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Abstract

JumbleG is a Maker-Breaker game. Maker and Breaker take turns in choosing
edges from the complete graph Kn. Maker’s aim is to choose what we call an ε-regular

graph (that is, the minimum degree is at least ( 1
2 − ε)n and, for every pair of disjoint

subsets S, T ⊂ V of cardinalities at least εn, the number of edges e(S, T ) between S

and T satisfies:
∣

∣

∣

e(S,T )
|S| |T | − 1

2

∣

∣

∣
≤ ε.) In this paper we show that Maker can create an

ε-regular graph, for ε ≥ 2(log n/n)1/3. We consider also a similar game, JumbleG2,
where Maker’s aim is to create a graph with minimum degree at least

(

1
2 − ε

)

n and
maximum co-degree at most

(

1
4 + ε

)

n, and show that Maker has a winning strategy

for ε > 3(log n/n)1/2. Thus, in both games Maker can create a pseudo-random graph
of density 1

2 . This guarantees Maker’s win in several other positional games, also
discussed here.

1 Introduction

JumbleG is a Maker-Breaker game. Maker and Breaker take turns in choosing edges from
the complete graph Kn on n vertices. Maker’s aim is to choose a graph which is ε-regular
(the definition follows).

Let G = (V, E) be a graph of order n. We usually assume that the vertex set is [n] =
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{1, . . . , n}. We call a pair S, T of non-empty disjoint subsets of [n] ε-unbiased if

∣

∣

∣

∣

eG(S, T )

|S| |T | − 1

2

∣

∣

∣

∣

≤ ε, (1)

where eG(S, T ) is the number of S − T edges in G. The graph G is ε-regular if

P1: δ(G) ≥ ( 1
2
− ε)n.

P2: Any pair S, T of disjoint subsets of [n] with |S|, |T | ≥ εn is ε-unbiased.

Theorem 1 Maker has a winning strategy in JumbleG provided ε ≥ 2(log n/n)1/3 and n
is sufficiently large.

We consider also a similar game, which we denote by JumbleG2. In this game Maker’s aim
is to create a graph with Properties P1 and P3, where

P3: Maximum co-degree is at most ( 1
4

+ ε)n.

(The co-degree of vertices u, v ∈ V (G) is the number of common neighbours of u and v in
G.)

Here, too, Maker can win provided ε is not too small:

Theorem 2 Maker has a winning strategy in JumbleG2 for all ε ≥ 3(log n/n)1/2 if n is
sufficiently large.

Theorems 1 and 2 are proved in Section 2. As shown in Section 3, our restrictions on ε are
best possible, up to a logarithmic factor.

Although the goals of the above two games appear to be quite different, they are in fact
very similar to each other — in both Maker tries to create a pseudo-random graph of density
around 1

2
. Informally speaking, a pseudo-random graph G = (V, E) is a graph on n vertices

whose edge distribution resembles that of a truly random graph G(n, p) of the same edge

density p = e(G)
(

n
2

)−1
. The reader can consult [12] for a recent survey on pseudo-random

graphs. The fact that an ε-regular graph is pseudo-random with density 1
2

is apparent from
the definition. To see that degrees and co-degrees can guarantee pseudo-randomness we
need to recall some notions and results due to Thomason. He introduced the notion of
jumbled graphs [17]. A graph G with vertex set [n] is (α, β)-jumbled if for every S ⊆ [n]
we have

∣

∣

∣

∣

eG(S) − α

(|S|
2

)∣

∣

∣

∣

≤ β|S|

2



where eG(S) is the number of edges of G contained in S.

Thomason showed that one can check for pseudo-randomness via jumbledness by checking
degrees and co-degrees. Suppose that G = (V, E) has minimum degree at least αn and no
two vertices have more than α2n + µ common neighbours. Then, (see Theorem 1.1 of [17]
and its proof) for every s ≤ n, every set S ⊆ V of size |S| = s satisfies:

∣

∣

∣

∣

e(S) − α

(

s

2

)∣

∣

∣

∣

≤ ((s − 1)µ + αn)1/2 + α

2
s , (2)

and therefore G is (α, β)-jumbled with β = ((αn + (n − 1)µ)1/2 + α)/2.

