(7, 18) = 10, 197, 246, 480, 846, while
f2(7, 18) = 10, 262, 519, 933, 858. Does this indicate
that all other equalities are coincidences and f1 and f2

will eventually diverge?
A related algorithmic question is whether the some-

what simpler structure of (k, d)-trees can be used to find
an algorithm computing f2(k) substantially faster than
the algorithm of Hoory and Szeider [11] for computing
f1(k). Such an algorithm would give useful estimates
for f1(k) and also f(k). At present we use a similar
(and similarly slow) algorithm for either function.

Appendix

A Proof of the Lower Bound of Theorem 1.1

For our proof we use the Lopsided Local Lemma of
Erdős and Spencer [6].

Lemma A.1. (Lopsided Local Lemma) Let {AC}C∈I be
a finite set of events in some probability space. Let Γ(C)
be a subset of I for each C ∈ I such that for every subset
J ⊆ I \ (Γ(C) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC).

Suppose there are real numbers 0 < xC < 1 for C ∈ I
such that for every C ∈ I we have

Pr(AC) ≤ xC

∏

D∈Γ(C)

(1 − xD).

Then
Pr(∧C∈I ĀC) > 0.

Let F be a (k, s)-CNF formula with s =
⌊

2k+1

e(k+1)

⌋

.

We set the values of the variables randomly and
independently, but not according to the uniform distri-
bution. This seems reasonable to do as the number of
appearances of a variable xi in F as a non-negated lit-
eral could be significantly different from the number of
clauses where xi appears negated. It is even possible
that a variable xi appears negated in only a few, maybe
even in a single clause, in which case one tends to think
that it is reasonable to set this variable to true with
much larger probability than setting it to false. In fact
it is exactly the opposite we will do. The more a vari-
able appears in the clauses of F as non-negated, the less
likely we will set it to true. The intuition behind this is
explained in the introduction.

For a literal v we denote by dv the number of
occurrences of v in F . We set a variable x to true with
probability Px = 1

2 + 2dx̄−s
2sk . This makes the negated

version x̄ satisfied with probability Px̄ = 1
2 − 2dx̄−s

2sk ≥
1
2 + 2dx−s

2sk as we have dx + dx̄ ≤ s. So any literal v is

satisfied with probability at least 1
2 + 2dv̄−s

2sk .
For each clause C ∈ F , we define the ”bad event”

AC to be that C is not satisfied.

For every C ∈ F we define Γ(C) to be the family of
clauses D in F that have at least one such variable in
common with C whose sign is different in C and D.

Finally we set the value of each xC to be x = e
2k .

We need to check that for every subset J ⊆ I \
(Γ(C) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC).

This is true because of the FKG inequality [8].
We need to check also the other condition of the

lemma. Let C be an arbitrary clause and let us denote
the literals it contains by v1, . . . , vk. For C to not to be
satisfied we must not set any of the independent literals
in C to true and therefore we have

Pr(AC) =

k∏

i=1

(1 − Pvi
)

≤
k∏

i=1

(
1

2
− 2dv̄i

− s

2sk

)

≤ 1

2k

k∏

i=1

((

1 +
1

k

) (

1 − edv̄i

2k

))

≤
(
1 + 1

k

)k

2k

k∏

i=1

(1 − x)dv̄i

<
e

2k
(1 − x)|Γ(C)|

= x
∏

D∈Γ(C)

(1 − x).

As the conditions of the lopsided local lemma are
satisfied, its conclusion must also hold. It states that the
random evaluation of the variables we consider satisfies
the (k, s)-CNF F with positive probability. Thus F

must be satisfiable and we have f(k) ≥ s =
⌊

2k+1

e(k+1)

⌋

.

