The game of JumbleG

Alan Frieze* ${ }^{*}$ Michael Krivelevich ${ }^{\dagger}$ Oleg Pikhurko ${ }^{\ddagger}$ Tibor Szabó ${ }^{\S}$

September 1, 2004

Abstract

JumbleG is a Maker-Breaker game. Maker and Breaker take turns in choosing edges from the complete graph K_{n}. Maker's aim is to choose what we call an ϵ-regular graph (that is, the minimum degree is at least $\left(\frac{1}{2}-\epsilon\right) n$ and, for every pair of disjoint subsets $S, T \subset V$ of cardinalities at least ϵn, the number of edges $e(S, T)$ between S and T satisfies: $\left|\frac{e(S, T)}{|S||T|}-\frac{1}{2}\right| \leq \epsilon$.) In this paper we show that Maker can create an ϵ-regular graph, for $\epsilon \geq 2(\log n / n)^{1 / 3}$. We consider also a similar game, JumbleG2, where Maker's aim is to create a graph with minimum degree at least $\left(\frac{1}{2}-\epsilon\right) n$ and maximum co-degree at most $\left(\frac{1}{4}+\epsilon\right) n$, and show that Maker has a winning strategy for $\epsilon>3(\log n / n)^{1 / 2}$. Thus, in both games Maker can create a pseudo-random graph of density $\frac{1}{2}$. This guarantees Maker's win in several other positional games, also discussed here.

1 Introduction

JumbleG is a Maker-Breaker game. Maker and Breaker take turns in choosing edges from the complete graph K_{n} on n vertices. Maker's aim is to choose a graph which is ϵ-regular (the definition follows).

Let $G=(V, E)$ be a graph of order n. We usually assume that the vertex set is $[n]=$

[^0]$\{1, \ldots, n\}$. We call a pair S, T of non-empty disjoint subsets of $[n] \epsilon$-unbiased if
\[

$$
\begin{equation*}
\left|\frac{e_{G}(S, T)}{|S||T|}-\frac{1}{2}\right| \leq \epsilon, \tag{1}
\end{equation*}
$$

\]

where $e_{G}(S, T)$ is the number of $S-T$ edges in G. The graph G is ϵ-regular if

P1: $\delta(G) \geq\left(\frac{1}{2}-\epsilon\right) n$.
P2: Any pair S, T of disjoint subsets of $[n]$ with $|S|,|T| \geq \epsilon n$ is ϵ-unbiased.

Theorem 1 Maker has a winning strategy in Jumble G provided $\epsilon \geq 2(\log n / n)^{1 / 3}$ and n is sufficiently large.

We consider also a similar game, which we denote by JumbleG2. In this game Maker's aim is to create a graph with Properties P1 and P3, where

P3: Maximum co-degree is at most $\left(\frac{1}{4}+\epsilon\right) n$.
(The co-degree of vertices $u, v \in V(G)$ is the number of common neighbours of u and v in G.)

Here, too, Maker can win provided ϵ is not too small:

Theorem 2 Maker has a winning strategy in JumbleG2 for all $\epsilon \geq 3(\log n / n)^{1 / 2}$ if n is sufficiently large.

Theorems 1 and 2 are proved in Section 2. As shown in Section 3, our restrictions on ϵ are best possible, up to a logarithmic factor.

Although the goals of the above two games appear to be quite different, they are in fact very similar to each other - in both Maker tries to create a pseudo-random graph of density around $\frac{1}{2}$. Informally speaking, a pseudo-random graph $G=(V, E)$ is a graph on n vertices whose edge distribution resembles that of a truly random graph $G(n, p)$ of the same edge density $p=e(G)\binom{n}{2}^{-1}$. The reader can consult [12] for a recent survey on pseudo-random graphs. The fact that an ϵ-regular graph is pseudo-random with density $\frac{1}{2}$ is apparent from the definition. To see that degrees and co-degrees can guarantee pseudo-randomness we need to recall some notions and results due to Thomason. He introduced the notion of jumbled graphs [17]. A graph G with vertex set $[n]$ is (α, β)-jumbled if for every $S \subseteq[n]$ we have

$$
\left|e_{G}(S)-\alpha\binom{|S|}{2}\right| \leq \beta|S|
$$

where $e_{G}(S)$ is the number of edges of G contained in S.
Thomason showed that one can check for pseudo-randomness via jumbledness by checking degrees and co-degrees. Suppose that $G=(V, E)$ has minimum degree at least αn and no two vertices have more than $\alpha^{2} n+\mu$ common neighbours. Then, (see Theorem 1.1 of [17] and its proof) for every $s \leq n$, every set $S \subseteq V$ of size $|S|=s$ satisfies:

$$
\begin{equation*}
\left|e(S)-\alpha\binom{s}{2}\right| \leq \frac{((s-1) \mu+\alpha n)^{1 / 2}+\alpha}{2} s, \tag{2}
\end{equation*}
$$