Now suppose that for some ε = Ω(1/n) a graph G on n vertices has minimum degree at
least αn =

(

1
2
− ε
)

n and maximum co-degree at most
(

1
4

+ ε
)

n = α2n+(2ε− ε2)n. Then a

routine calculation, based on (2), shows that G is ε′-regular for ε′ = Ω(ε1/4). Thus Theorem
2 can be used to show that Maker can create an ε-regular graph with ε = n−1/8+o(1) — a
weaker result than the one provided by the direct application of Theorem 1. Indeed, let
|S| = s, |T | = t ≥ ε′n, µ = (2ε − ε2)n, and ε′ ≥ Ω(ε1/4) ≥ Ω(n−1/4). Then

∣

∣

∣

∣

eG(S, T )

st
− 1

2

∣

∣

∣

∣

=
1

st
|eG(S ∪ T ) − eG(S) − eG(T ) − (α + ε)st|

≤ 1

st

(∣

∣

∣

∣

eG(S ∪ T ) − α

(

s + t

2

)∣

∣

∣

∣

+

∣

∣

∣

∣

eG(S) − α

(

s

2

)∣

∣

∣

∣

+

∣

∣

∣

∣

eG(T ) − α

(

t

2

)∣

∣

∣

∣

)

+ ε

≤ ((s + t)µ + αn)1/2 + α

2st
(s + t) +

(sµ + αn)1/2 + α

2t
+

(tµ + αn)1/2 + α

2s
+ ε

≤ (s + t)3/2µ1/2

2st
+

(sµ)1/2

2t
+

(tµ)1/2

2s
+

4((αn)1/2 + α)

2 min{s, t} + ε

≤ ((1 + ε′)n)1/2(2εn)1/2

ε′n
+

(2nεn)1/2

2ε′n
+

(2nεn)1/2

2ε′n
+

2n1/2

ε′n
+ ε

≤ c
ε1/2

ε′

≤ ε′ .

Pseudo-random graphs are known to have many nice properties. Hence, Maker’s ability
to create a pseudo-random graph guarantees his win in several other positional games.
For example, using a result of [11], one can guarantee Maker’s success in creating n

4
−

O(n5/6 log1/6 n) pairwise edge-disjoint Hamiltonian cycles. This is trivially best possible up
to the error-term and confirms a conjecture of Lu [13] in a strong form. We will discuss
this and other games in Section 4.
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2 Playing JumbleG

In this section we prove Theorems 1 and 2. The proofs are quite similar and are based on
the approach of Erdős and Selfridge [9] via potential functions.

Lemma 3 If the edges of a hypergraph F satisfy
∑

X∈F 2−|X| < 1/4 then Maker can force
a 2-colouring of F .

Proof. Let a round consist of a move of Maker followed by a move of Breaker. At
the start of a round, let CM , CB denote the set of edges chosen so far by Maker and
Breaker, R denote the unchosen edges and for X ∈ F let δX,M , δX,B be the indicators of
X∩CM 6= ∅, X∩CB 6= ∅ respectively. Let δX = δX,M +δX,B. We use the potential function

Φ =
∑

X∈F
δX≤1

2−|X∩R|+1−δX .

This represents the expected number of monochromatic sets if the unchosen edges are
coloured at random. Our assumption is that Φ < 1

2
at the start and we will see that it can

be kept this way until the end of the last complete round. In case n is odd, Maker with his
last choice can at most double the value of Φ. In any case at the end of the play Φ < 1.
Also, at the end R = ∅; thus δX ≥ 2 for all X ∈ F , showing that Maker has achieved his
objective.

