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Abstract
We investigate bounds on the dichromatic number of digraphs which avoid a fixed digraph

as a topological minor. For a digraph F , denote by mader~χ(F ) the smallest integer k such
that every k-dichromatic digraph contains a subdivision of F . As our first main result, we
prove that if F is an orientation of a cycle then mader~χ(F ) = v(F ). This settles a conjecture
of Aboulker, Cohen, Havet, Lochet, Moura and Thomassé. We also extend this result to
the more general class of orientations of cactus graphs, and to bioriented forests.

Our second main result is that mader~χ(F ) = 4 for every tournament F of order 4. This is
an extension of the classical result by Dirac that 4-chromatic graphs contain a K4-subdivision
to directed graphs.

1 Introduction
The chromatic number is one of the fundamental graph parameters, and is well-known to be
intractable. Meaningful sufficient and necessary conditions for it to be large are of high interest.
In fact, some of the most important results and open problems of Graph Theory are concerned
with the relation between the chromatic number of an undirected graph and its containment of
substructures such as subgraphs, minors or topological minors. A prime example is the famous
Hadwiger conjecture from 1943, which states the following:

Conjecture 1 ([15]). Every graph G with χ(G) ≥ k contains Kk as a minor.

An even stronger conclusion was suggested by Hajós, who conjectured that every k-chromatic
graph contains a subdivision of Kk, that is, a graph which can be obtained from Kk by replacing
its edges with pairwise internally vertex-disjoint paths connecting their original endpoints. Hajós’
conjecture is easily verified for k ≤ 3, and Dirac [9] proved the case k = 4.

Theorem 2 ([9]). Every graph G with χ(G) ≥ 4 contains a K4-subdivision.

While the cases k = 5, 6 of Hajós’ conjecture remain open, it was disproved for all values k ≥ 7
by Catlin [7], who constructed explicit counterexamples, i.e. graphs with chromatic number k
which contain no Kk-subdivision (see also [29]). An even more devastating blow to the conjecture
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was delivered by Erdős and Fajtlowicz [11], who showed that almost all graphs on Θ(k2) vertices
do not contain a Kk-subdivision, even though their chromatic number is Ω

(
k2/ log k

)
.

On the positive side, it turned out that large enough chromatic number does in fact necessitate
the existence of a Kk-subdivision. As a matter of fact, the following classical result established
that even large density is sufficient.

Theorem 3 (Bollobás and Thomason [5], Komlós and Szemerédi [20]). There exists an absolute
constant C > 0 such that for every k ∈ N, every graph G with minimum degree at least Ck2

contains a subdivision of Kk.

Since every graph G contains a subgraph of minimum degree at least χ(G)−1, one can deduce
from Theorem 3 that having chromatic number larger than Ck2 (for some absolute constant C)
is sufficient to guarantee a Kk-subdivision. For k ∈ N, let f(k) be the smallest integer such that
every graph with chromatic number at least f(k) contains a Kk-subdivision. Theorem 3 then
implies a quadratic upper bound f(k) = O(k2), while the result of Erdős and Fajtlowicz [11]
establishes a lower bound of f(k) = Ω

(
k2/ log k

)
. These remain the best known bounds on f(k);

Fox et al. [12] conjectured that the truth lies with the lower bound.
The upshot of the above discussion is that a subdivision of any given graph is contained in

any graph of sufficiently large chromatic number. In this paper we investigate this phenomenon
in the realm of directed graphs; we ask in what form, and to what extent, it holds. The notion
of subdivision extends naturally to directed graphs: given a digraph F , a subdivision of F is any
digraph obtained by replacing every arc (x, y) in F by a directed path from x to y, such that
subdivision-paths of different arcs are internally vertex-disjoint. It is less clear, however, how
to choose a suitable chromatic number concept, which would provide a rich family of forcible
digraph subdivisions. The chromatic number χ(D) of a digraph D is defined as the chromatic
number of the underlying graph of D. The fact that any graph, however high its chromatic
number is, can be oriented acyclically and hence avoid containing any directed cycle, already
hints that χ(D) being large might only have limited impact on digraph subdivision containment.
In fact, as was noted by Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé [1], the family
of digraphs F which can be forced as a subdivision by high chromatic number is very limited: it
consists of the orientations of forests. See [6] and [8], respectively, for the positive and negative
directions of this result. As a consequence, we see that high chromatic number of the underlying
graph is not even strong enough to force the subdivision of any particular orientation of a cycle.

Another widely-studied digraph coloring parameter — which, in contrast to the chromatic
number, takes into account the direction of edges — is the dichromatic number. Given a digraph
D, an acyclic k-coloring of D is a mapping c : V (D)→ [k] such that for every color i ∈ [k], the
color class c−1(i) ⊆ V (D) induces an acyclic subdigraph of D. The dichromatic number ~χ(D) is
defined as the smallest k ∈ N for which an acyclic k-coloring of D exists. Introduced in 1982 by
Neumann-Lara [27], this parameter was rediscovered and popularized by Mohar [26], and since
then has received further attention, see [1, 2, 4, 17, 18, 21, 25] for some selected recent results.

Aboulker et al. [1] initiated the study of the existence of various subdivisions in digraphs of
large dichromatic number. In one of their main results, they show that a subdivision of any
given digraph is contained in digraphs of sufficiently large dichromatic number.

Theorem 4 ([1], Theorem 32). Let F be a digraph with n vertices and m arcs. Then every
digraph D with ~χ(D) ≥ 4m(n− 1) + 1 contains a subdivision of F .

Following the terminology in [1], for a digraph F we denote by mader~χ(F ) the smallest integer
k ≥ 1 such that every digraph D with ~χ(D) ≥ k contains a subdivision of F . We call mader~χ(F )
the (dichromatic) Mader number of F .
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The problem of obtaining a polynomial bound (in terms of the number of vertices and arcs of
F ) on the Mader number remains open, and seems quite challenging. One reason for the increased
difficulty compared to the undirected case is that there is no analogue of Theorem 3 for directed
graphs. In fact, it follows from a result of Thomassen [28] that there exist digraphs of arbitrarily
high minimum out- and in-degree, which do not even contain a subdivision of

↔
K3, the bioriented

triangle. Consequently, entirely new methods have to be developed to force clique-subdivisions
in digraphs of large dichromatic number, since any methods for addressing this problem must
differ substantially from the established density-based ideas used in the undirected theory.

In light of the difficulty of improving the bound in Theorem 4 in general, it is natural to vie
for obtaining better upper bounds for special classes of digraphs. One appealing conjecture in
this vein was raised by Aboulker et al. [1]. Let C` denote the (undirected) cycle of length `.

Conjecture 5 ([1], Conjecture 39). If C is an orientation of C`, then mader~χ(C) = `.

In [1], Conjecture 5 is proved for directed cycles and an upper bound of 2`− 1 is established for
arbitrary orientations.

1.1 Our results.
Note that the Mader number of every digraph F is at least the number of its vertices. Indeed,
the complete digraph of order v(F ) − 1 has dichromatic number v(F ) − 1, but does not have
enough vertices to host a subdivision of F . Hence Conjecture 5 states that, in a sense, the Mader
number of orientations of cycles is as small as it could be.

In this paper we resolve Conjecture 5 and go on to study the more general question: for
which digraphs F does it hold that mader~χ(F ) = v(F )? In the first main result of our paper
we prove that this equality holds for a large class of digraphs, which includes orientations of
cactus graphs1 (and hence all orientations of cycles), as well as all bioriented forests. This class
of digraphs, a member of which we refer to as octus2, is defined inductively as follows.

Definition 6. The class of octi digraphs is defined as follows.

• K1 is an octus.

• Let F be an octus, and let v0 ∈ V (F ). Let P = v1, . . . , vk, k ≥ 1, be an orientation of a
path which is disjoint from V (F ). Let F ∗ be obtained from F by adding the path P , both
arcs (v0, v1), (v1, v0), and (if k ≥ 2) exactly one of the arcs (v0, vk), (vk, v0). Then F ∗ is
also an octus.

• If F is an octus then every subdigraph of F is also an octus.

We note that the path P in the second item of Definition 6 is allowed to consist of a single
vertex, which corresponds to attaching a digon to F at v0. The operation described in Item 2 of
Definition 6 will be called ear addition. Our first main result is as follows:

Theorem 7. For every octus F , we have mader~χ(F ) = v(F ).

This theorem has a couple of immediate consequences, each of which extends results of [1].
It is not difficult to see that orientations of cacti are precisely the octi which have no digons.
Therefore, we have the following:

1Cactus graphs are usually defined as the graphs which do not contain a pair of cycles sharing at least two
vertices (or, equivalently, as the graphs which do not contain K4 − e as a minor).

2The name alludes to the fact that every orientation of a cactus graph is an octus. We should warn, however,
that the class of octi is strictly larger than the class of orientations of cacti, as is explained following Theorem 7.
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Corollary 8. For every orientation F of a cactus, we have mader~χ(F ) = v(F ).

Since every cycle is a cactus, Corollary 8 immediately implies Conjecture 5.
Another immediate corollary of Theorem 7 is concerned with biorientations of forests. Here,

a biorientation of an undirected graph G is the (symmetric) digraph
↔
G obtained by replacing

each edge {x, y} of G with the arcs (x, y), (y, x). Every bioriented tree can be obtained from K1
by a sequence of ear additions where, at each step, we add a new vertex and connect it by a
digon to one of the vertices of the existing digraph. Hence, every biorientation of a forest is an
octus, and we have the following:

Corollary 9. If T is an (undirected) forest, then mader~χ(
↔
T ) = v(

↔
T ).

Corollary 9 strengthens another result from [1], where the conclusion was shown to hold for
every orientation of a forest.

Next we discuss digraphs on a small number of vertices. The smallest digraph not covered
by Theorem 7 is the bioriented triangle minus an edge. It turns out that this digraph, too, has
the property that its Mader number equals its number of vertices.

Proposition 10. mader~χ(
↔
K3 − e) = 3.

In the second main result of our paper, we show that the Mader number of every 4-vertex
tournament is 4.

Theorem 11. For every orientation K of K4, we have that mader~χ(K) = 4.

Theorem 11 is a strict extension to the directed setting of Dirac’s theorem on K4-subdivisions
(namely, Theorem 2). In fact, Theorem 2 can be easily derived from Theorem 11 as follows. First,
observe that ~χ(

↔
G) = χ(G) for every graph G. Now, if G is an undirected graph with χ(G) ≥ 4,

then by Theorem 11,
↔
G contains a subdivision of any orientation of K4, which translates to a

K4-subdivision in G.
The rest of this paper is organized as follows. After establishing some preliminary results

in Section 2, we prove Theorem 7 in Section 3. Section 4 is devoted to proving Theorem 11.
Finally, in Section 5 we conclude with a discussion of Mader numbers of biorientations of complete
digraphs and cycles, give the proof of Proposition 10, and pose some open problems. A main
focus of Section 5 is on digraphs which we call Mader-perfect; these are digraphs F with the
property that every subdigraph F ′ of F satisfies mader~χ(F ′) = v(F ′). We propose the further
study of these digraphs and establish some preliminary results.