B Formal Proof of the Existence of Suitable
Trees

Let us fix the positive integers k, d and l. We will
not show the dependence on these parameters in the
next definitions to simplify the notation, although d′,
E, Cr and C∗

r depend on them. We let d′ = d(1 −
1/(2l−1)). For a (k, d)-vector x = (x0, . . . , xk) we define
E(x) = (⌊x1/2⌋, ⌊x2/2⌋, . . . , ⌊xk/2⌋, ⌊d′/2⌋). We denote
by Em(x) the vector obtained from x by m applications
of the operation E. For l ≤ r ≤ k we define Cr(x) to
be the (k + 1)-tuple starting with r + 1 − l zero entries
followed by ⌊xj/(2l − 1)⌋ for j = r + 1, . . . , k, followed
by ⌊d′/2l−j⌋ for j = 0, 1, . . . , l − 1 and let C∗

r (x) be
the (k + 1)-tuple starting with xj for j = l, l + 1, . . . , r
followed by k − r + l zeros.

Note that for the following lemma to hold we could
use d instead of d′ in the definition of E and also in most
places in the definition of C. The one place where we
cannot do this is the entry ⌊d′/2l⌋ of Cr(x) right after
⌊xk/(2l − 1)⌋. If we used a higher value there, then one
of the children of the root of the tree constructed in the
proof below would have more than d leaves among its
descendants in distance at most k. We use d′ everywhere
to be consistent and provide for the monotonicity as
used in the proof of Theorem B.2.

Lemma B.1. Let k, d and l be positive integers and x
a (k, d)-vector.

(a) E(x) is a (k, d)-vector. If E(x) is constructible,
then so is x.

(b) For l ≤ r ≤ k both Cr(x) and C∗
r (x) are (k, d)-

vectors. If both of these vectors are constructible
and |C∗

r (x)| < d/2l, then x is also constructible.

Proof. (a) We have |E(x)| ≤ |x|/2 + d′/2 < d, so E(x)
is a (k, d)-vector. If there exists a (k, d, E(x))-tree, take
two disjoint copies of such a tree and connect them with
a new root vertex, whose children are the roots of these
trees. The new binary tree so obtained is a (k, d, x)-tree.

(b) The sum of the first k+1−l entries of Cr(x) is at
most |x|/(2l−1) ≤ d/(2l−1), the remaining fixed terms
sum to less than d′ = d(1 − 1/(2l − 1)), so |Cr(x)| ≤ d.
We trivially have |C∗

r (x)| ≤ |x| ≤ d, so both Cr(x) and
C∗

r (x) are (k, d)-vectors.
Let T be a (k, d, Cr(x))-tree and T ∗ a (k, d, C∗

r (x))-
tree. Consider a full binary tree of depth l and attach T ∗

to one of the 2l leaves of this tree and attach a separate
copy of T to all remaining 2l − 1 leaves. This way we
obtain a finite binary tree T ′ with all non-leaf vertices
having exactly two children. To check condition (i) of
the definition notice that no leaf of T ′ is in distance less
than l from the root, leaves in distance l ≤ j ≤ r are
all in T ∗ and leaves in distance r < j ≤ k are all in
the 2l − 1 copies of T . Condition (ii) we have to check
only for vertices in distance 1 ≤ j ≤ l from the root.
There are two types of vertices in distance j. One of
them has 2l−j copies of T below it, the other has one
less and also T ∗. It is a straight forward calculation to
bound the number of leaves below and in distance at
most k in either case. Instead of giving all the details
of the computation we mention that the vertex of the
first type in distance j = 1 of the root makes us use the
specific value of d′ < d we use and the vertices of the
second type make it necessary to assume a bound on
|C∗

r (x)|.

Armed with the last two lemmas we are ready to
prove the main result of this paper.

Theorem B.2.

f2(k) ≤ 2k+1

ek
+ O

(
2k+1

k3/2

)

Proof. We show that (k, d)-trees exist for large enough
k and with d = ⌊2k+1/(ek) + 100 · 2k+1/k3/2⌋.