It remains to show that Maker can ensure that the value of Φ never increases after one
complete round is played. Suppose that in some round, Maker chooses an edge a and
Breaker chooses an edge b. Let Φ′ be the new value of Φ. Then

Φ′ − Φ

= −
∑

a,b∈X
δX=0

21−|X∩R| −
∑

a∈X
δX,B=1

2−|X∩R| −
∑

b∈X
δX,M=1

2−|X∩R| +
∑

a∈X,b/∈X
δX,M=1

2−|X∩R| +
∑

a/∈X,b∈X
δX,B=1

2−|X∩R|

≤ −









∑

a∈X
δX,B=1

2−|X∩R| −
∑

a∈X
δX,M=1

2−|X∩R|









+









∑

b∈X
δX,B=1

2−|X∩R| −
∑

b∈X
δX,M=1

2−|X∩R|









which is non-positive if Maker chooses a to maximise
∑

a∈X
δX,B=1

2−|X∩R| −∑ a∈X
δX,M=1

2−|X∩R|.

2

Lemma 4 Let ε = ε(n) tend to zero with n. Let δ > 1 be fixed. Let t = dδε−2 log ne. Then
for all sufficiently large n Maker can ensure that any pair of disjoint subsets of V , both of
size at least t, is ε-unbiased.
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Proof. Assume that t ≤ n/2 for otherwise there is nothing to prove. This means that

ε >
(

2 log n
n

)1/2
.

Let k = d(1
2

+ ε) t2e. Let T consist of pairs (S, T ) of disjoint subsets of V , both of size
exactly t. Recall that eM(S, T ) counts the number of Maker’s edges connecting S to T . A
simple averaging argument shows that it is enough to show that Maker can guarantee that

t2 − k < eM(S, T ) < k, for all (S, T ) ∈ T . (3)

(Indeed, let S ′, T ′ have size at least t each. The expectation of eM (S,T )
t2

, where S, T are

random t-subsets of S ′, T ′, is eM (S′,T ′)
|S′| |T ′|

. By (3) this cannot differ from 1
2

by more than ε, as

required.)

If Maker is able to ensure that all k-element subsets of the edge-set S : T = {{x, y} | x ∈
S, y ∈ T} are properly 2-colored (i.e. not monochromatic) for every (S, T ) ∈ T , then he
has achieved his goal. A direct application of Lemma 3 is not possible however: there are
simply too many of these k-sets and the criterion does not hold. We need to cut down on
the number of sets.

Define ` = d2t2εe and λ = d2`n−2te. For (S, T ) ∈ T we prove the existence of a collection
XS,T , of `-subsets of the edge-set S : T = {{x, y} | x ∈ S, y ∈ T} such that (i) |XS,T | = λ
and (ii) each k-set B ⊆ S : T contains at least one member of XS,T . Let us show that
if the elements of XS,T are chosen at random, independently with replacement, then this
property is almost surely satisfied. In estimating this probability we will use the following
auxiliary inequalities: ` = o(t2) and

(

k
`

)

(

t2

`

) =

`−1
∏

i=0

k − i

t2 − i
=

(

k

t2

)` `−1
∏

i=0

(

1 − i(t2 − k)

t2k − ki

)

≥
(

1

2
+ ε

)`

exp

{

− `2

2t2
+ O(ε2`)

}

.

The probability that there is a k-subset of S : T which does not contain a member of XS,T

is at most

(

t2

k

)

(

1 −
(

k
`

)

(

t2

`

)

)λ

≤ 2t2 exp

{

−λ

(

1

2
+ ε

)`

e−
`2

2t2
+O(ε2`)

}

= 2t2 exp

{

−n−2te2ε`− `2

2t2
+O(ε2`)

}

= 2t2 exp
{

−e−2t log n+(2+o(1))ε2t2
}

= o(1),

so a family XS,T with the required property does exist.