Notation. All digraphs considered in this paper are loopless, have no parallel edges, but are
allowed to have anti-parallel pairs of edges (digons). A directed edge (also called an arc) with
tail u and head v is denoted by (u, v). For a graph G, we denote by V (G), E(G) the vertex- and
edge-set of G, respectively. For a digraph D, V (D) denotes the vertex-set and A(D) denotes
the set of arcs; we will use the notation v(D) = |V (D)| and a(D) = |A(D)|. For X ⊆ V (D)
we denote by D[X] the induced subdigraph of D with vertex-set X. For a set X of vertices or
arcs in D, we denote by D −X the subdigraph obtained by deleting the objects in X from D.
Given an undirected simple graph G, an orientation of G is any digraph obtained by replacing
each edge {u, v} of G with (exactly) one of the arcs (u, v) or (v, u). Evidently, any orientation
is digon-free. For a digraph D and a vertex v ∈ V (D), we let N+(v), N−(v) denote the out-
and in-neighborhood of v in D, and d+(v), d−(v) their respective sizes. We denote by δ+(D),
δ−(D), ∆+(D), ∆−(D) the minimum or maximum out- or in-degree of D, respectively. We
use the words “path” and “cycle” to mean an orientation of a path or a cycle (respectively).
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For example, a path P in a digraph D is an alternating sequence v1, e1, v2, . . . , vk−1, ek−1, vk of
pairwise distinct vertices v1, . . . , vk ∈ V (D) and arcs e1, . . . , ek−1 ∈ A(D) such that ei connects
vi and vi+1 (i.e., either ei = (vi, vi+1) or ei = (vi+1, vi)). If in addition ei = (vi, vi+1) for every
i = 1, . . . , k− 1, then we say that P is a directed path or dipath from v1 to vk (a v1,vk-dipath for
short). Given two distinct vertices x 6= y on a path P , we denote by P [x, y] = P [y, x] the subpath
of P with endpoints x and y. A directed cycle (dicycle for short) is a cycle with all arcs oriented
consistently in one direction. For a directed cycle C and two distinct vertices x, y ∈ V (C), we
denote by C[x, y] the segment of C which forms a dipath from x to y (note that C[x, y] 6= C[y, x]).
A closed directed walk is an alternating sequence v0, e0, v1, . . . , vk−1, ek−1, vk = v0 of vertices and
arcs such that ei = (vi, vi+1) for all i. A digraph D is called weakly connected (or just connected)
if every two vertices can be connected by a path (i.e., if the underlying undirected graph is
connected); and it is called strongly connected if for every ordered pair (x, y) ∈ V (D) × V (D),
there exists an x,y-dipath in D. The maximal strongly connected subgraphs of a digraph D
induce a partition of V (D) and are called the strong components of D. For a natural number
k ∈ N, a digraph is called strongly k-vertex-connected (resp. strongly k-arc-connected) if for every
subset K of at most k − 1 vertices (resp. arcs), the digraph D −K is strongly connected. The
notions of weak k-vertex-connectivity and weak k-arc-connectivity are defined analogously. An
in-arborescence is a directed rooted tree in which all arcs are directed towards the root.

2 Preliminaries
In this section we gather a number of definitions, observations and auxiliary results about the
dichromatic number and about subdivisions in digraphs which will be used in the course of the
paper. We start by observing that mader~χ is subadditive with respect to taking disjoint unions.

Observation 12. Let F be the disjoint union of two digraphs F1, F2. Then

mader~χ(F ) ≤ mader~χ(F1) + mader~χ(F2).

Proof. For convenience, put ki := mader~χ(Fi), i = 1, 2. Let D be a digraph with dichromatic
number at least k1 + k2. Let A1 ⊆ V (D) be such that ~χ(D[A1]) = k1 (such a set A1 can
be obtained by repeatedly deleting vertices as long as the dichromatic number of the current
digraph is strictly larger than k1). Put A2 := V (D)\A1. Then ~χ(D[A2]) ≥ k2, for otherwise one
could color D with less than k1 + k2 colors. By our choice of ki, we get that D[Ai] contains a
subdivision of Fi for each i = 1, 2. It follows that D contains a subdivision of F , as required.

Let k ∈ N. A digraph D is called k-dicritical, if ~χ(D) = k, but ~χ(D′) < k for all proper
subdigraphs D′ ( D.

Lemma 2.1. Let D be k-dicritical. Then δ+(D), δ−(D) ≥ k − 1.

Proof. Since the reversal of all arcs preserves the k-dicriticality of D (because this operation
preserves dichromatic number), it suffices to show that δ+(D) ≥ k − 1. Suppose towards a
contradiction that there exists some v ∈ V (D) such that d+(v) < k − 1. By assumption, D − v
admits an acyclic coloring with color-set {1, . . . , k− 1}. We can extend this to a (k− 1)-coloring
of D by assigning to v a color in {1, . . . , k − 1} that does not appear on N+(v). Then the
resulting coloring is an acyclic (k− 1)-coloring of D (since no monochromatic directed cycle can
pass through v), in contradiction to our assumption that ~χ(D) = k.

Lemma 2.2. Let D be k-dicritical. Then D is strongly connected.
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Proof. Assume, for the sake of contradiction, that D is not strongly connected. Then there is a
partition V (D) = A ∪B such that A and B are non-empty and there are no arcs going from B
to A. Since D is k-dicritical, both D[A] and D[B] have an acyclic (k − 1)-coloring. But putting
these colorings together is an acyclic (k − 1)-coloring of D, since D contains no directed cycles
which intersect both A and B. Thus, we have arrived at a contradiction to ~χ(D) = k.

Given a digraph D and two (not necessarily disjoint) subsets A,B ⊆ V (D), an A-B-dipath
is a directed path in D which starts in a vertex of A, ends in a vertex of B, and is internally
vertex-disjoint from A∪B (here we allow paths consisting of a single vertex belonging to A∩B).
Similarly, for a vertex u ∈ V (D), by a u-A-dipath or an A-u-dipath, respectively, we mean a
{u}-A or an A-{u}-dipath according to the above definition. We will frequently use the following
well-known variants of Menger’s Theorem for directed graphs.

Theorem 13. Let D be a digraph and k ∈ N.

(i) If D is strongly k-vertex-connected, then for any two subsets A,B ⊆ V (D) such that
|A|, |B| ≥ k, there are k pairwise vertex-disjoint A-B-paths.

(ii) If v ∈ V (D) and A ⊆ V (D) \ {v}, then either there are k different v-A-dipaths which
pairwise only intersect at v, or there is a subset K ⊆ V (D) \ {v} such that |K| < k and
such that in D −K there is no dipath starting at v and ending in A.

Proof. For (i), note that in a strongly k-vertex connected digraph the smallest set that intersects
every A-B-path is of size at least k. Hence the existence of a family of k pairwise vertex-disjoint
A-B-paths is implied by Menger’s Theorem [24] (cf. [14]).

Let us now derive (ii). If there exists no family of k different v-A-dipaths that only intersect
in v, then there is no family of k disjoint N+(v)-A-dipaths in D − v. Menger’s Theorem then
ensures the existence of a set K ⊆ V (D) \ {v} of less than k vertices such that there is no
N+(v)-A-dipath in D− ({v}∪K). Then in D−K there is no v-A-dipath, since all such dipaths
go through N+(v).

We will further need the following two deep results by Mader on so-called non-critical vertices
and on subdivisions in digraphs of sufficiently large out-degree.

Theorem 14 ([22], see also Section 7.11 in [3]). Let k ∈ N, and let D be a strongly k-vertex-
connected digraph with δ+(D), δ−(D) ≥ 2k. Then there is v ∈ V (D) such that D − v is (also)
strongly k-vertex-connected.

Theorem 15 ([23]). Let D be a digraph such that δ+(D) ≥ 3. Then D contains a subdivision
of ~K4, the transitive tournament of order 4.

3 Oriented cacti and bioriented forests
In this section we prove Theorem 7. The main step in the proof consists of showing that if F ∗ is
a digraph obtained from a digraph F via ear addition (i.e., the operation described in the second
item of Definition 6), then mader~χ(F ∗) ≤ mader~χ(F ) + k where k is the number of newly added
vertices. This is done in the following theorem.

Theorem 16. Let F be a digraph and let v0 ∈ V (F ). Let P = v1, . . . , vk be an orientation of a
path disjoint from V (F ). Let F ∗ be the digraph obtained from F by adding the path P , both arcs
(v0, v1), (v1, v0), and (if k ≥ 2) exactly one of the arcs (v0, vk), (vk, v0). Then mader~χ(F ∗) ≤
mader~χ(F ) + k.
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To prove Theorem 16 we will need the following useful lemma, which describes a generalization
of the idea of Kempe-switches to directed graphs.

Lemma 3.1. Let D be a digraph, k ∈ N, and let c : V (D) → {1, . . . , k} be an acyclic coloring
of D. Let i 6= j ∈ {1, . . . , k}, Di,j := D[c−1({i, j})], and let X ⊆ c−1({i, j}) be the vertex set of
a strong component of Di,j. Then the coloring c′ : V (D)→ {1, . . . , k}, defined by

c′(x) :=


c(x) if x ∈ V (D) \X,
j if x ∈ X ∩ c−1(i),
i if x ∈ X ∩ c−1(j)

is an acyclic coloring of D as well.

Proof. Suppose towards a contradiction that there is a directed cycle C in D which is monochro-
matic under c′. If V (C) ∩ X = ∅, then c and c′ agree on V (C), contradicting our assumption
that c is an acyclic coloring of D. Therefore V (C) ∩ X 6= ∅. Since c′ has only colors i or
j on X, we find that C is monochromatic under c′ either in color i or j. This means that
V (C) ⊆ (c′)−1({i, j}) = c−1({i, j}) according to the definition of c′. Hence, C is a directed cycle
in Di,j , and since X is a strong component of Di,j , we conclude V (C) ⊆ X. By the definition of
c′ the colors i and j are switched in X, so C must have been monochromatic under c in color j
or i. This contradicts to the fact that the coloring c of D is acyclic and concludes the proof.

Proof of Theorem 16. The proof is divided into two cases (I) and (II), depending on whether the
digraph F ∗ contains the arc (v0, vk) or the arc (vk, v0). We will see later when handling Case (II)
that these cases are symmetric to each other.

Case (I):
For the first case, assume that (v0, vk) ∈ A(F ∗). For brevity, in the following we put M :=

mader~χ(F ). Consider any given digraph D such that ~χ(D) = M + k. We have to show that D
contains a subdivision of F ∗.

Let us start by fixing an acyclic coloring c0 : V (D)→ {1, 2, . . . ,M + k} of D that maximizes
|c−1

0 ({1, . . . , k})|. In the following, we set Y1 := c−1
0 ({1, . . . , k}) and Y2 := c−1

0 ({k+1, . . . ,M+k}).
Note that V (D) = Y1 ∪ Y2 is a partition of V (D). Since c0 is an acyclic coloring of D with ~χ(D)
colors, we have ~χ(D[Y1]) = |{1, . . . , k}| = k and ~χ(D[Y2]) = |{k + 1, . . . ,M + k}| = M .