We set l = ⌊log k/2⌋ and s = 2l. Here log denotes
the binary logarithm, so 2l ≈

√
k. We define the (k, d)-

vectors x(t) = (x
(t)
0 , . . . , x

(t)
k) recursively. We start with

x(0) = Ek−s(z), where z denotes the all zero (k, d)-
vector. For t ≥ 0 we define x(t+1) = Ert−s−l(Crt

(x(t))),
where rt is the is the smallest index in the range

s + l ≤ rt ≤ k with
∑rt

j=0 x
(t)
j /2j ≥ 2−l. At this point

we may consider the sequence of the (k, d)-vectors x(t)

end whenever the weight of one of them falls below 2−l

and thus the definition of rt does not make sense. But
we will establish below that this never happens and the
sequence is infinite.

Notice first, that we have x
(t)
j = 0 for all t and

0 ≤ j ≤ s, while the entries x
(t)
j for s < j ≤ k are

all obtained from d′ by repeated application of dividing
by an integer (namely by 2l − 1 or by a power of
2) and taking lower integer part. Using the simple
observation that ⌊⌊a⌋/j⌋ = ⌊a/j⌋ if a is real and j is
a positive integer we can ignore all roundings but the
last. This way we can write each of these entries in

the form
⌊

d′

2i(2l−1)j

⌋

=

⌊

d′

2i+lj

(

1 + 1
2l−1

)j
⌋

for some

non-negative integers i and j. Using the values α =
1+1/(2l−1) and qt = rt−s (this is the amount of “left
shift” between xt and xt+1) we can give the exponents
explicitly.

x
(t)
j =

⌊
d′

2k+1−j
αc(t,j)

⌋

(B.1)

for all s < j ≤ k and all t, where c(t, j) is the largest

integer 0 ≤ c ≤ t satisfying
∑t−1

i=t−c qi ≤ k − j. We
define c(t, j) = 0 if qt−1 > k − j.

The formal inductive proof of this formula is a
straight forward calculation. What really happens here
(ignoring the rounding) is that each entry enters at the
right end of the vector as d′/2 and is divided by 2 every
time it moves one place to the left (application of E) but
when it moves l places to the left through an application
of Crt

it is divided by 2l − 1 instead of 2l so it gains a
factor of α. The exponent c(t, j) counts how many such
factors are accumulated. If the “ancestor” of the entry

x
(t)
j was first introduced in x(t′), then c(t, j) = t − t′.

We claim next that c(t, j) and x
(t)
j increases

monotonously in t for each fixed s < j ≤ k, while qt

decreases monotonously with t. We prove these state-
ments by induction on t. We have c(0, j) = 0 for all j,

so c(1, j) ≥ c(0, j). If c(t + 1, j) ≥ c(t, j) for all j, then
all entries of x(t+1) dominate the corresponding entries

of x(t) by Equation (B.1). If x
(t+1)
j ≥ x

(t)
j for all j, then

we have rt+1 ≤ rt by the definition of these numbers,
so we also have qt+1 ≤ qt. Finally, if qi is decreasing
for i ≤ t + 1, then by the definition of c(i, j) we have
c(i + 1, j) ≥ c(i, j) for i ≤ t + 1.

The monotonicity just established also implies that
the weight of x(t) is also increasing, so if the weight of
x(0) is at least 2−l, then so is the weight of all the other
x(t), and thus the sequence is infinite. The weight of
x(0) is

=
k∑

j=s+1

⌊
d′

2k+1−j

⌋

2j

>

k∑

j=s+1

d′

2k+1−j − 1

2j

> (k − s)
d′

2k+1
− 2−s

> (k − s)
1 − 1

2l−1

ek
− 2−s,

where the last inequality follows from d > 2k+1/(ek)
and the last term tends to e−1 as k tends to infinity, so
it is larger than 2−l for large enough k.