Let F = (
(

[n]
2

)

, E) be the hypergraph with hyper-edges E =
⋃

(S,T )∈T XS,T . (We will use the

term hyper-edges to distinguish them from the edges of Kn). To complete the proof it is
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enough to show that Maker can ensure that the choices EM , EB ⊂
(

[n]
2

)

of Maker, Breaker
respectively are a 2-colouring of F . This follows from Lemma 3 in view of the inequality

|E| 2−` ≤
(

n

t

)2

λ2−` = o(1). (4)

2

Proof of Theorem 1. To ensure that all degrees of Maker’s graph are appropriate we use
a trick similar to the one in the proof of the previous lemma. Let k = d(1/2 + ε)ne. Maker
again would like to use Lemma 3 and ensure that all k-subsets of the edges incident with
vertex i are properly 2-colored. These are again too many; we define ` = d10ε−1 log ne,
M = d2`/n2e, and µ = nM . We want to find a collection A1, A2, . . . , Aµ of `-sets such
that, for 1 ≤ i ≤ n, every k-subset of the edges incident with i contains at least one of
A(i−1)M+j , 1 ≤ j ≤ M . As before, we construct the sets Ai randomly. The probability that
there is a bad k-subset (containing no chosen `-set) is at most

(

n − 1

k

)

(

1 −
(

k
`

)

(

n−1
`

)

)M

≤ 2n exp

{

− 2`

n2

k`

n`
e−`2/n

}

≤ 2n exp
{

−((1 + ε)e−`/n)`
}

< n−2

for large n, and so the desired sets exist.

For Property P2 let t = d6ε−2 log ne. By our assumption on ε, we have t < εn. Define XS,T

as in the proof of Lemma 4. Namely, let `′ = d2t2εe and λ = d2`′n−2te. For (S, T ) ∈ T
(that is, S, T are disjoint t-sets) let XS,T be a collection `′-subsets of S : T such that (i)
|XS,T | = λ and (ii) every d( 1

2
+ ε)t2e-set contains at least one member of XS,T .

Let F be the hypergraph with the edge set E1 ∪ E2 = {A1, A2, . . . , Aµ} ∪
⋃

(S,T )∈T XS,T .

Lemma 4 (or rather its proof) implies that it suffices for Maker to force a 2-colouring of F .
Indeed, the definition of the sets Ai will imply Property P1. To see that P2 will also hold,
observe that for any S, T ∈ T , we will have

∣

∣

∣

∣

eM (S, T )

t2
− 1

2

∣

∣

∣

∣

≤ ε,

while the claim for general |S|, |T | ≥ t follows by averaging.

It remains to check that F satisfies the conditions of Lemma 3 for large n. The initial value
Φ of the potential function satisfies

Φ ≤ Mn2−` + Φ(E2) = o(1). (5)

(Here we have used (4).) This completes the proof of Theorem 1. 2

Proof of Theorem 2. This time for Property P1 we define ` = bεnc, as before M =
d2`/n2e, µ = nM , k = d(1/2 + ε)ne. The family A1, A2, . . . , Aµ should satisfy: For 1 ≤ i ≤

6



n, every k-subset of the edges incident with i contains at least one of A(i−1)M+j , 1 ≤ j ≤ M .
We construct the Ai randomly. Suppose that we randomly choose M `-subsets of [n − 1]
independently with replacement. The probability that there is a k-subset of [n − 1] which
contains no chosen `-set is at most

(

n − 1

k

)

(

1 −
(

k
`

)

(

n−1
`

)

)M

≤ 2n exp

{

−
(

k
`

)

M
(

n
`

)

}

= 2n exp

{

−M
k · · · (k − b`/2c + 1)

n · · · (n − b`/2c + 1)
· (k − b`/2c) · · · (k − ` + 1)

(n − b`/2c · · · (n − ` + 1)

}

≤ 2n exp







−M

(

k − `/2

n

)b`/2c
·
(

k − `

n

)d`/2e






≤ exp







n log 2 − 2`

n2

(

1

2
+

ε

2

)b`/2c(
1

2

)d`/2e






= exp

{

n log 2 − (1 + ε)b`/2c
n2

}

< n−2

for ε ≥ 3(log n/n)1/2, so the required family exists.

For Property P3 we take a collection B1, B2, . . . , Bρ of `-sets where ρ =
(

n
2

)

N and N =
d4`/n3e. For each pair i, j ∈ [n] select N random `-subsets of [n] \ {i, j} so that each
d(1/4 + ε)ne-set contains at least one of them. The hyper-edges are {(i, x) : x ∈ A}
∪{(j, x) : x ∈ A} for each random A ⊆ [n] \ {i, j}. B1, B2, . . . , Bρ are chosen randomly
and now with k = d(1/4 + ε)ne the probability that there is a k-subset of [n − 2] which
contains no chosen `-set is at most

(

n − 2

k

)

(

1 −
(

k
`

)

(

n−2
`

)

)N

≤ exp

{

n log 2 − (1 + 2ε)b`/2c
n3

}

< n−3

for large n, and so the sets exist.