and therefore G is (α, β)-jumbled with $\beta=\left((\alpha n+(n-1) \mu)^{1 / 2}+\alpha\right) / 2$.
Now suppose that for some $\epsilon=\Omega(1 / n)$ a graph G on n vertices has minimum degree at least $\alpha n=\left(\frac{1}{2}-\epsilon\right) n$ and maximum co-degree at most $\left(\frac{1}{4}+\epsilon\right) n=\alpha^{2} n+\left(2 \epsilon-\epsilon^{2}\right) n$. Then a routine calculation, based on (2), shows that G is ϵ^{\prime}-regular for $\epsilon^{\prime}=\Omega\left(\epsilon^{1 / 4}\right)$. Thus Theorem 2 can be used to show that Maker can create an ϵ-regular graph with $\epsilon=n^{-1 / 8+o(1)}-\mathrm{a}$ weaker result than the one provided by the direct application of Theorem 1. Indeed, let $|S|=s,|T|=t \geq \epsilon^{\prime} n, \mu=\left(2 \epsilon-\epsilon^{2}\right) n$, and $\epsilon^{\prime} \geq \Omega\left(\epsilon^{1 / 4}\right) \geq \Omega\left(n^{-1 / 4}\right)$. Then

$$
\begin{aligned}
& \left|\frac{e_{G}(S, T)}{s t}-\frac{1}{2}\right|=\frac{1}{s t}\left|e_{G}(S \cup T)-e_{G}(S)-e_{G}(T)-(\alpha+\epsilon) s t\right| \\
& \leq \frac{1}{s t}\left(\left|e_{G}(S \cup T)-\alpha\binom{s+t}{2}\right|+\left|e_{G}(S)-\alpha\binom{s}{2}\right|+\left|e_{G}(T)-\alpha\binom{t}{2}\right|\right)+\epsilon \\
& \leq \frac{((s+t) \mu+\alpha n)^{1 / 2}+\alpha}{2 s t}(s+t)+\frac{(s \mu+\alpha n)^{1 / 2}+\alpha}{2 t}+\frac{(t \mu+\alpha n)^{1 / 2}+\alpha}{2 s}+\epsilon \\
& \leq \frac{(s+t)^{3 / 2} \mu^{1 / 2}}{2 s t}+\frac{(s \mu)^{1 / 2}}{2 t}+\frac{(t \mu)^{1 / 2}}{2 s}+\frac{4\left((\alpha n)^{1 / 2}+\alpha\right)}{2 \min \{s, t\}}+\epsilon \\
& \leq \frac{\left(\left(1+\epsilon^{\prime}\right) n\right)^{1 / 2}(2 \epsilon n)^{1 / 2}}{\epsilon^{\prime} n}+\frac{(2 n \epsilon n)^{1 / 2}}{2 \epsilon^{\prime} n}+\frac{(2 n \epsilon n)^{1 / 2}}{2 \epsilon^{\prime} n}+\frac{2 n^{1 / 2}}{\epsilon^{\prime} n}+\epsilon \\
& \leq c \frac{\epsilon^{1 / 2}}{\epsilon^{\prime}} \\
& \leq \epsilon^{\prime} .
\end{aligned}
$$

Pseudo-random graphs are known to have many nice properties. Hence, Maker's ability to create a pseudo-random graph guarantees his win in several other positional games. For example, using a result of [11], one can guarantee Maker's success in creating $\frac{n}{4}-$ $O\left(n^{5 / 6} \log ^{1 / 6} n\right)$ pairwise edge-disjoint Hamiltonian cycles. This is trivially best possible up to the error-term and confirms a conjecture of Lu [13] in a strong form. We will discuss this and other games in Section 4.

2 Playing JumbleG

In this section we prove Theorems 1 and 2. The proofs are quite similar and are based on the approach of Erdős and Selfridge [9] via potential functions.

Lemma 3 If the edges of a hypergraph \mathcal{F} satisfy $\sum_{X \in \mathcal{F}} 2^{-|X|}<1 / 4$ then Maker can force a 2 -colouring of \mathcal{F}.

Proof. Let a round consist of a move of Maker followed by a move of Breaker. At the start of a round, let C_{M}, C_{B} denote the set of edges chosen so far by Maker and Breaker, R denote the unchosen edges and for $X \in \mathcal{F}$ let $\delta_{X, M}, \delta_{X, B}$ be the indicators of $X \cap C_{M} \neq \emptyset, X \cap C_{B} \neq \emptyset$ respectively. Let $\delta_{X}=\delta_{X, M}+\delta_{X, B}$. We use the potential function

$$
\Phi=\sum_{\substack{X \in \mathcal{F} \\ \delta_{X} \leq 1}} 2^{-|X \cap R|+1-\delta_{X}} .
$$

This represents the expected number of monochromatic sets if the unchosen edges are coloured at random. Our assumption is that $\Phi<\frac{1}{2}$ at the start and we will see that it can be kept this way until the end of the last complete round. In case n is odd, Maker with his last choice can at most double the value of Φ. In any case at the end of the play $\Phi<1$. Also, at the end $R=\emptyset$; thus $\delta_{X} \geq 2$ for all $X \in \mathcal{F}$, showing that Maker has achieved his objective.