From the definition of M we conclude that there exists a subgraph S ⊆ D[Y2] which is a
subdivision of F . In the following, let us denote by x0 ∈ V (S) ⊆ Y2 the vertex in this subdivision
corresponding to v0 ∈ V (F ).

For each acyclic k-coloring c : Y1 → {1, . . . , k} of D[Y1], let v(c) ∈ Zk denote the vector
defined by v(c)i = |N+(x0)∩ c−1(i)|, for i = 1, . . . , k. Let us consider the pre-order ≺ on the set
of acyclic {1, . . . , k}-colorings of D[Y1], where c1 ≺ c2 iff v(c1) <lex v(c2). Here <lex denotes the
lexicographical order on Zk. In the following, let c : Y1 → {1, . . . , k} denote an acyclic coloring
of D[Y1] that is minimal with respect to ≺. For i < j ∈ {1, . . . , k}, let Di,j := D[c−1({i, j})].

Claim 1. For every 1 ≤ i < j ≤ k and every vertex x ∈ N+(x0) ∩ c−1(i), there is a vertex
y ∈ N+(x0) ∩ c−1(j) such that x and y lie in the same strong component of Di,j .

Proof. Denote by X ⊆ c−1({i, j}) the unique strong component of Di,j containing x. Suppose
towards a contradiction that X∩ (N+(x0)∩c−1(j)) = ∅. Let c′ be the coloring of D[Y1] obtained
from c by switching colors i and j within X. According to Lemma 3.1, c′ is an acyclic coloring
of D[Y1]. By definition, we furthermore have v(c′)` = v(c)` for all ` ∈ {1, . . . , k} \ {i, j}, and
since no vertex in N+(x0) is switched from color j to color i while x is switched from color i
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to color j, we have v(c′)i < v(c)i. However, since i < j, this means that c′ ≺ c, contradicting
our minimality assumption on c. This shows that our assumption was wrong, namely there does
exist a vertex y ∈ X ∩ (N+(x0) ∩ c−1(j)). This yields the claim.

Claim 2. There are vertices x1, x2, . . . , xk ∈ N+(x0) ∩ Y1 such that

• c(xi) = i, for i = 1, . . . , k.

• There is a directed cycle C in D containing x0 and x1 such that V (C) \ {x0} ⊆ c−1(1).

• For every 2 ≤ i ≤ k, there exists a directed path Pi−1,i in D[Y1] with endpoints xi−1, xi
such that V (Pi−1,i) ⊆ c−1({i − 1, i}). In addition, Pi−1,i is directed from xi−1 to xi if
(vi−1, vi) ∈ A(P ), and directed from xi to xi−1 if (vi, vi−1) ∈ A(P ).

Proof. We start by showing that there is a directed cycle C in D through x0 such that
V (C) \ {x0} ⊆ c−1(1). Assume, towards a contradiction, that no such cycle exists, and con-
sider the coloring c′0 : V (D)→ {1, . . . ,M + k} defined by

c′0(x) :=


c(x), if x ∈ Y1

1, if x = x0

c0(x), if x ∈ Y2 \ {x0}.

Our assumption implies that c′0 is an acyclic coloring of D, because there is no directed cycle
containing x0 which is monochromatic under c′0. However, the coloring c′0 has one more vertex
in colors {1, ..., k} than c0, contradicting our maximality assumption on c0. Therefore, a cycle C
with the claimed properties exists.

Now define x1 ∈ N+(x0) ∩ V (C) to be the unique out-neighbor of x0 on C. We have
c(x1) = 1 since x1 ∈ V (C) \ {x0}. We now successively define vertices x2, . . . , xk as follows: for
i = 2, 3, . . . , k, define the vertex xi to be a vertex in N+(x0) ∩ c−1(i) chosen such that xi−1 and
xi lie in the same strong component of Di−1,i. Such a choice is possible by Claim 1.

The first and second items of the claim follow directly from our choice of the vertices
x1, . . . , xk. For the last item, for each 2 ≤ i ≤ k, we choose a directed path Pi−1,i in Di−1,i, such
that Pi−1,i is directed from xi−1 to xi if (vi−1, vi) ∈ A(P ) and from xi to xi−1 if (vi, vi−1) ∈ A(P ).
The existence of such a path follows in each case since xi−1, xi are in the same strong component
of Di−1,i. Clearly, V (Pi−1,i) ⊆ V (Di−1,i) = c−1({i− 1, i}). This proves the last item.

Claim 3. There are vertices z1, z2, . . . , zk ∈ Y1 such that

• c(zi) = i, for i = 1, . . . , k.

• z1 ∈ V (C) and zk ∈ N+(x0).

• For every 2 ≤ i ≤ k, there exists a directed path Qi−1,i in D[Y1] with endpoints zi−1, zi
such that Qi−1,i is directed from zi−1 to zi if (vi−1, vi) ∈ A(P ), and directed from zi to
zi−1 if (vi, vi−1) ∈ A(P ).

• The paths Qi−1,i, i = 2, . . . , k are pairwise internally vertex-disjoint.

• V (C) ∩ V (Q1,2) = {z1} and V (C) ∩ V (Qi−1,i) = ∅ for i = 3, . . . , k.
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Proof. We define the vertices zi as follows: We define z1 ∈ V (C) to be the unique last vertex in
V (C) we meet when traversing the trace of the path P1,2 starting from x1 ∈ V (C). Since P1,2
uses only colors 1 and 2, we must have z1 ∈ V (C)\{x0} and thus c(z1) = 1. For i = 2, . . . , k−1,
we successively define zi to be the first vertex of Pi,i+1 we meet when traversing the trace of the
path Pi−1,i[zi−1, xi] starting from zi−1 (such a vertex exists, since xi ∈ V (Pi−1,i) ∩ V (Pi,i+1) by
Claim 2). Since V (Pi−1,i) ⊆ c−1({i− 1, i}), V (Pi,i+1) ⊆ c−1({i, i+ 1}), it follows that c(zi) = i.
Finally, we put zk := xk ∈ N+(x0). For each i ∈ {2, 3, . . . , k}, we define Qi−1,i := Pi−1,i[zi−1, zi].

Let us now verify the correctness of the claim. The first three items follow directly from
Claim 2 and the definition of the vertices zi and the paths Qi−1,i.

For the fourth item, let i < j ∈ {2, . . . , k} be given. We need to show that Qi−1,i and
Qj−1,j can only intersect in their endpoints. If j − i ≥ 2, then we directly conclude that
V (Qi−1,i) ∩ V (Qj−1,j) ⊆ V (Pi−1,i) ∩ V (Pj−1,j) ⊆ c−1({i − 1, i}) ∩ c−1({j − 1, j}) = ∅. If on
the other hand j = i + 1, then by definition of the vertex zi, no vertex on the path Qi−1,i =
Pi−1,i[zi−1, zi] except for zi lies on Pi,i+1, and therefore also not on Qj−1,j = Pi,i+1[zi, zi+1].
Hence, V (Qi−1,i) ∩ V (Qj−1,j) = {zi} = {zj−1}. This concludes the proof of the fourth item.
The claim that V (C) ∩ V (Q1,2) = {z1} in the fifth item directly follows from our choice of
Q1,2 = P1,2[z1, z2] and the definition of z1 as being the last vertex on C we meet when traversing
P1,2 starting at x1. For i ∈ {3, . . . , k}, we can conclude the second part of the last item from the
inclusion V (C) ∩ V (Qi−1,i) ⊆ (c−1({1}) ∪ {x0}) ∩ c−1({i− 1, i}) = ∅.

Let S∗ be the subdigraph of D formed by joining S ⊆ D[Y2], the pairwise distinct vertices
z1, . . . , zk and the connecting dipaths Qi−1,i, i = 2, . . . , k, the two anti-parallel directed paths
C[x0, z1], C[z1, x0] between x0 and z1 as well as the arc (x0, zk). From Claim 3 and since(⋃k

i=2 V (Qi−1,i) ∪ (V (C) \ {x0})
)
∩ V (S) ⊆ Y1 ∩ Y2 = ∅, it follows that S∗ is isomorphic to a

subdivision of F ∗, with x0, z1, z2, . . . , zk playing the roles of the vertices v0, v1, v2, . . . , vk of F ∗.
We have thus shown that every digraph D with ~χ(D) = mader~χ(F )+k contains a subdivision

of F ∗, and this concludes the proof of the theorem in Case (I).

Case (II):
For the second case, assume that (vk, v0) ∈ A(F ∗). For a digraph D, denote by

←
D the

digraph obtained from it by reversing the orientations of all arcs, that is, V (
←
D) := V (D),

A(
←
D) := {(x, y) | (y, x) ∈ A(D)}. For all digraphs D and H, we have ~χ(D) = ~χ(

←
D) and

D contains a subdivision of H if and only if
←
D contains a subdivision of

←
H. This implies

that mader~χ(H) = mader~χ(
←
H) for every digraph H. Specially, we conclude that mader~χ(F ) =

mader~χ(
←
F ) and mader~χ(F ∗) = mader~χ(

←
F ∗). In the following, let

←
P denote the oriented path

with vertices v1, . . . , vk obtained from the oriented path P by reversing all arcs. Next notice
that (v0, v1), (v1, v0), (v0, vk) ∈ A(

←
F ∗), since (v1, v0), (v0, v1), (vk, v0) ∈ A(F ∗), by assumption of

Case (II). We now notice that the digraph
←
F ∗ is obtained from the digraph

←
F by adding to it

the oriented path
←
P , the arcs (v0, v1), (v1, v0), as well as (v0, vk). This matches the setting of

Case (I). Since we have proved the statement of the theorem in Case (I) above, we obtain that
mader~χ(

←
F ∗) ≤ mader~χ(

←
F ) + k. Together with the discussion at the beginning of this paragraph,

we conclude

mader~χ(F ∗) = mader~χ(
←
F ∗) ≤ mader~χ(

←
F ) + k = mader~χ(F ) + k.

This establishes the claim of the theorem also in Case (II), and concludes the proof.

By definition, every octus is obtained from K1 via a sequence of operations of two types:
ear addition and taking a subdigraph. For an octus F , let s(F ) be the (minimal) number of
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operations needed to obtain F . Let us say that F is a maximal octus if it can be obtained
from K1 by a sequence of ear additions only. By repeatedly applying Theorem 16, we see that
mader~χ(F ) = v(F ) for every maximal octus F . To complete the proof of Theorem 7, we also
need to address non-maximal octi. This will be done using the following two lemmas.

Lemma 3.2. Every octus is a subdigraph of a maximal octus.

Proof. The proof is by induction on s(F ). If s(F ) = 0 then F = K1 and the assertion is trivial.
Suppose then that s(F ) ≥ 1. By the definition of an octus (see Definition 6), either F is a
subdigraph of some octus F ′ with s(F ′) < s(F ), or F is obtained by ear addition from some
octus F ′ with s(F ′) < s(F ). In the former case, the induction hypothesis implies that F ′ —
and hence also F — is a subdigraph of a maximal octus, as required. Suppose then that F is
obtained by ear addition from some octus F ′ with s(F ′) < s(F ). By the induction hypothesis,
F ′ is a subdigraph of some maximal octus F ′′. By performing on F ′′ the same ear addition which
turns F ′ into F , we obtain a maximal octus which contains F . This completes the proof.