We will use Lemma 3 and so we need to check that the initial potential is less than 1/4.
Now the initial value of the potential function is at most

Mn21−` + Nn221−2` = o(1)

and this completes the proof of Theorem 2. 2
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3 Breaker’s Strategies

In this section we show that up to a small power of log n, our restrictions on ε are sharp
in both Theorems 1 and 2 or, even more strongly, with respect to each of the Properties
P1–P3.

Property P1

Theorem 2 gives immediately that Maker can guarantee a graph with minimum degree at
least n/2 − 3

√
n log n. A similar result has been previously obtained by Székely [16] by

applying a lemma of Beck [2, Lemma 3] which in turn is based on the Erdős–Selfridge
method. This comes quite close to a result of Beck [3] who proved that Breaker can force
the minimum degree of Maker’s graph to be n/2 − Ω(

√
n).

Property P2

Let c > 0 be any constant which is less than 6−1/3, n be large, and ε = cn−1/3 log1/3 n.

Here we prove that no graph of order n can satisfy Property P2 for this ε, which shows
that the restriction on ε in Theorem 1 is sharp up to a multiplicative constant. The proof
is based on ideas of Erdős and Spencer [10].

Let G be an arbitrary graph of order n. Let m = dεne. Let X be a random m-subset of V (G)
chosen uniformly. For y ∈ V (G), let Ey be the event that y 6∈ X and | |Γ(y)∩X| −m/2| >
εm, where Γ(y) denoted the set of neighbours of y in G.

Let us show that for every y,

Pr(Ey) ≥ 2m

n
. (6)

Let d = d(y) be the degree of y. By symmetry, we can assume that d ≤ n−1
2

. For such d we
bound from below the probability p that y 6∈ X and |Γ(y)∩X| ≤ m/2 − εm, which equals

p =
∑

i<m/2−εm

(

d

i

)(

n − 1 − d

m − i

)(

n

m

)−1

.

The combinatorial meaning of p implies that it decreases with d, so it is enough to bound
p for d = bn−1

2
c only. Let us consider the summands sh corresponding to i = m/2−h with,

say, εm < h ≤ εm + n1/3. Let

f(x) = (1 + x)
1+x
2 (1 − x)

1−x
2 .
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Its Taylor series at 0 is 1+ x2

2
+O(x4). By Stirling’s formula, we obtain that each summand

sh = Ω

(

n−1/3(log n)1/6

fm(2h
m

) f 2d−m( 2h
2d−m

)

)

= exp

(

−1

3
log n − 2h2

m
− 2h2

2d − m
+ O(1)

)

= n−1/3−2c3−o(1).

Thus
εm+n1/3

∑

h=εm

sh = n−2c3−o(1) ≥ 2m

n
.

It follows that there is a choice of an m-set X such that |Y | ≥ 2m, where Y consists of the
vertices for which Rx holds. By definition Y ∩ X = ∅.

Assume without loss of generality that we have dX(y) < m − εm for at least half of the
vertices of Y . Let Z ⊂ Y consist of any m of these vertices. This pair (X, Z), both sets
having at least εn elements, has the required bias.

Property P3

Here we show that Breaker can force Maker to create a co-degree of at least n
4

+ c
√

n. Our
argument is based on a theorem of Beck [5], which states that Breaker can force Maker’s
graph to have maximum degree at least n/2 +

√
n/20. Then the following lemma shows

that Breaker also succeeds in forcing a high co-degree in Maker’s graph.

Lemma 5 Assume that c1 > 0 is constant. Then for sufficiently large n, the following
holds: Let G = (V, E) be a graph on n vertices with n(n− 1)/4 edges. If G has a vertex of
degree at least n/2 + c1

√
n, then G has a pair of vertices w1, w2 whose co-degree is at least

n/4 + c1

√
n/10.