It remains to show that Maker can ensure that the value of Φ never increases after one complete round is played. Suppose that in some round, Maker chooses an edge a and Breaker chooses an edge b. Let Φ^{\prime} be the new value of Φ. Then

$$
\begin{aligned}
& \Phi^{\prime}-\Phi \\
& =-\sum_{\substack{a, b \in X \\
\delta_{X}=0}} 2^{1-|X \cap R|}-\sum_{\substack{a \in X \\
\delta_{X, B}=1}} 2^{-|X \cap R|}-\sum_{\substack{b \in X \\
\delta_{X, M}=1}} 2^{-|X \cap R|}+\sum_{\substack{a \in X, b \neq X \\
\delta_{X, M}=1}} 2^{-|X \cap R|}+\sum_{\substack{a \notin X, b \in X \\
\delta_{X, B}=1}} 2^{-|X \cap R|} \\
& \leq-\left(\sum_{\substack{a \in X \\
\delta_{X, B}=1}} 2^{-|X \cap R|}-\sum_{\substack{a \in X \\
\delta_{X, M}=1}} 2^{-|X \cap R|}\right)+\left(\sum_{\substack{b \in X \\
\delta_{X, B}}} 2^{-|X \cap R|}-\sum_{\substack{b \in X \\
\delta_{X, M}=1}} 2^{-|X \cap R|}\right)
\end{aligned}
$$

which is non-positive if Maker chooses a to maximise $\sum_{\substack{a \in X \\ \delta_{X, B}}} 2^{-|X \cap R|}-\sum_{\delta_{X, M}^{a \in 1}} 2^{-|X \cap R|}$.

Lemma 4 Let $\epsilon=\epsilon(n)$ tend to zero with n. Let $\delta>1$ be fixed. Let $t=\left\lceil\delta \epsilon^{-2} \log n\right\rceil$. Then for all sufficiently large n Maker can ensure that any pair of disjoint subsets of V, both of size at least t, is ϵ-unbiased.

Proof. Assume that $t \leq n / 2$ for otherwise there is nothing to prove. This means that $\epsilon>\left(\frac{2 \log n}{n}\right)^{1 / 2}$.

Let $k=\left\lceil\left(\frac{1}{2}+\epsilon\right) t^{2}\right\rceil$. Let \mathcal{T} consist of pairs (S, T) of disjoint subsets of V, both of size exactly t. Recall that $e_{M}(S, T)$ counts the number of Maker's edges connecting S to T. A simple averaging argument shows that it is enough to show that Maker can guarantee that

$$
\begin{equation*}
t^{2}-k<e_{M}(S, T)<k, \quad \text { for all }(S, T) \in \mathcal{T} \tag{3}
\end{equation*}
$$

(Indeed, let S^{\prime}, T^{\prime} have size at least t each. The expectation of $\frac{e_{M}(S, T)}{t^{2}}$, where S, T are random t-subsets of S^{\prime}, T^{\prime}, is $\frac{e_{M}\left(S^{\prime}, T^{\prime}\right)}{\left|S^{\prime}\right| T^{\prime} \mid}$. By (3) this cannot differ from $\frac{1}{2}$ by more than ϵ, as required.)

If Maker is able to ensure that all k-element subsets of the edge-set $S: T=\{\{x, y\} \mid x \in$ $S, y \in T\}$ are properly 2 -colored (i.e. not monochromatic) for every $(S, T) \in \mathcal{T}$, then he has achieved his goal. A direct application of Lemma 3 is not possible however: there are simply too many of these k-sets and the criterion does not hold. We need to cut down on the number of sets.

Define $\ell=\left\lceil 2 t^{2} \epsilon\right\rceil$ and $\lambda=\left\lceil 2^{\ell} n^{-2 t}\right\rceil$. For $(S, T) \in \mathcal{T}$ we prove the existence of a collection $\mathcal{X}_{S, T}$, of ℓ-subsets of the edge-set $S: T=\{\{x, y\} \mid x \in S, y \in T\}$ such that (i) $\left|\mathcal{X}_{S, T}\right|=\lambda$ and (ii) each k-set $B \subseteq S: T$ contains at least one member of $\mathcal{X}_{S, T}$. Let us show that if the elements of $\mathcal{X}_{S, T}$ are chosen at random, independently with replacement, then this property is almost surely satisfied. In estimating this probability we will use the following auxiliary inequalities: $\ell=o\left(t^{2}\right)$ and

$$
\begin{aligned}
\frac{\binom{k}{\ell}}{\binom{t^{2}}{\ell}} & =\prod_{i=0}^{\ell-1} \frac{k-i}{t^{2}-i}=\left(\frac{k}{t^{2}}\right)^{\ell} \prod_{i=0}^{\ell-1}\left(1-\frac{i\left(t^{2}-k\right)}{t^{2} k-k i}\right) \\
& \geq\left(\frac{1}{2}+\epsilon\right)^{\ell} \exp \left\{-\frac{\ell^{2}}{2 t^{2}}+O\left(\epsilon^{2} \ell\right)\right\} .
\end{aligned}
$$

