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Abstract

Paul Erd6s proposed the following graph game. Starting with the
empty graph on n vertices, two players, Trailmaker and Breaker, draw
edges alternatingly. Each edge drawn has to start at the endpoint of
the previously drawn edge, so the sequence of edges defines a trail. The
game ends when it is impossible to continue the trail, and Trailmaker
wins if the trail is eulerian. For all values of n, we determine which
player has a winning strategy.

1 Introduction

We investigate a graph game proposed by Erdés. Two players, Trailmaker
and Breaker, begin playing on a board of n isolated vertices. One of them
starts the game by drawing an arbitrary edge. At each step, the next player
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must move by drawing an edge from the endpoint of the edge where the other
player finished her move. Trailmaker wins the game, if together eventually
they build an eulerian trail, that is, they draw all of the possible (g) edges.
If the trail arrives to a vertex which is already connected to all of the other
n — 1 vertices, but there are still edges of the complete graph which are not
drawn yet, then Breaker wins.

Note that for even values n > 4, Trailmaker cannot win. In fact, Breaker
wins for all but finitely many odd values of n as well.

Theorem 1 (a) For n =2 and n = 3, Trailmaker wins.
(b) Forn =5, the player who draws the first edge has a winning strategy.
(¢) For all other values of n, Breaker has a winning strategy.

We shall prove part (c) of Theorem 1 in a strong form. Namely, we show
that Breaker can achieve that the trail contains only a linear number of edges.

Theorem 2 (a) If Breaker starts then she can achieve that the trail contains
2n — 3 edges.

(b) If n > 4 and Trailmaker starts then Breaker can achieve that the trail
contains at most 4n — 10 edges.

Note that Theorem 2 implies Theorem 1(c) for n > 6. Of course, Trail-
maker cannot win for n = 4 as well.

In September 1996, at the Minisemester on Combinatorics in Warsaw,
the second author had the opportunity to describe Theorems 1 and 2 to Paul
Erdos. Given how unbalanced the game is in favor of Breaker, Erdos asked
what happens if Trailmaker is allowed to draw at least one but at most m
edges at each of her turns. This modification has the honor of being one
of the last problems proposed by Uncle Paul. It turns out that already for
m = 2, the outcome of the game changes dramatically.

Theorem 3 Suppose that Trailmaker is allowed to draw one or two edges
when it is her turn to continue the trail. Then Trailmaker wins the game for
all odd values of n, independently of the fact who starts the game.

The game we consider here is one in the growing family of non-Ramsey
type graph games. In these games, it does not matter which player chooses
an edge; only the set of chosen edges is important. Some other examples of
non-Ramsey type games can be found in [1], [2], [3], [4].
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2 The original game

In this section, we prove Theorems 1 and 2. Throughout the section, we
assume that the players adhere to the original rules, i.e., Trailmaker draws
exactly one edge at each of her turns.

Let V = {v1,vs, ..., v, } denote the set of vertices and let S C V. We call
two vertices a, b equivalent outside of S, if they have the same neighbours in
V'\ S. We say a is equivalent to b, if a is equivalent to b outside of {a, b}.
Finally, a and b are totally equivalent if they are equivalent and adjacent.

In order to simplify the description of the game, we ask our players to
adhere to the following convention. Suppose that at the moment a player
has to continue the trail from the vertex v,, and she intends to draw the edge
vzVy. If there are other vertices equivalent to v,, then we request the player
to choose the smallest number z such that v,,v, are equivalent vertices,
and draw the edge v,v, instead of v,v,. So the game will start with the
edge viv9 and continue with the edge vovs (as 3 is the smallest index in the
set of equivalent vertices {vs, vy, ..., v, } which still can be connected to vy).
Then the starter has two choices: either she draws vzv; or vzvs (as 4 is the
smallest index in the set of equivalent vertices {vy4, vs, ..., v, }), etc. Clearly,
this convention does not change the outcome of the game.

Now we begin the proof of Theorem 1. The cases n = 2,3 are obvious.
For n = 5, when Trailmaker starts, she can win by the following sequence
of edges. Note that, according to the convention above, Breaker’s moves are
uniquely determined in this sequence.

V1V2, U2V3, U3V1, U1V4, V4V2, VaUs, U5V3, U3Vs, V45, UsV1.