Proof Let c2 = c1/10. Let v be a vertex of maximum degree in G. Denote N1 = N(v),
N2 = V −N1. Then |N2| ≤ n/2− c1

√
n. If there is u ∈ V such that d(v, N1) ≥ n/4+ c2

√
n,

we are done. Otherwise, for every u, d(u, N1) ≤ n/4 + c2

√
n, implying:

A
def
=

∑

u∈V

d(u, N2)

≥
∑

u∈V

(d(u) − d(u, N1) − 1)

≥ 2|E| − n(n/4 + c2

√
n) − n

= n2/4 − c2n
3/2 − 3n/2.
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Therefore by convexity,

B
def
=
∑

u∈V

(

d(u, N2)

2

)

≥ n

(

A/n

2

)

≥ n3/32 − c2n
5/2 − O(n2).

On the other hand,

B =
∑

w1 6=w2∈N2

co-degree(w1, w2),

and thus there is a pair w1, w2 ∈ N2 such that:

co-degree(w1, w2) ≥ |B|/
(|N2|

2

)

≥ n3/32 − c2n
5/2 − O(n2)

(

n/2−c1n1/2

2

)

≥ n/4 + c2

√
n.

2

4 Consequences

As we have already mentioned in the introduction, Maker’s ability to create a pseudo-
random graph of density about 1

2
allows him to win quite a few other combinatorial games.

We will describe some of them below. All these games are played on the complete graph
Kn unless stated otherwise, Maker and Breaker choose one edge alternately, Maker’s aim
is to create a graph that possesses a desired graph property.

Edge-disjoint Hamilton cycles. In this game Maker’s aim is to create as many pairwise
edge disjoint Hamilton cycles as possible. Lu proved [13] that Maker can always produce at
least 1

16
n Hamilton cycles and conjectured that Maker should be able to make ( 1

4
− ε)n for

any fixed ε > 0. This conjecture follows immediately from our Theorem 1 and Theorem 2 of
[11]. In [11], Frieze and Krivelevich show that a 2ε-regular graph contains at least ( 1

2
−6.5ε)n

edge disjoint Hamilton cycles, for all ε > 10(log n/n)1/6. Our argument applies equally to
the bipartite version of the problem where the game is played on the complete bipartite
graph Kn,n. Thus Maker can always produce at least ( 1

4
−ε)n edge disjoint Hamilton cycles,

verifying another conjecture of Lu [14], [15]. Finally, there is an analogous game that can
be played on the complete digraph Dn and here Maker can always produce at least ( 1

2
− ε)n

edge disjoint Hamilton cycles.

Vertex-connectivity. Theorem 2 can be used to show that Maker can always force an
(n/2 − 3

√
n log n)-vertex-connected graph. Indeed, let Maker’s graph M have minimum

degree at least n/2−3
√

n log n and maximum co-degree at most n/4 + 3
√

n log n. Suppose

10



that the removal of some set R disconnects M , say V (M) \ R = A ∪ B with |A| ≤ |B|.
If |A| = 1, then obviously all neighbours of a ∈ A are in R, implying |R| ≥ δ(M) ≥
n/2− 3

√
n log n. If |A| ≥ 2, let a1, a2 be two distinct vertices in A. Then all neighbours of

a1, a2 lie in A ∪ R, and therefore

|A| + |R| ≥ degM(a1) + degM(a2) − co-degM(a1, a2) ≥
3n

4
− 9
√

n log n .

If |A| ≥ n/4 − 6
√

n log n, then |B| ≥ |A| ≥ n/4 − 6
√

n log n as well, and by the o(1)-
regularity of M there is an edge between A and B – a contradiction. We conclude that
|A| ≤ n/4 − 6

√
n log n, implying |R| ≥ n/2 − 3

√
n log n, as required.

The result of Beck [3] showing that Breaker can force a vertex which has degree at most
n/2 − Ω(

√
n) in Maker’s graph indicates that the error term in our result about the con-

nectivity game is tight up to a logarithmic factor.

c log n-Universality. A graph G is called r-universal if it contains an induced copy of
every graph H on r vertices. We can show the following result.