We have just established that the sequence x(t) of
(k, d)-vectors is infinite and coordinate-wise increasing.
Since |x(t)| ≤ d and it must strictly increase before the
sequence stabilizes, the sequence must stabilize in at
most d steps. So x(t) = x = (x0, . . . , xk) for t ≥ d. This
implies that qt also stabilizes with qt = q for t ≥ d.
Equation (B.1) as applied to t > d + k simplifies to

xj =

⌊
d′

2k+1−j
α⌊(k−j)/q⌋

⌋

.(B.2)

Recall that q = rt0 − s, and rt0 is defined as
the smallest index in the range s + l ≤ r ≤ k with
∑r

j=0 xj/2j ≥ 2−l. Thus we have q ≥ l. We claim that
equality holds. Assume for contradiction that q > l
Then by the minimality of rt0 we must have

2−l >

s+q−1
∑

j=0

xj

2j

=

s+q−1
∑

j=s+1

⌊
d′

2k+1−j α⌊(k−j)/q⌋
⌋

2j

>

s+q−1
∑

j=s+1

d′

2k+1−j α(k−j)/q−1 − 1

2j

> (q − 1)
d′

2k+1
αk/q−4 − 2−2l.

In the last inequality we used s = 2l and that j
q ≤ s+q

q =

1 + s
q ≤ 1 + 2l

l = 3. This inequality simplifies to

2−l(1 + 2−l)α4 2k+1

d′
> (q − 1)αk/q.(B.3)

Simple calculus gives that the right hand side takes
its minimum for q ≥ 2 between c − 1 and c − 2 for
c = k lnα and this minimum is more than (c − 3)e.

Using α = 1 + 1/(2l − 1) > e2−l

we have c ≥ k/2l. So
Inequality (B.3) yields

2−l(1 + 2−l)α4 2k+1

d′
>

ke

2l
− 3e.

Substituting our choice for d, d′, α and l (as functions
of k) shows that this last formula does not hold for large
k. The contradiction proves q = l as claimed.

We finish the proof of the theorem by establishing
that the (k, d)-vectors x(t) are constructible. We prove
this statement by downward induction for t. We start
with t = d, where x(d) = x and by Equation (B.2) its
weight is readily computable. Here we omit the details
of this straight forward calculation but state that the
weight is above 1. So by Lemma 2.2 x is constructible.

Now assume that x(t+1) is constructible. Recall
that x(t+1) = Ert−s−l(Crt

(x(t))), so by (the repeated
use of) Lemma B.1 part (a) Crt

(x(t)) is constructible.
By part (b) of the same lemma x(t) is also constructible
(and thus the inductive step is complete) if we can (i)
show that C∗

rt
(x(t)) is constructible and (ii) establish

that |C∗
rt

(x(t))| ≤ d/2l. For (i) we use the definition of

rt:
∑rt

j=0 x
(t)
j /2j ≥ 2−l. But the weight of C∗

rt
(x(t)) is

∑rt

j=l x
(t)
j /2j−l, so the contribution of each term with

j ≥ l is multiplied by 2l, while the missing terms j < l
contributed zero anyway as l < s. This shows that the
weight of C∗

rt
is at least 1 and therefore Lemma 2.2

proves (i). For (ii) we use monotonicity to see rt ≤ r0

and Equation (B.1) to see that r0 ≤ 5k/2l for large
enough k. Then we use monotonicity again to see

|C∗
rt

(x(t))| =
∑rt

j=s+1 x
(t)
j ≤ ∑rt

j=s+1 xj . Finally we use
Equation (B.2) to see that this number is well below
d/2l for large enough k. This finishes the proof of (ii)
and hence the inductive proof that x(t) is constructible
for every t.

As x(0) = Ek−s(z) is constructible Lemma B.1 (a)
implies that z is also constructible, so there exists
(k, d, z)-tree T . As z is the all zero vector, T must also
be a (k, d)-tree.

References

[1] R. Aharoni and N. Linial, Minimal non-two-colorable
hypergraphs and minimal unsatisfiable formulas, J.
Combin. Theory Ser. A 43, (1986), 196–204.