The subcase of the case n = 5, when Breaker makes the first move, is covered
by Theorem 2(a). Hence it is enough to prove Theorem 2.

Breaker’s strategy will be to force Trailmaker into a situation, where she
has to move from one of a couple of totally equivalent vertices. Say a and b
are totally equivalent and Trailmaker has to move from a. If @ and b have
k neighbours in V' \ {a, b} then Breaker can achieve that the trail ends after
the drawing of 2(n — 2 — k) further edges. This is described in the following.

Finishing Strategy: Breaker always forces Trailmaker to move from {a,b}.
She can do this, since a and b have the same neighbours, so whenever Trail-
maker draws an edge ac (or bc) Breaker just moves back by c¢b (or ca). Since



a and b are connected, Trailmaker always must move to a vertex outside of
{a,b}. Hence after n — 2 — k repetions of this procedure, there are no more
vertices not connected to a (or b) and the trail ends at one of the vertices
a, b.

If Breaker starts the game then, after taking her first step, she is imme-
diately in the situation described above. According to our convention, she
starts by drawing the edge v;v5. Then v; and vy are totally equivalent and
Trailmaker has to move from vy. After drawing 2n — 4 further edges using
the Finishing Strategy, the trail cannot be continued.

The solution is not this simple if Trailmaker starts the game. The first
two edges of the trail are v;vo and vyvs. Then Trailmaker has the option to
go back to the set {vy,vo} (by drawing vzv;) or not (at the moment, the only
option is to draw wvzvs). If she chooses vgv; then Breaker has to draw vjvy,
and again Trailmaker has to choose between going back to the set {v;, v} or
not (since vy and vz are equivalent, she is not allowed to continue with v4vs,
and so her only option is to draw v,vs).

We consider the stage of the game when Trailmaker first decides not to
connect the last vertex of the trail to one of {v1,v9}. (If she always goes back
to {v1, v2} then the trail will have 2n — 3 edges, as in the case when Breaker
started.) This means that, for some k > 3, the trail used 2k — 4 edges so
far: vive, vivj, vov; for 3 < 7 <k —1, and one of vy, vauy (according to
the parity of k). Since the vertices vy, vy played a symmetric role so far, we
assume that the last edge of the trail is vyvx. We distinguish three cases:

Case 1: k = 3, and Trailmaker continues with the edge v3v,.

Case 2: k > 4, and Trailmaker continues with the edge vgvgs1.-

Case 3: k > 5, and Trailmaker continues with the edge vivs.

Case 1: Breaker answers with vyvy. After that, her strategy is to keep v
and v3 equivalent outside of the set {v1, va, v3, v4}. This means that whenever
Trailmaker draws the edge vov; or vsv; for some j > 5, she answers with v;vs
or v;vy, Tespectively. While at the vertex vy, Trailmaker has no other choice
than to draw v,v; for the smallest still isolated vertex v;. At the vertex v,
she has the option to draw vsv; (and when all isolated vertices are used, she
will be forced to make this move). However, then Breaker answers with v;v,
making v; and v, totally equivalent, and then applies the Finishing Strategy.
Since the set V' \ {v1,ve, v3,v4} remains independent during the game, the

number of edges in the trail is at most (;) +4(n —4) = 4n — 10.



Case 2: Breaker answers with v, 1v2. After that, she keeps v, and vy equiv-
alent outside of {v1, v, Vs, Ug, Vgs1}. This means that whenever Trailmaker
chooses to move outside of the set {vy, v, vs, vy, 441} by drawing v,v; or
v9v;, she answers with v;vy or v;v;, respectively.

Sooner or later Trailmaker is forced to draw an edge inside {vy, vo, v3, Vg, Vk1+1}-
This can happen only when the trail currently ends at v, as vy is already
connected to the other four vertices. Since vy and vg; are equivalent, Trail-
maker is forced to draw v,v;,. Then Breaker answers with v,vs, and after that
her strategy is to keep vz and vy equivalent outside of {vy, vo, vs, Vg, Ug11} the
usual way, always drawing an edge back to the set {vs,vy}. Again, Trail-
maker will be forced to draw an edge inside {vy,vo,vs, vk, vgs1}. This edge
can be only vsvky1, and then Breaker answers with vgiv;. This makes vy
and vy totally equivalent, and Breaker completes the trail according to the
Finishing Strategy. The set V' \ {v1,ve, v3, vx} remains independent during
the game, so the trail contains at most 4n — 10 edges.