The probability that there is a k-subset of $S: T$ which does not contain a member of $\mathcal{X}_{S, T}$ is at most

$$
\begin{aligned}
& \binom{t^{2}}{k}\left(1-\frac{\binom{k}{\ell}}{\binom{t^{2}}{\ell}}\right)^{\lambda} \leq 2^{t^{2}} \exp \left\{-\lambda\left(\frac{1}{2}+\epsilon\right)^{\ell} e^{-\frac{\ell^{2}}{2 t^{2}}+O\left(\epsilon^{2} \ell\right)}\right\} \\
& =2^{t^{2}} \exp \left\{-n^{-2 t} e^{2 \epsilon \ell-\frac{\ell^{2}}{2 t^{2}}+O\left(\epsilon^{2} \ell\right)}\right\}=2^{t^{2}} \exp \left\{-e^{-2 t \log n+(2+o(1)) \epsilon^{2} t^{2}}\right\}=o(1)
\end{aligned}
$$

so a family $\mathcal{X}_{S, T}$ with the required property does exist.
Let $\mathcal{F}=\left(\binom{[n]}{2}, \mathcal{E}\right)$ be the hypergraph with hyper-edges $\mathcal{E}=\bigcup_{(S, T) \in \mathcal{T}} \mathcal{X}_{S, T}$. (We will use the term hyper-edges to distinguish them from the edges of K_{n}). To complete the proof it is
enough to show that Maker can ensure that the choices $E_{M}, E_{B} \subset\binom{[n]}{2}$ of Maker, Breaker respectively are a 2 -colouring of \mathcal{F}. This follows from Lemma 3 in view of the inequality

$$
\begin{equation*}
|\mathcal{E}| 2^{-\ell} \leq\binom{ n}{t}^{2} \lambda 2^{-\ell}=o(1) . \tag{4}
\end{equation*}
$$

Proof of Theorem 1. To ensure that all degrees of Maker's graph are appropriate we use a trick similar to the one in the proof of the previous lemma. Let $k=\lceil(1 / 2+\epsilon) n\rceil$. Maker again would like to use Lemma 3 and ensure that all k-subsets of the edges incident with vertex i are properly 2 -colored. These are again too many; we define $\ell=\left\lceil 10 \epsilon^{-1} \log n\right\rceil$, $M=\left\lceil 2^{\ell} / n^{2}\right\rceil$, and $\mu=n M$. We want to find a collection $A_{1}, A_{2}, \ldots, A_{\mu}$ of ℓ-sets such that, for $1 \leq i \leq n$, every k-subset of the edges incident with i contains at least one of $A_{(i-1) M+j}, 1 \leq j \leq M$. As before, we construct the sets A_{i} randomly. The probability that there is a bad k-subset (containing no chosen ℓ-set) is at most

$$
\binom{n-1}{k}\left(1-\frac{\binom{k}{\ell}}{\binom{n-1}{\ell}}\right)^{M} \leq 2^{n} \exp \left\{-\frac{2^{\ell}}{n^{2}} \frac{k^{\ell}}{n^{\ell}} e^{-\ell^{2} / n}\right\} \leq 2^{n} \exp \left\{-\left((1+\epsilon) e^{-\ell / n}\right)^{\ell}\right\}<n^{-2}
$$

for large n, and so the desired sets exist.
For Property P2 let $t=\left\lceil 6 \epsilon^{-2} \log n\right\rceil$. By our assumption on ϵ, we have $t<\epsilon n$. Define $\mathcal{X}_{S, T}$ as in the proof of Lemma 4. Namely, let $\ell^{\prime}=\left\lceil 2 t^{2} \epsilon\right\rceil$ and $\lambda=\left\lceil 2^{\ell^{\prime}} n^{-2 t}\right\rceil$. For $(S, T) \in \mathcal{T}$ (that is, S, T are disjoint t-sets) let $\mathcal{X}_{S, T}$ be a collection ℓ^{\prime}-subsets of $S: T$ such that (i) $\left|\mathcal{X}_{S, T}\right|=\lambda$ and (ii) every $\left\lceil\left(\frac{1}{2}+\epsilon\right) t^{2}\right\rceil$-set contains at least one member of $\mathcal{X}_{S, T}$.

Let \mathcal{F} be the hypergraph with the edge set $\mathcal{E}_{1} \cup \mathcal{E}_{2}=\left\{A_{1}, A_{2}, \ldots, A_{\mu}\right\} \cup \bigcup_{(S, T) \in \mathcal{T}} \mathcal{X}_{S, T}$.
Lemma 4 (or rather its proof) implies that it suffices for Maker to force a 2-colouring of \mathcal{F}. Indeed, the definition of the sets A_{i} will imply Property P1. To see that P2 will also hold, observe that for any $S, T \in \mathcal{T}$, we will have

$$
\left|\frac{e_{M}(S, T)}{t^{2}}-\frac{1}{2}\right| \leq \epsilon,
$$

while the claim for general $|S|,|T| \geq t$ follows by averaging.
It remains to check that \mathcal{F} satisfies the conditions of Lemma 3 for large n. The initial value Φ of the potential function satisfies

$$
\begin{equation*}
\Phi \leq M n 2^{-\ell}+\Phi\left(\mathcal{E}_{2}\right)=o(1) . \tag{5}
\end{equation*}
$$