Lemma 3.3. For every connected subdigraph F ′ of a maximal octus F , there is a maximal octus
F̄ such that F ′ is a spanning subdigraph of F̄ .

Proof. The proof is by induction on s(F ). If s(F ) = 0 then F = K1 and the assertion is trivial.
Let then F be a maximal octus with s(F ) ≥ 1, and let F ′ be a connected subdigraph of F .
By the definition of maximal octi, there is some maximal octus F0 with s(F0) < s(F ) and
v0 ∈ V (F0) such that F is obtained from F0 by ear addition, namely, by adding an oriented path
P = v1, . . . , vk with {v1, . . . , vk} ∩ V (F0) = ∅, as well as the arcs (v0, v1), (v1, v0) and (w.l.o.g.)
(v0, vk). Consider the subdigraph F ′0 := F ′[V (F ′)∩ V (F0)] of F0. If V (F ′)∩ V (F0) = ∅, namely
if V (F ′) ⊆ {v1, . . . , vk}, then F ′ is an oriented path, and is hence a spanning subgraph of a
bioriented path, which is a maximal octus. Suppose then that V (F ′) ∩ V (F0) 6= ∅. The way
F is constructed from F0 and the assumption that F ′ is connected imply that F ′0 is connected
as well. By the induction hypothesis (applied to F0), there is a maximal octus F̄0 such that
F ′0 is a spanning subdigraph of F̄0. If F ′ = F ′0 then we are done, and otherwise we must
have V (F ′) ∩ {v1, . . . , vk} 6= ∅, which in turn implies that v0 ∈ V (F ′0) = V (F̄0) because F ′ is
connected. Now, if {v1, . . . , vk} ⊆ V (F ′) then F ′ is a spanning subdigraph of the maximal octus
obtained from V (F̄0) by adding the path P and connecting its endpoints to v0 ∈ V (F̄0) using
the arcs (v0, v1), (v1, v0), (v0, vk). Otherwise, i.e. if {v1, . . . , vk} 6⊆ V (F ′), then there must be
some 1 ≤ i < j ≤ k such that V (F ′) = V (F̄0) ∪ {v1, . . . , vi} ∪ {vj , . . . , vk} (as F ′ is connected).
Now, let F̄ be the maximal octus obtained from F̄0 by a sequence of two ear additions: we first
add the path v1, . . . , vi and the arcs (v0, v1), (v1, v0), (v0, vi) and then the path vj , . . . , vk and the
arcs (v0, vj), (vj , v0), (v0, vk). Then F ′ is a spanning subdigraph of F̄ , as required.

Proof of Theorem 7. Our goal is to show that mader~χ(F ) = v(F ) for every octus F . First,
observe that it suffices to prove this statement for connected F , since the general statement
would then follow by invoking Observation 12. So let F be a connected octus. By combining
Lemmas 3.2 and 3.3, we see that F is a spanning subdigraph of some maximal octus F̄ . As
mentioned before, Theorem 16 implies that mader~χ(F̄ ) = v(F̄ ) = v(F ). As F is a subdigraph of
F̄ , we have mader~χ(F ) ≤ mader~χ(F̄ ) and hence mader~χ(F ) = v(F ), as required.

4 Tournaments of order 4
In this section we prove Theorem 11. We give a separate proof for each of the 4-vertex tour-
naments. There are exactly four non-isomorphic tournaments on 4 vertices: ~K4, the transitive
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tournament of order 4; ~Ks
4 , the unique strongly connected tournament of order 4; and the tour-

naments W+
4 ,W

−
4 obtained from the directed triangle ~C3 by adding a dominating source or sink,

respectively. See Figure 1 for an illustration.

~K4
~Ks
4

W+
4 W−

4

Figure 1: The four non-isomorphic tournaments of order 4.

Since W+
4 and W−4 are obtained from each other by reversing the orientations of all arcs, it

suffices to prove Theorem 11 for ~K4, ~K
s
4 and W+

4 . While we can derive the result for the transitive
tournament ~K4 directly from Theorem 15, the proofs for ~Ks

4 and W+
4 are more involved and

require some preparation.

Proof of mader~χ( ~K4) = 4. Let D be a given digraph with ~χ(D) ≥ 4. Then D contains a 4-
dicritical subdigraph D′ ⊆ D. By Lemma 2.1, we have δ+(D′) ≥ 3. We now apply Theorem 15
to conclude that D′ and thus also D contains a subdivision of ~K4. This completes the proof.

We prepare the proofs of mader~χ( ~Ks
4) = 4 and mader~χ(W+

4 ) = 4 with a set of useful lemmas.

Lemma 4.1. Let D be a digraph, let (u,w) ∈ A(D), and let D′ be the digraph obtained from D
by deleting u and adding the arc (x,w) for each x ∈ N−D (u) \ {w} (unless it already exists). Let
F be a sink-free orientation of a cubic graph. If D′ contains a subdivision of F , then so does D.

Proof. Let S′ ⊆ D′ be a subdigraph of D′ isomorphic to a subdivision of F . If (x,w) /∈ A(S′) for
all x ∈ N−D (u), then S′ is also a subdigraph of D and hence we have found a subdivision of F in
D. So suppose that (x,w) ∈ A(S′) for some x ∈ N−D (u). We now distinguish between two cases.

Case 1: There exists x′ ∈ N−D (u) \ {x} such that (x′, w) ∈ A(S′). Then w must be a
branch vertex of the subdivision S′, and since F is a sink-free orientation of a 3-regular graph,
there exists a unique third neighbor x′′ of w in S′ satisfying (w, x′′) ∈ A(S′) ⊆ A(D′). By
definition of D′, we have (w, x′′) ∈ A(D) as well. We now see that the subdigraph S of D defined
by V (S) := V (S′) ∪ {u}, A(S) := (A(S′) \ {(x,w), (x′, w)}) ∪ {(x, u), (x′, u), (u,w))} forms a
subdivision of F in D, where the branch vertex w of S′ is moved to the new branch vertex u of
S (and w becomes a subdivision vertex).

Case 2: x is the unique vertex in N−D (u) such that (x,w) ∈ A(S′). Then the subdigraph S
of D defined by V (S) := V (S′) ∪ {u} and A(S) := (A(S′) \ {(x,w)}) ∪ {(x, u), (u,w)} forms a
subdivision of F contained in D.

Lemma 4.2. Let D be a strongly connected digraph, let v ∈ V (D), and let (X,Y ) be a non-trivial
partition of V (D) \ {v} such that (x, y) /∈ A(D) for all x ∈ X, y ∈ Y . Suppose further that D[X]
is strongly connected. Let D1 := D[X ∪ {v}] and let D2 be defined by V (D2) := Y ∪ {v} and
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A(D2) := A(D[Y ∪ {v}]) ∪ {(y, v) | y ∈ Y, x ∈ X, (y, x) ∈ A(D)}. Let further F be a sink-free
orientation of a cubic graph. Then

1. If D1 or D2 contains a subdivision of F , then so does D.

2. ~χ(D) ≤ max{~χ(D1), ~χ(D2)}.

Proof.

1. The claim is trivial for D1, since D1 ⊆ D. Now suppose that D2 contains a subdivision of F .
The vertex v in D must have an in-neighbor in the set X, for otherwise (X,Y ∪{v}) would
form a directed separation of D, contradicting the assumed strong connectivity. Since
D[X] is strongly connected, it follows that there exists an in-arborescence T ⊆ D[X ∪{v}]
rooted at x0 := v which spans X ∪ {v}. Let n := |X|, and fix an ordering x0, x1, . . . , xn
of the vertices of T such that each vertex of T appears before its children in the ordering
(i.e., if (xj , xi) ∈ A(T ) then j > i). For every i = n, n − 1, n − 2, . . . , 1, 0, let Hi be the
digraph obtained from D by removing all arcs in A(D[X∪{v}])\A(T ), deleting the vertices
{xi+1, . . . , xn} and adding the arc (y, xj) for every y ∈ Y and j ∈ {0, 1, . . . , i} such that
y has an out-neighbor x ∈ {xi+1, . . . , xn} in D and the first intersection of the unique
x-x0-path in T with {x0, x1, . . . , xi} is xj . Note that Hn is a subdigraph of D and that
H0 = D2. Further we can observe that for every 1 ≤ i ≤ n, the digraph Hi−1 is obtained
from Hi by deleting xi, and adding an arc from every x ∈ N−Hi(xi) to the parent of xi in T .
Hence, repeated application of Lemma 4.1 yields that if D2 = H0 contains a subdivision of
F , then the same is true for all Hi, 0 ≤ i ≤ n. Hence Hn ⊆ D contains a subdivision of F ,
and this proves the claim.

2. Let k := max{~χ(D1), ~χ(D2)} and let c1 : X∪{v} → {1, . . . , k} and c2 : Y ∪{v} → {1, . . . , k}
be acyclic k-colorings of D1 and D2, respectively. Without loss of generality we may assume
c1(v) = 1 = c2(v). We now define a k-coloring of V (D) by putting c(x) := c1(x) for every
x ∈ X, c(v) := 1, and c(y) := c2(y) for every y ∈ Y . We claim that this defines an
acyclic k-coloring of D. Indeed, if not, then there exists a directed cycle C in D which
is monochromatic under c. If v /∈ V (C), then since there is no arc from X to Y in D,
we must have either V (C) ⊆ X or V (C) ⊆ Y , which in both cases yields a contradiction
to our choice of c1 and c2 as acyclic colorings. Hence, v ∈ V (C) and V (C) ⊆ c−1(1). If
V (C) ∩ Y = ∅, then C is a monochromatic cycle in the coloring c1 of D1 = D[X ∪ {v}], a
contradiction. We therefore have V (C) ∩ Y 6= ∅. Since there are no edges from X to Y ,
there must be w ∈ Y such that (v, w) ∈ A(C). Let C[v, w′] be a maximal directed subpath
of C starting at v such that V (C[v, w′]) \ {v} ⊆ Y . (In other words, C[v, w′] is obtained
by traversing C starting from the arc (v, w) and stopping just before the cycle leaves Y .)
Then either (w′, v) ∈ A(D), or (w′, x) ∈ A(D) for some x ∈ X and hence (w′, v) ∈ A(D2)
by definition of D2. Therefore, C[v, w′] + (w′, v) forms a directed cycle in D2, all of whose
vertices have color 1 under c2, contradicting our assumption on c2. This contradiction
shows that our initial assumption was wrong, namely that c is indeed an acyclic coloring
of D, proving that ~χ(D) ≤ k = max{~χ(D1), ~χ(D2)}.

Lemma 4.3. Let D be a digraph, and let u, v, w ∈ V (D) be pairwise distinct such that v, w ∈
N+(u) ∩N−(u) (i.e., {u, v} and {u,w} induce digons). Let D∗ be obtained from D by deleting
v and w and adding the arcs

{(u, x) | x ∈ V (D) \ {u, v, w}, N−(x) ∩ {v, w} 6= ∅}
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and
{(x, u) | x ∈ V (D) \ {u, v, w}, N+(x) ∩ {v, w} 6= ∅}.