Theorem 6 Let r = r(n) be an integer, which satisfies

n − r + 1

r

(

1

2
− ε

)r−1

≥ 2 log n

ε2
,

for some ε = ε(n) → 0. Then for all sufficiently large n Maker can ensure that his graph
M is r-universal.

Proof. Let t = b 2 log n
ε2

c. Let n be sufficiently large so that the conclusion of Lemma 4 is
valid. Let M be an arbitrary graph satisfying this property, that is, any pair of disjoint
subsets of V (M), both of size at least t, is ε-unbiased. Let G be any graph on [r]. We will
show that G is an induced subgraph of M .

Partition V (M) = ∪r
i=1Vi into r parts, each having at least n−r+1

r
vertices. Initially, let

Ai = Vi, i ∈ [r]. We define f : [r] → V (M) with f(i) ∈ Ai inductively.

Suppose we have already defined f on [i− 1]. It will be the case that |Aj| ≥ n−r+1
r

ηi−1 for
any j ≥ i, where for brevity η = 1

2
− ε. We will choose f(i) = v ∈ Ai so that for any j > i

we have
|Aji(v)| ≥ η|Aj|, (7)

where we define Aji(v) = Aj ∩ ΓM(v) if {i, j} ∈ E(G) and Aji(v) = Aj \ ΓM(v) otherwise.
(Here ΓM(v) is the set of neighbours of v in M .)

Let Bji be the set of vertices of Ai violating (7), i.e. {v ∈ Ai : |Aji(v)| < η|Aj|}. Then
|Bji| < t as the pair (Bji, Aj) is not ε-unbiased. (Observe that |Aj| ≥ n−r+1

r
ηr−1 ≥ t.)

Update Ai by deleting Bji for all j ∈ [i + 1, r]. Thus at least n−r+1
r

ηi−1 − (r − i)t ≥ t

11



vertices still remain in Ai. This inequality is true for i = r by our assumption and for any
other i, because η ≤ 1

2
. So a suitable f(i) can always be found. Now, replace Aj with

Aji(f(i)) for j > i. This completes the induction step. At the end of the process f([r])
induces a copy of G in M . 2

It follows from Theorem 6 that Maker can create an r-universal graph with r = (1 +
o(1)) log2 n. On the other hand, Maker cannot achieve r = 2 log2 n − 2 log2 log2 n + C
because, as was shown by Beck [4, Theorem 4], Breaker can prevent Kr in Maker’s graph.

There is a remarkable parallel between random graphs and Maker-Breaker games, see e.g.
Chvátal and Erdős [8], Beck [3, 4], Bednarska and  Luczak [6]. As shown by Bollobás
and Thomason [7], the largest r such that a random graph of order n is almost surely r-
universal is around 2 log2 n. We conjecture that games have the same universality threshold
(asymptotically).

Conjecture 7 Maker can claim an r-universal graph with r = (2 + o(1)) log2 n.

The following related result improves the unbiased case of Theorem 4 in Beck [3]. (His
assumption n ≥ 100r3v3r+1 is stronger than ours.)

Theorem 8 Let integers r, v and a real ε > 0 (all may depend on n) satisfy ε → 0 and

n − r + 1

r

(

1

2
− ε

)r−1

≥ v +
2 log n

ε2
.

Then for sufficiently large n, Maker can ensure that any graph G of order at most v and
maximum degree less than r is a subgraph (not necessarily induced) of Maker’s graph M .

Outline of Proof. Use the method of Theorem 6 with the following changes. Take a
proper colouring c : V (G) → [r]. The desired f will map i ∈ V (G) into Ac(i). The proof
goes the same way except that when choosing f(i) we have to worry only about those j ≥ i
which are neighbours of i in G and make sure that there are at least v good choices for
f(i) ∈ Ac(i) (so that we can ensure that f is injective). The details are left to the Reader.
2

Acknowledgement. The authors wish to thank the anonymous referee for his/her helpful
criticism.
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