[2] P. Berman, M. Karpinski, and A. D. Scott, Approxima-
tion hardness and satisfiability of bounded occurrence
instances of SAT. Electronic Colloquium on Computa-
tional Complexity (ECCC), 10 (022), 2003.

[3] S.A. Cook, The complexity of theorem-proving proce-
dures, Proc. 3rd Ann. ACM Symp. on Theory of Com-
puting (STOC) (1971), 151–158.

[4] G. Davydov, I. Davydova, and H. Kleine Büning,
An efficient algorithm for the minimal unsatisfiability
problem for a subclass of CNF, Artif. Intell. 23, (1998),
229–245.

[5] O. Dubois, On the r, s-SAT satisfiability problem and
a conjecture of Tovey, Discrete Appl. Math. 26 (1990),
51-60.

[6] P. Erdős and J.Spencer, Lopsided Lovász local lemma
and Latin transversals Discrete Appl. Math. 30,
(1991), 151–154.

[7] U. Feige, A threshold of ln n for approximating set
cover, J. ACM 45(4), (1998), 634–652.

[8] C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, Correlation
inequalities for some partially ordered sets, Comm.
Math. Phys. 22 (1971), 89–103.

[9] H. Gebauer, R. A. Moser, D. Scheder and E. Welzl,
The Lovász Local Lemma and Satisfiability Efficient
Algorithms, (2009), 30–54.

[10] H. Gebauer, Disproof of the Neighborhood Conjecture
with Implications to SAT, Proc. 17th Annual European
Symposium on Algorithms (ESA) (2009), LNCS 5757,
764–775.

[11] S. Hoory and S. Szeider. Computing unsatisfiable k-
SAT instances with few occurrences per variable, The-
oretical Computer Science 337(1–3) (2005), 347–359,

[12] S. Hoory and S. Szeider, A note on unsatisfiable k-CNF
formulas with few occurrences per variable, SIAM J.
Discrete Math 20 (2), (2006), 523–528.

[13] H. Kleine Büning and X. Zhao, On the structure of
some classes of minimal unsatisfiable formulas, Discr.
Appl. Math. 130(2), (2003), 185–207

[14] L. G. Kraft, A device for quantizing, grouping, coding
amplitude modulated pulses, M.S. thesis, Electrical
Engineering Department, MIT (1949).

[15] J. Kratochv́ıl, P. Savický and Z. Tuza, One more
occurrence of variables makes satisfiability jump from
trivial to NP-complete, SIAM J. Comput. 22 (1),
(1993), 203–210.

[16] O. Kullmann, An application of matroid theory to the
SAT problem, Fifteenth Annual IEEE Conference on
Computational Complexity (2000), 116-124

[17] R.A. Moser, G. Tardos, A constructive proof of the
general lovász local lemma, J. ACM 57(2), (2010)

[18] C.H. Papadimitriou and M. Yannakakis, Optimization,
approximation, and complexity classes, J. Comput.
System Sci. 43 (3), (1991), 425–440

[19] J. Radhakrishnan, A. Srinivasan, Improved bounds
and algorithms for hypergraph 2-coloring, Random
Structures Algorithms 16 (3), (2000), 4–32

[20] S. Roman, Coding and Information Theory, Springer,
New York (1992).

[21] P. Savický and J. Sgall, DNF tautologies with a lim-
ited number of occurrences of every variable, Theoret.
Comput. Sci. 238 (1–2), (2000), 495–498.

[22] D. Scheder, Unsatisfiable Linear CNF Formulas Are
Large and Complex, 27th International Symposium
on Theoretical Aspects of Computer Science (STACS)
(2010), 621–631

[23] S. Szeider, Homomorphisms of conjunctive normal
forms, Discr. Appl. Math. 130(2), (2003), 351–365

[24] C.A. Tovey, A simplified NP-complete satisfiability
problem, Discr. Appl. Math. 8 (1), (1984), 85–89.