Let F be an orientation of a cubic graph. If D∗ contains a subdivision of F , then so does D.

Proof. Let S∗ be a subdigraph of D∗ isomorphic to a subdivision of F . If u /∈ V (S∗), then S∗

is also a subdigraph of D and we are done. Hence, suppose in the following that u ∈ V (S∗). If
u is a subdivision vertex in S∗, then let u− ∈ N−D∗(u) and u+ ∈ N+

D∗(u) denote the in- and the
out-neighbor of u in S∗, respectively. By definition of D∗ there exist x−, x+ ∈ {u, v, w} such that
(u−, x−), (x+, u+) ∈ A(D). Let P denote the bioriented path with vertex-trace v, u, w. Then
clearly P contains a directed x−, x+-path Px−,x+ . Now A(S) := (A(S∗) \ {(u−, u), (u, u+)}) ∪
{(u−, x−), (x+, u+)} ∪ A(Px−,x+) forms the arc-set of a subdigraph S ⊆ D isomorphic to a
subdivision of F . For the next case suppose that u is a branch vertex of the subdivision S∗. For
every in-neighbor y ∈ N−S∗(u) in S∗, let x(y) ∈ {u, v, w} be a vertex such that (y, x(y)) ∈ A(D),
and for every out-neighbor y ∈ N+

S∗(u), let x(y) ∈ {u, v, w} be a vertex such that (x(y), y) ∈
A(D). Let y1, y2, y3 be the three distinct neighbors of u in S∗, ordered in such a way that x(y2)
lies on the unique bioriented subpath Px(y1),x(y3) of P connecting the vertices x(y1) and x(y3). It
is now evident that the subdigraph of D obtained from S∗ by deleting u and adding Px(y1),x(y3)
and the arcs (yi, x(yi)) for yi ∈ N−S∗(u) and (x(yi), yi) for yi ∈ N+

S∗(u), contains a subdivision of
F with x(y2) as a branch vertex. This verifies the claim in the second case as well and concludes
the proof.

Proof of mader~χ( ~Ks
4) = 4. Suppose towards a contradiction that the claim is wrong, and let D

be a counterexample minimizing lexicographically the pair (|V (D)|, |A(D)|); namely, the number
of vertices is minimized with first priority and the number of arcs with second priority. Clearly,
|V (D)| ≥ 5, D is 4-dicritical, and it contains no subdivision of ~Ks

4 . By Lemma 2.2, D is strongly-
connected.

Claim 1. D is strongly 2-vertex-connected.

Proof. Suppose towards a contradiction that there exists a vertex v ∈ V (D) such that D − v
is not strongly connected. This means that D − v has more than one strong component. Let
X ⊆ V (D − v) be the vertex set of a strong component of D − v which is a “sink” in D − v,
that is, there is no arc leaving X. Let Y := V (D) \ (X ∪ {v}). Then (X,Y ) forms a partition
of V (D) \ {v}, D[X] is strongly connected and (x, y) /∈ A(D) for all x ∈ X, y ∈ Y . We can
therefore apply Lemma 4.2 with F = ~Ks

4 to obtain a pair D1, D2 of digraphs with vertex-sets
X ∪ {v}, Y ∪ {v}, respectively, such that neither D1 nor D2 contains a subdivision of ~Ks

4 and
4 = ~χ(D) ≤ max{~χ(D1), ~χ(D2)}. However, this means that there is some i ∈ {1, 2} such that
~χ(Di) ≥ 4, Di contains no ~Ks

4 -subdivision and clearly |V (Di)| < |V (D)|. This contradicts the
assumed minimality of D, thus showing that the assumption was wrong, namely that D is indeed
strongly 2-vertex-connected.

Claim 2. δ+(D), δ−(D) ≥ 4.

Proof. Note that ~Ks
4 is isomorphic to the tournament obtained from it by reversing all arcs. It

follows that since D is a counterexample to the claim, so is
←
D, which is the digraph obtained

fromD by reversing all its arcs. Evidently, we have (|V (
←
D)|, |A(

←
D)|) = (|V (D)|, |A(D)|), meaning

that
←
D is also a minimal counterexample (in the sense defined above). Since δ−(D) = δ+(

←
D), it

suffices to prove δ+(D) ≥ 4.
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Suppose towards a contradiction that there exists a vertex u ∈ V (D) such that d+(u) ≤ 3.
Since D is 4-dicritical, Lemma 2.1 implies that d+(u) = 3. We now distinguish between two
cases depending on the structure of the out-neighborhood of u.

Case 1: There exists some w ∈ N+(u) such that (w, u) /∈ A(D). In this case, let D′
be the digraph defined as in Lemma 4.1. Namely, D′ is obtained from D by deleting u and
adding the arcs (x,w) for all x ∈ N−(u). By Lemma 4.1, D′ contains no subdivision of ~Ks

4 .
Since |V (D′)| = |V (D)| − 1, the minimality assumption on D implies that ~χ(D′) ≤ 3. So let
c′ : V (D) \ {u} → {1, 2, 3} be an acyclic 3-coloring of D′. Write N+

D (u) = {w,w1, w2}. Fix a
color cu ∈ {1, 2, 3} \ {c′(w1), c′(w2)}. Let c : V (D) → {1, 2, 3} be the coloring of D defined by
c(x) := c′(x) for all x ∈ V (D) \ {u} and c(u) := cu. Since ~χ(D) = 4, there has to be a directed
cycle C in D which is monochromatic under c. Clearly, C has to pass through u, for otherwise
it would have been a monochromatic dicycle already in the coloring c′ of D′. Since none of the
out-arcs (u,w1), (u,w2) is monochromatic, we must have (u,w) ∈ E(C). Let u′ ∈ N−D (u) be the
unique predecessor of u on C. Then u′ 6= w because (w, u) /∈ A(D) by assumption. It follows
from the definition of D′ that replacing the directed subpath u′, (u′, u), u, (u,w), w of C with
the (“direct”) arc (u′, w) in D′ defines a directed cycle C ′ in D′ such that V (C ′) = V (C) \ {u}.
Hence, C ′ is a monochromatic dicycle in the acyclic coloring c′ of D′. This contradiction shows
that our initial assumption d+(u) ≤ 3 was wrong.

Case 2: (w, u) ∈ A(D) for all w ∈ N+(u). We claim that in this case, we can find a pair
w1, w2 ∈ N+(u) of distinct neighbors of u such that (w1, w2) /∈ A(D). Indeed, suppose this were
not the case. Then the vertices {u} ∪ N+(u) induce a

↔
K4 in D. However, this clearly means

that D contains ~Ks
4 ⊆

↔
K4 as a subdigraph, contradicting our initial assumption on D. So let

us fix, in the following, a pair of distinct w1, w2 ∈ N+(u) ⊆ N−(u) such that (w1, w2) /∈ A(D).
Let D∗ be the digraph obtained from D by applying the operation of Lemma 4.3 to {u,w1, w2};
that is, we delete w1 and w2 and add the arc (u, x) for every x ∈ V (D) \ {u,w1, w2} which
has an in-neighbor in {w1, w2} and the arc (x, u) for every x ∈ V (D) \ {u,w1, w2} which has
an out-neighbor in {w1, w2}. By Lemma 4.3, D∗ does not contain a subdivision of ~Ks

4 . We
clearly have |V (D∗)| < |V (D)| and so the minimality assumption on D yields that there is
an acyclic 3-coloring c∗ : V (D∗) → {1, 2, 3} of D∗. Write N+(u) = {w1, w2, w3}, and let
cu ∈ {1, 2, 3} be a color distinct from both c∗(u) and c∗(w3). We now define a 3-coloring
c of D by putting c(x) := c∗(x) for all x ∈ V (D) \ {u,w1, w2}, c(u) := cu, and c(w1) :=
c(w2) := c∗(u). Since ~χ(D) = 4, there must be a dicycle C in D which is monochromatic
under c. Then C cannot contain u, for otherwise it would have to leave u through one of
the out-arcs (u,w1), (u,w2), (u,w3), but by the definition of the coloring c, none of these arcs is
monochromatic. On the other hand, we must have V (C)∩{w1, w2} 6= ∅, for otherwise C would be
a monochromatic dicycle in (D∗, c∗), which is impossible. Observe also that V (C)\{w1, w2} 6= ∅
because (w1, w2) /∈ A(D). Let x0, x1, . . . , x` = x0 be the vertex-trace of C in D. Now consider
the closed sequence y0, y1, . . . , y` = y0 of vertices in D∗, where yi := xi if xi /∈ {w1, w2} and
yi := u if yi ∈ {w1, w2}. The definitions of D∗ and c and the fact that u /∈ V (C) imply that
c∗(yi) = c(xi) for every i = 1, . . . , `, and that either (yi−1, yi) ∈ A(D∗) or yi−1 = yi = u for
every i = 1, . . . , `. This means that in D∗ there is a monochromatic closed directed walk which
contains at least two vertices: it contains u because V (C) ∩ {w1, w2} 6= ∅ and at least one other
vertex because V (C) \ {w1, w2} 6= ∅ and u /∈ V (C). Therefore, D∗ contains a monochromatic
dicycle. All in all, this contradicts the fact that c∗ was chosen as an acyclic coloring of D∗,
implying that our initial assumption d+(u) ≤ 3 was wrong.

To sum up, we have arrived at a contradiction in both cases, which means that we indeed
must have δ+(D) ≥ 4. As argued above, we can derive δ−(D) = δ+(

←
D) ≥ 4 with the same

arguments applied to the minimal counterexample
←
D. This finishes the proof of the claim.
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With Claims 1 and 2 at hand, we can now apply Theorem 14 to D with k = 2, and thus
obtain a vertex v ∈ V (D) such that D− v is strongly 2-vertex-connected. We now complete the
proof of the Theorem by explicitly constructing a subdivision of ~Ks

4 in D. We start with the
following observation.

Claim 3. There are 3 directed cycles C1, C2, C3 in D such that V (Ci) ∩ V (Cj) = {v} for any
two distinct i, j ∈ {1, 2, 3}.

Proof. Since D is 4-dicritical, D − v admits an acyclic coloring with colors {1, 2, 3}. For every
i ∈ {1, 2, 3}, if we try and extend this coloring to D by assigning color i to v, we have to find a
monochromatic directed cycle Ci in D, which has to pass through v. Note that V (Ci)∩V (Cj) =
{v} for all 1 ≤ i < j ≤ 3, because all vertices in V (Ci) \ {v} receive color i (1 ≤ i ≤ 3).