(Here we have used (4).) This completes the proof of Theorem 1.
Proof of Theorem 2. This time for Property P1 we define $\ell=\lfloor\epsilon n\rfloor$, as before $M=$ $\left\lceil 2^{\ell} / n^{2}\right\rceil, \mu=n M, k=\lceil(1 / 2+\epsilon) n\rceil$. The family $A_{1}, A_{2}, \ldots, A_{\mu}$ should satisfy: For $1 \leq i \leq$
n, every k-subset of the edges incident with i contains at least one of $A_{(i-1) M+j}, 1 \leq j \leq M$. We construct the A_{i} randomly. Suppose that we randomly choose $M \ell$-subsets of $[n-1]$ independently with replacement. The probability that there is a k-subset of $[n-1]$ which contains no chosen ℓ-set is at most

$$
\begin{aligned}
& \binom{n-1}{k}\left(1-\frac{\binom{k}{\ell}}{\binom{n-1}{\ell}}\right)^{M} \\
& \leq 2^{n} \exp \left\{-\frac{\binom{k}{\ell} M}{\binom{n}{\ell}}\right\} \\
& =2^{n} \exp \left\{-M \frac{k \cdots(k-\lfloor\ell / 2\rfloor+1)}{n \cdots(n-\lfloor\ell / 2\rfloor+1)} \cdot \frac{(k-\lfloor\ell / 2\rfloor) \cdots(k-\ell+1)}{(n-\lfloor\ell / 2\rfloor \cdots(n-\ell+1)}\right\} \\
& \leq 2^{n} \exp \left\{-M\left(\frac{k-\ell / 2}{n}\right)^{\lfloor\ell / 2\rfloor} \cdot\left(\frac{k-\ell}{n}\right)^{\lceil\ell / 2\rceil}\right\} \\
& \leq \exp \left\{n \log 2-\frac{2^{\ell}}{n^{2}}\left(\frac{1}{2}+\frac{\epsilon}{2}\right)^{\lfloor\ell / 2\rfloor}\left(\frac{1}{2}\right)^{\lceil\ell / 2\rceil}\right\} \\
& =\exp \left\{n \log 2-\frac{(1+\epsilon)^{\lfloor\ell / 2\rfloor}}{n^{2}}\right\} \\
& <n^{-2}
\end{aligned}
$$

for $\epsilon \geq 3(\log n / n)^{1 / 2}$, so the required family exists.
For Property P3 we take a collection $B_{1}, B_{2}, \ldots, B_{\rho}$ of ℓ-sets where $\rho=\binom{n}{2} N$ and $N=$ $\left\lceil 4^{\ell} / n^{3}\right\rceil$. For each pair $i, j \in[n]$ select N random ℓ-subsets of $[n] \backslash\{i, j\}$ so that each $\lceil(1 / 4+\epsilon) n\rceil$-set contains at least one of them. The hyper-edges are $\{(i, x): x \in A\}$ $\cup\{(j, x): x \in A\}$ for each random $A \subseteq[n] \backslash\{i, j\}$. $B_{1}, B_{2}, \ldots, B_{\rho}$ are chosen randomly and now with $k=\lceil(1 / 4+\epsilon) n\rceil$ the probability that there is a k-subset of $[n-2]$ which contains no chosen ℓ-set is at most

$$
\binom{n-2}{k}\left(1-\frac{\binom{k}{\ell}}{\binom{n-2}{\ell}}\right)^{N} \leq \exp \left\{n \log 2-\frac{(1+2 \epsilon)^{\lfloor\ell / 2\rfloor}}{n^{3}}\right\}<n^{-3}
$$

for large n, and so the sets exist.
We will use Lemma 3 and so we need to check that the initial potential is less than $1 / 4$. Now the initial value of the potential function is at most

$$
M n 2^{1-\ell}+N n^{2} 2^{1-2 \ell}=o(1)
$$

and this completes the proof of Theorem 2.

3 Breaker's Strategies

In this section we show that up to a small power of $\log n$, our restrictions on ϵ are sharp in both Theorems 1 and 2 or, even more strongly, with respect to each of the Properties P1-P3.

Property P1

Theorem 2 gives immediately that Maker can guarantee a graph with minimum degree at least $n / 2-3 \sqrt{n \log n}$. A similar result has been previously obtained by Székely [16] by applying a lemma of Beck [2, Lemma 3] which in turn is based on the Erdős-Selfridge method. This comes quite close to a result of Beck [3] who proved that Breaker can force the minimum degree of Maker's graph to be $n / 2-\Omega(\sqrt{n})$.

Property P2

Let $c>0$ be any constant which is less than $6^{-1 / 3}, n$ be large, and $\epsilon=c n^{-1 / 3} \log ^{1 / 3} n$.
Here we prove that no graph of order n can satisfy Property P2 for this ϵ, which shows that the restriction on ϵ in Theorem 1 is sharp up to a multiplicative constant. The proof is based on ideas of Erdős and Spencer [10].

Let G be an arbitrary graph of order n. Let $m=\lceil\epsilon n\rceil$. Let X be a random m-subset of $V(G)$ chosen uniformly. For $y \in V(G)$, let \mathcal{E}_{y} be the event that $y \notin X$ and $||\Gamma(y) \cap X|-m / 2|>$ ϵm, where $\Gamma(y)$ denoted the set of neighbours of y in G.