Case 3: Breaker answers with vsvs, and after that keeps v3 and v4 equivalent
outside of {v1, ve, v3, vy, vk } the usual way. When Trailmaker is forced to draw
an edge inside the set {vy, va, v3, v4, Uk }, it must be v4vx; then Breaker answers
with vgv;. This makes v; and v, totally equivalent, and Breaker can apply
the Finishing Strategy. Since the set V' \ {v1, v2,v3, v4} remains independent
during the game, the trail contains at most 4n — 10 edges.

This finishes the proof of Theorem 2, and also the proof of Theorem 1.

3 The modified game

The purpose of this section is to prove Theorem 3. Throughout the section,
we consider the variant of the game when Trailmaker is allowed to choose
whether she continues the trail by drawing one or two edges.

First, we consider the case when Breaker starts the game. Assume that
the size of the board is n = 2k + 1. We prove the existence of a winning
strategy for Trailmaker by induction on k. Actually, we prove a slightly more
general statement: there exists a winning strategy for Trailmaker, such that
all the isolated vertices, except v3, are visited first by Breaker.

The above statement is obvious for £ = 1. Let us assume that there is an
appropriate winning strategy on a board of size 2k — 1, and let us consider
the case n = 2k + 1.



According to the conventions about choosing between equivalent vertices,
Breaker starts the game with v;v9. Trailmaker should answer with the two
edges vovs, v3v;. After this, Trailmaker considers the set S = V' \ {vg,v3}
as a board of 2k — 1 vertices and applies her strategy there. Next, Breaker
must draw the edge vivy, and by this step she starts a game on S. From
now on, if Breaker draws an edge to a vertex of S which is not isolated, then
Trailmaker follows her existing strategy for a board of size 2k — 1. Whenever
Breaker draws an edge to an isolated vertex a € S, Trailmaker moves av,
and keeps vq, v3 equivalent outside of {vg,vs,a}. Sooner or later Breaker
is forced to draw wza. In the meantime, always Breaker’s edges ended at
previously isolated vertices, since Trailmaker always drew edges ending in
the set {vy,v3}.

After Breaker draws wsa, Trailmaker has to move from a, so she just
continues her strategy on the board S. If Breaker draws an edge to another
isolated vertex b, Trailmaker connects it with v, right away and repeats the
above process. Finally Breaker must connect back from vs to b, and then
Trailmaker continues according her strategy on S.

Breaker never gets the chance to draw an edge ending in the set {vy, vs},
because all those edges drawn by Trailmaker which end in S reach non-
isolated vertices; however, the non-isolated vertices are already connected to
v9 and vs.

This way, the strategy for the board S can be applied, with the interrup-
tions when edges incident to {v,v3} are drawn. After these interruptions,
the game returns into S at the vertex of exit with the appropriate person’s
turn to move, so the strategy on S can be continued.

With the exception of v, Trailmaker never visited an isolated vertex.
Within S, with the exception of vs, this is true because of the inductive
hypothesis. For vs, which is the equivalent of the “exceptional” vertex ws
on the smaller board S, we show that it was first visited by Breaker. Since
vy was isolated before Breaker drew viv,4, Trailmaker will move v4vy and in
the next step Breaker is forced to draw vevs. This means that vs will not
be isolated when Trailmaker first draws an edge ending at vs, following the
strategy on S. (This will occur in the doublestep v4vs, v5v1.) There are only
two vertices outside S, namely vy and v3, and the isolated vertex vy was first
visited by Breaker.

Thus we constructed an appropriate strategy for the board of size 2k + 1
and proved Theorem 3 for the case when Breaker starts.



Let us note that with this strategy Trailmaker used its extra power, the
doublestep, only k£ times, which is linear as a function of the number of
vertices.

When Trailmaker starts, she can reduce the game easily to a situation
considered above, by drawing vsv; as her second move (after the steps vjvy
by Trailmaker and vovs by Breaker). From here, she just continues with the
strategy described above.
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