The rest of the proof is divided into two cases depending on the lengths of the cycles Ci.
Case 1. All the three cycles C1, C2, C3 have length two, i.e., are digons. Let v1, v2, v3 ∈ V (D)

be such that V (Ci) = {v, vi} (i = 1, 2, 3). Since D − v is strongly connected, there has to be a
directed path in D − v starting in v1 and ending in {v2, v3}. Let P be a shortest such directed
path, and without loss of generality assume that it ends in v2. By the minimality assumption
on P we know that v3 /∈ V (P ). Now put A := V (P ), B := N−D−v(v3) ⊆ V (D − v). We clearly
have |A| ≥ |{v1, v2}| = 2, |B| = d−(v3) − 1 > 2, and hence we may apply Theorem 13 to D − v
and obtain that there are two vertex-disjoint A-B-dipaths P ′1 and P ′2 in D− v. We may assume
that v3 /∈ V (P ′i ) for i = 1, 2 (otherwise we can simply delete v3 and all its successors from P ′i ).
For i = 1, 2, let Pi := P ′i + v3, and write V (P ) ∩ V (P ′i ) =: {wi}. Then P1 and P2 only intersect
at v3, and P only intersects Pi at wi (for i = 1, 2). Without loss of generality (by relabeling if
necessary), we may assume that when traversing P from v1 towards v2, we first meet w1 before
we meet w2. Now let S be the subdigraph of D defined by the union of the following dipaths
in D: P , P1, P2, (v, (v, v1), v1), (v3, (v3, v), v) and (v2, (v2, v), v). It is now easy to observe that
S constitutes a subdivision of ~Ks

4 whose branch vertices are v, w1, w2, v3. This contradicts our
initial assumption that D contains no subdivision of ~Ks

4 .
Case 2. There is some i ∈ {1, 2, 3} such that |V (Ci)| ≥ 3. Without loss of generality we

may assume that i = 1. Let v2 be the unique out-neighbor of v on C2. Put A := N+
D−v(v2), B :=

V (C1) \ {v} ⊆ V (D − v). Clearly, |A| ≥ 4 − 1 > 2, |B| ≥ 3 − 1 = 2, and hence we may
apply Theorem 13 to D − v to conclude that there are two vertex-disjoint A-B-dipaths P ′1, P ′2
in D − v. We may assume that v2 /∈ V (P ′i ) for i = 1, 2 (otherwise we can simply delete v2 and
all its predecessors from P ′i ). For i = 1, 2, let xi ∈ A and yi ∈ B be the endpoints of P ′i . It
is now clear that the union of C1 and the internally vertex-disjoint dipaths Q := (v, (v, v2), v2),
P1 := (v2, (v2, x1), P ′1) and P2 := (v2, (v2, x2), P ′2) is a subdivision of ~Ks

4 in D with branch vertices
v, v2, y1, y2. This contradicts our initial assumption that D contains no subdivision of ~Ks

4 .
Since we arrived at a contradiction in both cases, it follows that our initial assumption that

there exists a (smallest) digraph D with ~χ(D) ≥ 4 not containing a subdivision of ~Ks
4 was wrong.

This finishes the proof.

We now move on to show that mader~χ(W+
4 ) = 4. This proof is partly inspired by a method

used in [19].

Proof of mader~χ(W+
4 ) = 4. Suppose towards a contradiction that there exists a digraph D such

that ~χ(D) ≥ 4, but D contains no subdivision of W+
4 . Assume additionally that D lexicograph-

ically minimizes the pair (|V (D)|, |A(D)|) (i.e., the number of vertices is minimized with first
priority, and the number of arcs is minimized with second priority). Clearly, |V (D)| ≥ 5 and
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D is 4-dicritical. Hence, δ+(D), δ−(D) ≥ 3 by Lemma 2.1, and D is strongly-connected by
Lemma 2.2.

Claim 1. D is strongly 2-vertex-connected.

Proof. Suppose towards a contradiction that there exists a vertex v ∈ V (D) such that D − v
is not strongly connected. This means that D − v has more than one strong component. Let
X ⊆ V (D − v) be the vertex set of a strong component of D − v which is a “sink” in D − v,
that is, there is no arc leaving X. Let Y := V (D) \ (X ∪ {v}). Then (X,Y ) forms a partition
of V (D) \ {v}, D[X] is strongly connected and (x, y) /∈ A(D) for all x ∈ X, y ∈ Y . We can
therefore apply Lemma 4.2 with F = W+

4 to obtain a pair D1, D2 of digraphs with vertex-sets
X ∪ {v}, Y ∪ {v}, respectively, such that neither D1 nor D2 contains a subdivision of W+

4 and
4 = ~χ(D) ≤ max{~χ(D1), ~χ(D2)}. However, this means that there is some i ∈ {1, 2} such that
~χ(Di) ≥ 4, Di contains no W+

4 -subdivision and clearly |V (Di)| < |V (D)|. This contradicts the
assumed minimality of D. This contradiction shows that the assumption was wrong, namely
that D is indeed strongly 2-vertex-connected.

Claim 2. The underlying graph of D is 3-vertex-connected.

Proof. Suppose towards a contradiction that there is a set K ⊆ V (D) such that |K| ≤ 2 and
D−K is not weakly connected. Let (X1, X2) be a partition of V (D)\K into two non-empty sets
such that there is no arc between X1 and X2 in D−K. Since D is strongly 2-vertex-connected, we
must have |K| = 2, say K = {s1, s2} for some distinct s1, s2 ∈ V (D). For i = 1, 2, let Di be the
digraph defined as follows: V (Di) := Xi∪K and A(Di) := A(D[Xi∪K])∪{(s1, s2), (s2, s1)}. We
claim that none of D1, D2 contains a subdivision of W+

4 . Indeed, suppose towards a contradiction
that for some i ∈ {1, 2}, there exists a subdigraph S ⊆ Di which is isomorphic to a subdivision
of W+

4 . If A(S) ∩ {(s1, s2), (s2, s1)} = ∅, then S would also be a subgraph of D, contradicting
our assumptions on D. Hence, S has to contain an arc between s1 and s2, and without loss of
generality we may assume that (s1, s2) ∈ A(S). Since W+

4 contains no digons, the same is true
for S and hence (s2, s1) /∈ A(S). We now claim that there exists an s1-s2-dipath in D − Xi.
To this end, choose an arbitrary vertex w ∈ X3−i. Since both D − s1 and D − s2 are strongly
connected (by Claim 1), there are dipaths P1 and P2 in D − s1 resp. D − s2 such that P1
starts at w and ends at s2, while P2 starts at s1 and ends at w. Since D contains no arcs
between X1 and X2, we must have V (P1) ⊆ X3−i ∪ {s2} and V (P2) ⊆ X3−i ∪ {s1}. Finally,
we see that the concatenation of P1 and P2 is a directed walk from s1 to s2, implying that
P1 ∪ P2 ⊆ X3−i ∪ {s1, s2} = D −Xi contains an s1-s2-dipath P . Clearly, P is internally vertex-
disjoint from all dipaths in S − (s1, s2) ⊆ D, and hence the subdigraph S′ := (S − (s1, s2)) ∪ P
of D is isomorphic to a subdivision of S, which in turn is a subdivision of W+

4 . This contradicts
our initial assumption that D is W+

4 -subdivision-free. We conclude that neither D1 nor D2
contains a subdivision of W+

4 , as claimed. Since clearly |V (D1)|, |V (D2)| < |V (D)|, the assumed
minimality of D yields that D1 and D2 admit acyclic 3-colorings c1 : V (D1) → {1, 2, 3} and
c2 : V (D2)→ {1, 2, 3}, respectively. Since the pair s1, s2 induces a digon in both D1 and D2, we
must have c1(s1) 6= c1(s2), c2(s1) 6= c2(s2). Hence, possibly after permuting the color set, we may
assume that c1(s1) = c2(s1) = 1, c1(s2) = c2(s2) = 2. We now claim that the common extension
c : V (D)→ {1, 2, 3} of c1 and c2 to D defines an acyclic coloring of D. Indeed, a monochromatic
directed cycle C in (D, c) would have to contain vertices of both X1 and X2, for otherwise it
would also be a monochromatic dicycle in (D1, c1) or (D2, c2), contradicting the assumption
that these are acyclic colorings. However, since K = {s1, s2} separates X1 and X2, this is only
possible if {s1, s2} ⊆ V (C). But then C is not monochromatic because c(s1) = 1 and c(s2) = 2.
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This shows that c is indeed an acyclic coloring of D, which in turn contradicts ~χ(D) = 4. So we
see that our initial assumption that the underlying graph of D admits a 2-separator was wrong.
This concludes the proof of Claim 2.

Claim 3. For every x ∈ V (D) there is a directed cycle C in D − x such that |V (C)| ≥ 3.

Proof. Let x ∈ V (D) be given arbitrarily. Suppose towards a contradiction that every directed
cycle in the digraph D − x has length two, i.e., is a digon. Recall that in a strongly connected
digraph, every arc lies on a directed cycle. Since D−x is strongly connected (Claim 1), every arc
of D− x is contained in a digon, and hence D− x is a symmetric digraph. Since D− x contains
no directed cycle of length at least 3, this is only possible if D − x is a biorientation of a forest.
But then the bipartition of this forest defines an acyclic 2-coloring of D − x. By assigning to x
a distinct third color, we obtain an acyclic 3-coloring of D, a contradiction to ~χ(D) = 4. This
proves the claim.

Claim 4. For every pair (x,C) of a vertex in D and a directed cycle C in D − x of length at
least 3, there exists a partition (W,K,Z) of V (D) with the following properties:

• x ∈W and V (C) ⊆ K ∪ Z

• There is no arc in D with tail in W and head in Z.

• |K| = 2.

A partition (W,K,Z) with these properties will be called a good separation for the pair (x,C).

Proof. We claim that there are no three x-V (C)-dipaths in D which pairwise intersect only at
x. Indeed, three such dipaths joined with C would form a subdivision of W+

4 , which does not
exist in D by assumption. By Theorem 13, there is a set K ⊆ V (D) \ {x} of size at most 2 such
that there are no x-V (C)-dipaths in D−K. Let W ⊆ V (D) \K be the set of vertices reachable
in D −K via a dipath starting at x, and let Z := V (D) \ (W ∪K). It follows now directly by
definition that x ∈W and V (C) ⊆ K ∪Z, and there is no arc with tail in W and head in Z. We
have |K| ≤ 2, and since D is strongly 2-vertex-connected (by Claim 1), it follows that |K| = 2.
Therefore (W,K,Z) is a good separation of the pair (x,C).

In the following, for every pair (x,C) of a vertex x ∈ V (D) and a directed cycle C in D−x of
length at least 3, we denote by ω(x,C) the minimum of |W | over all good separations (W,K,Z)
of (x,C). Let ω0 := min{ω(x,C) | x ∈ V (D), C dicycle in D − x, |V (C)| ≥ 3}.

Claim 5. Let x ∈ V (D), let C be a directed cycle in D−x of length at least 3, and let (W,K,Z)
be a good separation for (x,C) such that |W | = ω(x,C). Then every vertex of W is reachable
from x by a dipath in D[W ].