Let us show that for every y,

$$
\begin{equation*}
\operatorname{Pr}\left(\mathcal{E}_{y}\right) \geq \frac{2 m}{n} \tag{6}
\end{equation*}
$$

Let $d=d(y)$ be the degree of y. By symmetry, we can assume that $d \leq \frac{n-1}{2}$. For such d we bound from below the probability p that $y \notin X$ and $|\Gamma(y) \cap X| \leq m / 2-\epsilon m$, which equals

$$
p=\sum_{i<m / 2-\epsilon m}\binom{d}{i}\binom{n-1-d}{m-i}\binom{n}{m}^{-1} .
$$

The combinatorial meaning of p implies that it decreases with d, so it is enough to bound p for $d=\left\lfloor\frac{n-1}{2}\right\rfloor$ only. Let us consider the summands s_{h} corresponding to $i=m / 2-h$ with, say, $\epsilon m<h \leq \epsilon m+n^{1 / 3}$. Let

$$
f(x)=(1+x)^{\frac{1+x}{2}}(1-x)^{\frac{1-x}{2}} .
$$

Its Taylor series at 0 is $1+\frac{x^{2}}{2}+O\left(x^{4}\right)$. By Stirling's formula, we obtain that each summand

$$
\begin{aligned}
s_{h} & =\Omega\left(\frac{n^{-1 / 3}(\log n)^{1 / 6}}{f^{m}\left(\frac{2 h}{m}\right) f^{2 d-m}\left(\frac{2 h}{2 d-m}\right)}\right) \\
& =\exp \left(-\frac{1}{3} \log n-\frac{2 h^{2}}{m}-\frac{2 h^{2}}{2 d-m}+O(1)\right) \\
& =n^{-1 / 3-2 c^{3}-o(1)} .
\end{aligned}
$$

Thus

$$
\sum_{h=\epsilon m}^{\epsilon m+n^{1 / 3}} s_{h}=n^{-2 c^{3}-o(1)} \geq \frac{2 m}{n} .
$$

It follows that there is a choice of an m-set X such that $|Y| \geq 2 m$, where Y consists of the vertices for which R_{x} holds. By definition $Y \cap X=\emptyset$.

Assume without loss of generality that we have $d_{X}(y)<m-\epsilon m$ for at least half of the vertices of Y. Let $Z \subset Y$ consist of any m of these vertices. This pair (X, Z), both sets having at least ϵn elements, has the required bias.

Property P3

Here we show that Breaker can force Maker to create a co-degree of at least $\frac{n}{4}+c \sqrt{n}$. Our argument is based on a theorem of Beck [5], which states that Breaker can force Maker's graph to have maximum degree at least $n / 2+\sqrt{n} / 20$. Then the following lemma shows that Breaker also succeeds in forcing a high co-degree in Maker's graph.

Lemma 5 Assume that $c_{1}>0$ is constant. Then for sufficiently large n, the following holds: Let $G=(V, E)$ be a graph on n vertices with $n(n-1) / 4$ edges. If G has a vertex of degree at least $n / 2+c_{1} \sqrt{n}$, then G has a pair of vertices w_{1}, w_{2} whose co-degree is at least $n / 4+c_{1} \sqrt{n} / 10$.

Proof Let $c_{2}=c_{1} / 10$. Let v be a vertex of maximum degree in G. Denote $N_{1}=N(v)$, $N_{2}=V-N_{1}$. Then $\left|N_{2}\right| \leq n / 2-c_{1} \sqrt{n}$. If there is $u \in V$ such that $d\left(v, N_{1}\right) \geq n / 4+c_{2} \sqrt{n}$, we are done. Otherwise, for every $u, d\left(u, N_{1}\right) \leq n / 4+c_{2} \sqrt{n}$, implying:

$$
\begin{aligned}
A & \stackrel{\text { def }}{=} \sum_{u \in V} d\left(u, N_{2}\right) \\
& \geq \sum_{u \in V}\left(d(u)-d\left(u, N_{1}\right)-1\right) \\
& \geq 2|E|-n\left(n / 4+c_{2} \sqrt{n}\right)-n \\
& =n^{2} / 4-c_{2} n^{3 / 2}-3 n / 2 .
\end{aligned}
$$

Therefore by convexity,

$$
B \stackrel{\text { def }}{=} \sum_{u \in V}\binom{d\left(u, N_{2}\right)}{2} \geq n\binom{A / n}{2} \geq n^{3} / 32-c_{2} n^{5 / 2}-O\left(n^{2}\right) .
$$

On the other hand,

$$
B=\sum_{w_{1} \neq w_{2} \in N_{2}} \operatorname{co-degree}\left(w_{1}, w_{2}\right)
$$

and thus there is a pair $w_{1}, w_{2} \in N_{2}$ such that:

$$
\begin{aligned}
\operatorname{co-degree}\left(w_{1}, w_{2}\right) & \geq|B| /\binom{\left|N_{2}\right|}{2} \\
& \geq \frac{n^{3} / 32-c_{2} n^{5 / 2}-O\left(n^{2}\right)}{\binom{n / 2-c_{1} n^{1 / 2}}{2}} \\
& \geq n / 4+c_{2} \sqrt{n} .
\end{aligned}
$$

4 Consequences

As we have already mentioned in the introduction, Maker's ability to create a pseudorandom graph of density about $\frac{1}{2}$ allows him to win quite a few other combinatorial games. We will describe some of them below. All these games are played on the complete graph K_{n} unless stated otherwise, Maker and Breaker choose one edge alternately, Maker's aim is to create a graph that possesses a desired graph property.