Proof. Let W ′ be the set of all vertices w ∈W which are reachable from x in D[W ]. Evidently,
x ∈ W ′ ⊆ W . Observe that (W ′,K, (W \W ′) ∪ Z) forms a good separation for (x,C), because
D has no edge with tail in W ′ and head in W \W ′. It follows that |W ′| ≥ ω(x,C) = |W |. This
implies that W ′ = W , as required.
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Claim 6. There exists a pair (x∗, C∗) of a vertex x∗ ∈ V (D), a dicycle C∗ of length at least 3
in D−x∗, and there exists a good separation (W,K,Z) of (x∗, C∗), such that the following hold:

• |W | = ω0,

• there exist z∗ ∈ Z,w∗ ∈W \ {x∗} such that (z∗, w∗) ∈ A(D).

Proof. Let (x0, C0) be a pair of a vertex and a disjoint dicycle in D, such that |V (C0)| ≥ 3, and
such that (x0, C0) attains the minimum ω0 = ω(x0, C0). Let (W,K,Z) be a good separation for
(x0, C0) such that |W | = ω(x0, C0) = ω0. Note that (W,K,Z) is also a good separation for every
pair (x,C0) where x ∈W \ {x0}.

Observe that there has to exist an arc between Z and W , for if not, then D−K is not weakly
connected, contradicting the facts that |K| = 2 and that the underlying graph of D is 3-vertex-
connected (Claim 2). As there are no arcs from W to Z, there has to exist an arc from Z to
W . Let (z0, w0) be such an arc. If w0 6= x0, then we directly obtain that (x0, C0) together with
(W,K,Z) and the arc (z0, w0) satisfy all the required properties in the statement of the claim.
If x0 = w0, then choose some x1 ∈W \{x0}. Such a selection is possible, since N+(x0)\K ⊆W
and N+(x0) \ K 6= ∅ as d+(x0) ≥ δ+(D) ≥ 3. Since (W,K,Z) is a good separation also for
(x1, C0), and since x1 6= w0 = x0, it follows now that (x1, C0) together with (W,K,Z) and the
arc (z0, w0) have all the claimed properties. This concludes the proof of Claim 6.

In the following, let us consider a pair (x∗, C∗) together with the good separation (W,K,Z) and
the arc (z∗, w∗) as given by Claim 6. Since D − x∗ is strongly connected (Claim 1), and since
(z∗, w∗) ∈ A(D− x∗), there exists a directed cycle C ′ in D− x∗ passing through (z∗, w∗). As D
has no arc from W to Z, the dicycle C ′ must use at least one vertex from K, which means that
|V (C ′)| ≥ 3. Write K = {s1, s2} and assume (without loss of generality) that s1 ∈ V (C ′).

By Claim 4, there exists a good separation (W ′,K ′, Z ′) for the pair (x∗, C ′); choose it such
that |W ′| = ω(x∗, C ′), and such that it minimizes |K ′ ∩Z| among all such good separations. We
claim that K ′∩W 6= ∅. Indeed, if we had K ′∩W = ∅ then we would have D[W ] ⊆ D−K ′, which
would imply that w∗ ∈W is reachable from x∗ by a directed path in D−K ′ (as every vertex of
W is reachable from x∗ by a dipath in D[W ] by Claim 5). However, this would contradict the
facts that x∗ ∈ W ′, w∗ ∈ V (C ′) \K ′ ⊆ Z ′, and there is no path from W ′ to Z ′ in D −K ′ (by
the definition of a good separation). Let us write K ′ = {s′1, s′2}, where s′1 ∈W .

Claim 7. K ′ ∩ Z = ∅.

Proof. Suppose towards a contradiction that K ′ ∩ Z 6= ∅, which means that s′2 ∈ Z (because
s′1 ∈W ). Let R be the set of vertices reachable from x∗ via a dipath in the digraph D−{s′1, s2}.
We claim that R ⊆ W ′. Suppose towards a contradiction that R \ W ′ 6= ∅. Then there is
an (x∗, R \ W ′)-dipath P in D − {s′1, s2}. Note that V (P ) ⊆ R by the definition of R. Let
y ∈ R \W ′ be the end-vertex of P and y′ its predecessor. Then y′ ∈ W ′ because only the last
vertex y of P is in R \W ′. Since (y′, y) cannot have its tail in W ′ and head in Z ′, we must
have y ∈ (V (D) \ {s′1, s2}) \ (W ′ ∪ Z ′) ⊆ {s′2}; hence y = s′2 ∈ Z. Since x∗ ∈ W , and since K
separates W from Z, there must be a vertex on P − y which belongs to K = {s1, s2}. However,
this vertex can be neither s1 nor s2; indeed, s1 /∈ V (P ) \ {y} because V (P ) \ {y} ⊆ W ′ and
s1 ∈ V (C ′) ⊆ K ′∪Z ′, and s2 /∈ V (P ) because P is contained in D−{s′1, s2}. This contradiction
shows that R ⊆W ′, as claimed.

There is no arc from R to V (D) \ (R ∪ {s′1, s2})) by the definition of R, which means that
|{s′1, s2}| = 2 since D is strongly 2-vertex-connected (by Claim 1). We furthermore have x∗ ∈ R
and V (C ′) ⊆ V (D) \W ′ ⊆ V (D) \R. Hence, (R, {s′1, s2}, V (D) \ (R ∪ {s′1, s2})) defines a good
separation for the pair (x∗, C ′). By the choice of (W ′,K ′, Z ′), this means that R = W ′ and
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|R| = ω(x∗, C ′). We further have |{s′1, s2} ∩ Z| = 0 < 1 = |K ′ ∩ Z| (because s′1 ∈ W and
s2 ∈ K), contradicting our choice of (W ′,K ′, Z ′). This contradiction shows that the assumption
K ′ ∩ Z 6= ∅ was wrong, concluding the proof of the claim.

Claim 8. W ′ ∩ Z 6= ∅ and Z ′ ∩ Z 6= ∅.

Proof. We start by showing that W ′ ∩Z 6= ∅. Suppose towards a contradiction that W ′ ∩Z = ∅.
Since {w∗, s1} ⊆ V (C ′) ⊆ K ′ ∪ Z ′, we have W ′ ∩ {w∗, s1} = ∅ and hence W ′ ⊆ V (D) \ (Z ∪
{w∗, s1}) = (W ∪ K) \ {w∗, s1} = (W \ {w∗}) ∪ {s2}. On the other hand, we have |W ′| =
ω(x∗, C ′) ≥ ω0 = |W |, and hence W ′ = (W \ {w∗}) ∪ {s2}. In particular, s2 ∈ W ′. Since D is
strongly 2-vertex-connected, s2 must have an out-neighbor y ∈ Z, for otherwise there would be
no directed path from x∗ to Z in D − s1. Using Claim 7 and our assumption that W ′ ∩ Z = ∅,
we have (W ′ ∪K ′) ∩ Z = ∅, and hence y ∈ V (D) \ (W ′ ∪K ′) = Z ′. However, this means that
(s2, y) is an arc from a vertex in W ′ to a vertex in Z ′, a contradiction. This contradiction shows
that the initial assumption W ′ ∩ Z = ∅ was wrong, proving the first part of the claim.

For the second part, recall that z∗ ∈ Z and z∗ ∈ V (C ′) ⊆ K ′ ∪ Z ′. Since K ′ ∩ Z = ∅ (by
Claim 7), we conclude that z∗ ∈ Z ′ ∩ Z and hence Z ′ ∩ Z 6= ∅, as required.

Claim 9. Every dipath in D starting in W ′ ∩Z 6= ∅ and ending in Z ′ ∩Z 6= ∅ must contain s1.

Proof. We first establish that s2 ∈ W ′. To see this, pick some vertex v ∈ W ′ ∩ Z. By Claim 5
and as |W ′| = ω(x∗, C ′), there exists an x∗-v-dipath in D[W ′]. Since x∗ ∈ W and v ∈ Z, this
dipath must contain a vertex from K. However, since s1 /∈W ′ (as s1 ∈ V (C ′)), this vertex must
be s2, implying that s2 ∈W ′.

Now to prove the claim, let P be a directed path starting in a vertex a ∈W ′∩Z and ending in
a vertex b ∈ Z ′ ∩Z. Let y ∈ V (P ) be the last vertex on P contained in W ′ ∪K ′ when traversing
P starting from a. Let y′ be the successor of y on P ; then (y, y′) ∈ A(D) and y′ ∈ Z ′. Hence,
we must have y ∈ K ′ (since D has no arcs from W ′ to Z ′). It now follows from Claim 7 that
y ∈W ∪K. Now let us consider the subpath P [y, b] starting at y and ending at b. By definition
of y, no vertex on P [y, b] is contained in W ′, and hence s2 does not lie on this path. However,
P [y, b] starts in a vertex of W ∪K and ends in a vertex of Z, which means that it must contain
a vertex from K = {s1, s2}. Hence, s1 ∈ V (P [y, b]) ⊆ V (P ). This proves the claim.

Since s1 is contained in none of the two non-empty sets W ′ ∩ Z and Z ′ ∩ Z, Claim 9 shows
that D − s1 is not strongly connected, contradicting Claim 1. This shows that our very first
assumption, namely that a digraph D with ~χ(D) ≥ 4 which does not contain a subdivision of
W+

4 , exists, was wrong. This completes the proof of mader~χ(W+
4 ) = 4.

5 Mader-Perfect Digraphs and Open Problems
In this paper we investigated when the simple inequality mader~χ(F ) ≥ v(F ) is tight. Observe
that tightness is trivially preserved under taking spanning subdigraphs. It turns out however,
that the optimality of the bound does not necessarily carry over to arbitrary subdigraphs. In
fact, in Proposition 17 below we show that for any digraph F there exists a constant kF such
that adding kF isolated vertices to F produces a digraph whose Mader number equals its number
of vertices. This suggests that the class of digraphs F which satisfy mader~χ(F ) = v(F ) may not
have a meaningful characterization. This motivates the following definition. We call a digraph
F Mader-perfect if for every (induced) subdigraph F ′ of F , the Mader number of F ′ equals its
order.
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Proposition 17. For every digraph F there exists kF ∈ N such that for every k ≥ kF , the
digraph F ′ obtained from F by adding k new isolated vertices satisfies mader~χ(F ′) = v(F ′). In
fact, it suffices to take kF = 2 ·mader~χ(F )− v(F )− 1.

Proof. Let k ≥ kF := 2 ·mader~χ(F )− v(F )− 1 be arbitrary. Consider any given digraph D such
that ~χ(D) ≥ k + v(F ). We need to show that D contains a subdivision of F which misses at
least k of the vertices of D.

Let X ⊆ V (D) be a vertex set such that ~χ(D[X]) = mader~χ(F ). Then D[X] contains a
subdivision of F , and we have m := ~χ(D−X) ≥ k + v(F )−mader~χ(F ), for otherwise we could
color D with less than k+ v(F ) colors. Let Y1, . . . , Ym be a partition of V (D) \X into m acyclic
sets. Let us first consider the case that at most v(F )− 1 of these sets are singletons. Then

v(D)− |X| = |Y1|+ . . .+ |Ym| ≥ 2m− (v(F )− 1)

≥ 2k + 2v(F )− 2 ·mader~χ(F )− (v(F )− 1) = k + (k − kF ) ≥ k.

Evidently, the subdivision of F contained in D[X] does not use any of the ≥ k vertices in
V (D) \X, concluding the proof in this case.