Edge-disjoint Hamilton cycles. In this game Maker's aim is to create as many pairwise edge disjoint Hamilton cycles as possible. Lu proved [13] that Maker can always produce at least $\frac{1}{16} n$ Hamilton cycles and conjectured that Maker should be able to make $\left(\frac{1}{4}-\epsilon\right) n$ for any fixed $\epsilon>0$. This conjecture follows immediately from our Theorem 1 and Theorem 2 of [11]. In [11], Frieze and Krivelevich show that a 2ϵ-regular graph contains at least $\left(\frac{1}{2}-6.5 \epsilon\right) n$ edge disjoint Hamilton cycles, for all $\epsilon>10(\log n / n)^{1 / 6}$. Our argument applies equally to the bipartite version of the problem where the game is played on the complete bipartite graph $K_{n, n}$. Thus Maker can always produce at least $\left(\frac{1}{4}-\epsilon\right) n$ edge disjoint Hamilton cycles, verifying another conjecture of Lu [14], [15]. Finally, there is an analogous game that can be played on the complete digraph D_{n} and here Maker can always produce at least $\left(\frac{1}{2}-\epsilon\right) n$ edge disjoint Hamilton cycles.

Vertex-connectivity. Theorem 2 can be used to show that Maker can always force an $(n / 2-3 \sqrt{n \log n})$-vertex-connected graph. Indeed, let Maker's graph M have minimum degree at least $n / 2-3 \sqrt{n \log n}$ and maximum co-degree at most $n / 4+3 \sqrt{n \log n}$. Suppose
that the removal of some set R disconnects M, say $V(M) \backslash R=A \cup B$ with $|A| \leq|B|$. If $|A|=1$, then obviously all neighbours of $a \in A$ are in R, implying $|R| \geq \delta(M) \geq$ $n / 2-3 \sqrt{n \log n}$. If $|A| \geq 2$, let a_{1}, a_{2} be two distinct vertices in A. Then all neighbours of a_{1}, a_{2} lie in $A \cup R$, and therefore

$$
|A|+|R| \geq \operatorname{deg}_{M}\left(a_{1}\right)+\operatorname{deg}_{M}\left(a_{2}\right)-\operatorname{co-deg}_{M}\left(a_{1}, a_{2}\right) \geq \frac{3 n}{4}-9 \sqrt{n \log n}
$$

If $|A| \geq n / 4-6 \sqrt{n \log n}$, then $|B| \geq|A| \geq n / 4-6 \sqrt{n \log n}$ as well, and by the $o(1)$ regularity of M there is an edge between A and B - a contradiction. We conclude that $|A| \leq n / 4-6 \sqrt{n \log n}$, implying $|R| \geq n / 2-3 \sqrt{n \log n}$, as required.
The result of Beck [3] showing that Breaker can force a vertex which has degree at most $n / 2-\Omega(\sqrt{n})$ in Maker's graph indicates that the error term in our result about the connectivity game is tight up to a logarithmic factor.
$c \log n$-Universality. A graph G is called r-universal if it contains an induced copy of every graph H on r vertices. We can show the following result.

Theorem 6 Let $r=r(n)$ be an integer, which satisfies

$$
\frac{n-r+1}{r}\left(\frac{1}{2}-\epsilon\right)^{r-1} \geq \frac{2 \log n}{\epsilon^{2}}
$$

for some $\epsilon=\epsilon(n) \rightarrow 0$. Then for all sufficiently large n Maker can ensure that his graph M is r-universal.

Proof. Let $t=\left\lfloor\frac{2 \log n}{\epsilon^{2}}\right\rfloor$. Let n be sufficiently large so that the conclusion of Lemma 4 is valid. Let M be an arbitrary graph satisfying this property, that is, any pair of disjoint subsets of $V(M)$, both of size at least t, is ϵ-unbiased. Let G be any graph on $[r]$. We will show that G is an induced subgraph of M.
Partition $V(M)=\cup_{i=1}^{r} V_{i}$ into r parts, each having at least $\frac{n-r+1}{r}$ vertices. Initially, let $A_{i}=V_{i}, i \in[r]$. We define $f:[r] \rightarrow V(M)$ with $f(i) \in A_{i}$ inductively.
Suppose we have already defined f on $[i-1]$. It will be the case that $\left|A_{j}\right| \geq \frac{n-r+1}{r} \eta^{i-1}$ for any $j \geq i$, where for brevity $\eta=\frac{1}{2}-\epsilon$. We will choose $f(i)=v \in A_{i}$ so that for any $j>i$ we have

$$
\begin{equation*}
\left|A_{j i}(v)\right| \geq \eta\left|A_{j}\right|, \tag{7}
\end{equation*}
$$

where we define $A_{j i}(v)=A_{j} \cap \Gamma_{M}(v)$ if $\{i, j\} \in E(G)$ and $A_{j i}(v)=A_{j} \backslash \Gamma_{M}(v)$ otherwise. (Here $\Gamma_{M}(v)$ is the set of neighbours of v in M.)