In the other case, at least v(F ) of the sets Yi are singletons; without loss of generality, say
Yi = {yi} for 1 ≤ i ≤ v(F ). Since Y1 . . . , Ym form an optimal acyclic coloring of D − X, we
cannot merge any two color classes to obtain an acyclic coloring with m − 1 colors. It follows
that (yi, yj), (yj , yi) ∈ A(D) for every 1 ≤ i < j ≤ v(F ). This implies that D contains a copy of
F on the vertices y1, . . . , yv(F ). By deleting the v(F ) vertices y1, . . . , yv(F ), we obtain a digraph
of dichromatic number at least ~χ(D)−v(F ) ≥ k, and hence, the remaining digraph consists of at
least k vertices. So we see that D indeed contains a subdivision of F missing at least k vertices
in this second case as well. This concludes the proof.

Our main results — namely Theorems 7 and 11 — can be restated as saying that all octi
digraphs and all tournaments of order 4 are Mader-perfect. For octi digraphs this follows im-
mediately from Theorem 7, since octi are closed under taking subdigraphs; and for 4-vertex
tournaments this follows from the fact that every non-spanning subdigraph F ′ of a 4-vertex
tournament is either an oriented triangle or an oriented path, and for those F ′ the equality
mader~χ(F ′) = v(F ′) follows from Theorem 7. In a similar vein, Proposition 10 implies that
↔
K3 − e is Mader-perfect. Let us now give the proof.

Proof of Proposition 10. It is sufficient to show that every 3-dicritical digraph D contains a
subdivision of

↔
K3 − e. So let D be a 3-dicritical digraph. Then δ+(D), δ−(D) ≥ 2 and D is

strongly-connected, as guaranteed by Lemmas 2.1 and 2.2, respectively. By Theorem 14 applied
for k = 1, there is v ∈ V (D) such that D − v is strongly connected. Since D is 3-dicritical,
there exists an acyclic 2-coloring c : V (D) \ {v} → {1, 2}. Evidently, c cannot be extended
to an acyclic 2-coloring of D. This means that for each i = 1, 2, D contains a directed cycle
Ci which contains v, such that all vertices in V (Ci) \ {v} are colored with color i (under c).
Note that V (C1) ∩ V (C2) = {v}. Since D − v is strongly-connected, there is a path in D from
V (C1) to V (C2) which avoids v. Let P be a shortest path from V (C1) to V (C2) avoiding v, and
let us denote the endpoints of P by x1, x2 (where xi ∈ V (Ci)). The minimality of P implies
that V (P ) ∩ V (Ci) = {xi} (for each i = 1, 2), since otherwise P could be replaced by a shorter
path. Now it is easy to see that the vertices v, x1, x2 and the (internally vertex-disjoint) dipaths
C1[v, x1], C1[x1, v], C2[v, x2], C2[x2, v], P form a subdivision of

↔
K3 − e, as required.

Altogether, we see that the class of Mader-perfect digraphs is quite rich. We believe it would
be interesting to obtain a precise characterization of this class.
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Problem 18. Characterize Mader-perfect digraphs.

On the negative side,
↔
K3 is the smallest digraph F satisfying mader~χ(F ) > v(F ), hence no

bioriented clique of order at least 3 is Mader-perfect. In fact for any k ≥ 3, the digraph obtained
from

↔
Kk+2 by removing a bioriented

↔
C5 has dichromatic number k but contains no subdivision

of
↔
Kk. This shows that the Mader number of

↔
Kk is at least k + 1.

The analogous problem for undirected graphs seems to be interesting as well: Call an undi-
rected graph F Mader-perfect if for every subgraph F ′ ⊆ F , every graph G of chromatic number
at least v(F ′) contains an F ′-subdivision.

Problem 19. Characterize Mader-perfect graphs.

Since we have ~χ(
↔
G) = χ(G) for every undirected graph, it follows that if F is an undirected

graph such that at least one of the orientations of F is Mader-perfect, then F is Mader-perfect.
In particular, it follows that every forest, every cactus graph, and K4 are Mader-perfect graphs.
Using our terminology, Catlin’s counterexamples to Hajós’ conjecture say that Kk is not Mader-
perfect for every k ≥ 7.

Already determining mader~χ(
↔
K3) exactly seems to be a challenging problem. From above

we can only show that mader~χ(
↔
K3) ≤ 9, where the upper bound follows from a combination of

Proposition 10 and Theorem 22 below. We believe that the truth lies with the lower bound,
provided by the above construction.

Conjecture 20. We have mader~χ(
↔
K3) = 4, i.e., every digraph D with no

↔
K3-subdivision admits

an acyclic 3-coloring.

It is natural to ask how dense Mader-perfect digraphs can be. For k ∈ N, let m(k) denote
the maximum possible number of arcs of a Mader-perfect digraph of order k. Using a variant
of the classical probabilistic argument of Erdős and Fajtlowicz [11], we can show that m(k) =
O(k3/2√log k), which means that Mader-perfect digraphs have to be (at least somewhat) sparse.
In fact, let us show the slightly more general claim that

mader~χ(F ) ≥ cm2

k2 logm (1)

for every digraph F on k vertices and m ≥ c1k log k arcs, where c1 is a suitably large absolute
constant. The bound (1) shows that if mader~χ(F ) = v(F ) = k (which has to be the case if F is
Mader-perfect), then m = O(k3/2√log k), as claimed.

To prove (1), consider any fixed digraph F consisting of k ≥ 2 vertices and m ≥ c1k log k
arcs. Let D(n, p) be the random digraph3 with parameters n = bm2 c and p = m

4k2 . We claim that
with positive probability, D(n, p) contains neither a set of k vertices spanning at least m/2 arcs
nor an acyclic set of more than c2k

2 logm
m vertices for some suitable absolute constant c2. To see

this, note that the expected number of arcs spanned by some fixed set of k vertices in D(n, p) is
pk(k−1) < m

4 , and hence the Chernoff-bound yields that the probability that some k fixed vertices
span at least m

2 arcs is bounded by exp(−m
12 ). Therefore the probability that there are k vertices

spanning at least m
2 arcs is at most

(
n
k

)
exp(−m

12 ) ≤ (m/2)k exp(−m
12 ) = exp(k log(m/2)−m

12 ) < 1
2 ,

provided c1 is chosen large enough.
Similarly, the probability that any fixed set of α > c2k

2 logm
m vertices is acyclic in D(n, p) is

at most α!(1− p)(
α
2). Hence, the probability that D(n, p) contains an acyclic set of size at least

3Recall that D(n, p) is the random digraph on the vertex-set {1, . . . , n}, where for each 1 ≤ i 6= j ≤ n we put
the arc (i, j) independently with probability p.
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α is at most
(
n
α

)
α!(1 − p)(

α
2) ≤ exp(α logn − p

(
α
2
)
) < 1/2, provided c2 is chosen large enough

(where in the last inequality we plugged in our choice of n, p and α).
We conclude that there exists a digraph D on n = bm2 c vertices containing no k vertices

spanning at least m
2 arcs and whose dichromatic number is at least

~χ(D) ≥ n(
c2k2 logm

m

) = Ω
(

m2

k2 logm

)
.

Observe that D contains no subdivision of F ; indeed, if D contained a subdivision of F , then
since D has at most m

2 vertices, at least m
2 of the m subdivision paths would have to be of length

1, i.e. be “direct” arcs between the k branch vertices of the subdivision. But this is impossible
as D contains no set of k vertices spanning at least m

2 arcs, a contradiction. This proves (1).
We note that if F is symmetric, i.e. if it is a biorientation of an undirected graph, then we can

improve the bound (1) to mader~χ(F ) ≥ Ω(m/ logm). To see this, let D be a tournament of order
m/2 and dichromatic number Ω(m/ logm) (it is well-known that such tournaments exist, see
[10]). Then D contains no subdivision of F . Indeed, since D contains no digons, any subdivision
of F in D must contain at least m/2 subdivision vertices, one per every digon in F . But as v(D) =
m/2 < m/2 + v(F ), there are not enough vertices in D to fit a subdivision of F . As a corollary,
we see that if F is Mader-perfect and symmetric, then a(F ) ≤ O(k log k), where k = v(F ).

So far we have shown that m(k) = O(k3/2√log k). As for a lower bound, consider the digraph
obtained from

↔
K3− e by performing k− 3 ear additions, where at each step we attach a digon to

the existing digraph. Then the resulting digraph Fk has k vertices and 2k−1 arcs. By combining
Proposition 10 with Theorem 16, we see that Fk is Mader-perfect. Hence, m(k) ≥ 2k − 1. It
would be interesting to close the gap between the upper and lower bounds. We conjecture that
the truth lies with the latter.

Conjecture 21. m(k) = O(k).

Aboulker et al. [1] studied the behaviour of the Mader number with respect to the insertion
of arcs, and proved the following bound using a beautiful argument based on breadth-first-
search trees.

Theorem 22 ([1], Lemma 31). If F is a digraph and e ∈ A(F ), then

mader~χ(F ) ≤ 4 ·mader~χ(F − e)− 3.

Using this upper bound and a lower-bound-construction for tournaments, they obtained the
following bounds on mader~χ(

↔
Kn).

Theorem 23. For every n ∈ N,

Ω
(

n2

logn

)
≤ mader~χ(

↔
Kn) ≤ 4n

2−2n+1(n− 1) + 1.

Consider the digraph Fn with n vertices and 2n− 1 arcs as constructed above. Then we have
mader~χ(Fn) = n, and hence by starting from Fn and repeatedly applying Theorem 22, we get
the (slightly) improved bound mader~χ(

↔
Kn) ≤ 4n2−3n+1(n− 1) + 1.

Still, the gap between the lower and upper bounds on mader~χ(
↔
Kn) remains huge. Unfor-

tunately, the techniques used in this paper to tackle sparse digraphs do not seem to allow for
substantial improvements of the upper bound. Our attempts to improve the lower bound to a
super-quadratic growth have also been unsuccessful. It is tempting to conjecture the following:
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Conjecture 24. There exists an absolute constant c > 0 such that mader~χ(
↔
Kn) ≤ cn2 for every

positive integer n.

It is worth noting that by a result of Girão et al. [13], every tournament T with minimum
out-degree at least cn2 (for some absolute constant c) contains a subdivision of

↔
Kn. This implies

that in tournaments, having dichromatic number larger than cn2 forces a subdivision of
↔
Kn.

As mentioned in the introduction, however, extending the result of [13] to general digraphs is
impossible, since having large minimum out- and in-degree does not force

↔
Kn-subdivisions in

general digraphs for any n ≥ 3.
Another intriguing question is to determine the Mader number of bioriented cycles. Specifi-

cally, is it the case that mader~χ(
↔
C`) = ` for all ` ≥ 4?

Problem 25. What is mader~χ(
↔
C`)?

A related problem is to determine the maximum possible chromatic number of a digraph
which does not contain a subdivision of any bioriented cycle. We conjecture that the answer is 2.

Conjecture 26. Let D be a digraph with ~χ(D) ≥ 3. Then there is ` ≥ 3 such that D contains
a subdivision of

↔
C`.
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