Let $B_{j i}$ be the set of vertices of A_{i} violating (7), i.e. $\left\{v \in A_{i}:\left|A_{j i}(v)\right|<\eta\left|A_{j}\right|\right\}$. Then $\left|B_{j i}\right|<t$ as the pair $\left(B_{j i}, A_{j}\right)$ is not ϵ-unbiased. (Observe that $\left|A_{j}\right| \geq \frac{n-r+1}{r} \eta^{r-1} \geq t$.) Update A_{i} by deleting $B_{j i}$ for all $j \in[i+1, r]$. Thus at least $\frac{n-r+1}{r} \eta^{i-1}-(r-i) t \geq t$
vertices still remain in A_{i}. This inequality is true for $i=r$ by our assumption and for any other i, because $\eta \leq \frac{1}{2}$. So a suitable $f(i)$ can always be found. Now, replace A_{j} with $A_{j i}(f(i))$ for $j>i$. This completes the induction step. At the end of the process $f([r])$ induces a copy of G in M.

It follows from Theorem 6 that Maker can create an r-universal graph with $r=(1+$ $o(1)) \log _{2} n$. On the other hand, Maker cannot achieve $r=2 \log _{2} n-2 \log _{2} \log _{2} n+C$ because, as was shown by Beck [4, Theorem 4], Breaker can prevent K_{r} in Maker's graph.
There is a remarkable parallel between random graphs and Maker-Breaker games, see e.g. Chvátal and Erdős [8], Beck [3, 4], Bednarska and Łuczak [6]. As shown by Bollobás and Thomason [7], the largest r such that a random graph of order n is almost surely r universal is around $2 \log _{2} n$. We conjecture that games have the same universality threshold (asymptotically).

Conjecture 7 Maker can claim an r-universal graph with $r=(2+o(1)) \log _{2} n$.
The following related result improves the unbiased case of Theorem 4 in Beck [3]. (His assumption $n \geq 100 r^{3} v 3^{r+1}$ is stronger than ours.)

Theorem 8 Let integers r, v and a real $\epsilon>0$ (all may depend on n) satisfy $\epsilon \rightarrow 0$ and

$$
\frac{n-r+1}{r}\left(\frac{1}{2}-\epsilon\right)^{r-1} \geq v+\frac{2 \log n}{\epsilon^{2}}
$$

Then for sufficiently large n, Maker can ensure that any graph G of order at most v and maximum degree less than r is a subgraph (not necessarily induced) of Maker's graph M.

Outline of Proof. Use the method of Theorem 6 with the following changes. Take a proper colouring $c: V(G) \rightarrow[r]$. The desired f will map $i \in V(G)$ into $A_{c(i)}$. The proof goes the same way except that when choosing $f(i)$ we have to worry only about those $j \geq i$ which are neighbours of i in G and make sure that there are at least v good choices for $f(i) \in A_{c(i)}$ (so that we can ensure that f is injective). The details are left to the Reader.

Acknowledgement. The authors wish to thank the anonymous referee for his/her helpful criticism.

References

[1] N. Alon and J. Spencer, The probabilistic method, Second Edition, John Wiley and Sons, 2000.
[2] J. Beck, Van der Waerden and Ramsey type games, Combinatorica 1 (1981), 103-116.
[3] J. Beck, Deterministic graph games and a probabilistic intuition, Combinatorics, Probability and Computing 3 (1994), 13-26.
[4] J. Beck, Positional games and the second moment method, Combinatorica 22 (2002), 169-216.
[5] J. Beck, Arithmetic progressions and tic-tac-toe like games, (2004) manuscript.
[6] M. Bednarska and T. Łuczak, Biased positional games for which random strategies are nearly optimal, Combinatorica 20 (2000), 477-488.
[7] B. Bollobás and A. Thomason, Graphs which contain all small graphs, European Journal of Combinatorics 2 (1981), 13-15.
[8] V. Chvátal and P. Erdős, Biased positional games, Ann. Discrete Math. 2 (1978), 221-229.
[9] P. Erdős and J.L. Selfridge, On a combinatorial game, Journal of Combinatorial Theory A 14 (1973) 298-301.
[10] P. Erdős and J.H. Spencer, Imbalances in k-colorations, Networks 1 (1971/2) 379-385.
[11] A.M. Frieze and M. Krivelevich, On packing Hamilton cycles in ϵ-regular graphs, to appear.
[12] M. Krivelevich and B. Sudakov, Pseudo-random graphs, in: Proceedings of Conference on Finite and Infinite Sets, to appear.
[13] X. Lu, Hamiltonian games, Journal of Combinatorial Theory B 55 (1992) 18-32.
[14] X. Lu, A Hamiltonian game on $K_{n, n}$, Discrete Mathematics 142 (1995) 185-191.
[15] X. Lu, Hamiltonian cycles in bipartite graphs, Combinatorica 15 (1995), 247-254.
[16] L.A. Székely, On two concepts of discrepancy in a class of combinatorial games, Finite and Infinite Sets, Colloq. Math. Soc. János. Bolyai, Vol. 37, North-Holland, 1984, 679-683.
[17] A.G. Thomason, Pseudo-random graphs, Annals of Discrete Mathematics 33 (1987) 307-331.

[^0]: *Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, U.S.A. Supported in part by NSF grant CCR-0200945.
 ${ }^{\dagger}$ Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. Research supported in part by USA-Israel BSF Grant 2002-133 and by grant 64/01 from the Israel Science Foundation.
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, U.S.A.
 §Institut für Theoretische Informatik, ETH Zentrum, IFW B48.1, CH - 8092 Zürich.

