On nearly regular co-critical graphs

Tibor Szabó
The Ohio State University, Columbus, Ohio, 231 W 18th Ave, Columbus, Ohio, 43210, USA and
Eötvös Loránd University, Budapest, Hungary

Abstract

A graph G is called (K_{3}, K_{3})-co-critical if the edges of G can be coloured with two colours without getting a monochromatic triangle, but adding any new edge to the graph, this kind of 'good' colouring is impossible. In this short note we construct (K_{3}, K_{3})-co-critical graphs of maximal degree $O\left(n^{3 / 4}\right)$.

1. INTRODUCTION

In [2] Galluccio, Simonovits and Simonyi dealt with the concept of $\left(K_{3}, K_{3}\right)$-co-critical graphs. They called a graph $G\left(K_{3}, K_{3}\right)$-co-critical (or just simply co-critical) if the edges of G can be coloured with two colours (say RED and BLUE) without getting a monochromatic triangle, but adding any arbitrary new edge to the graph, this kind of 'good' colouring is impossible.

Among several other results they looked for co-critical graphs with low edge-density. It is easy to construct $\left(K_{3}, K_{3}\right)$-co-critical graphs with a linear number of edges (see [2]). But those examples all have vertices of degree $\geq c n$. The natural question arises: what about the 'nearly regular' co-critical graphs with low edge-density or what is the smallest possible maximal degree a co-critical graph can have. In [2], using a random graph construction, the authors proved the existence of $\left(K_{3}, K_{3}\right)$-co-critical graphs of maximal degree $O\left(n^{3 / 4} \log n\right)$.

In this note we give a simpler and constructive example of co-critical graphs of maximal degree $O\left(n^{3 / 4}\right)$. Unfortunately we still have a big gap between the trivial lower bound $c \sqrt{n}$ and this new upper bound. The lower bound follows from the fact that a co-critical graph must contain a $K_{3^{-}}$ saturated graph and that in a K_{3}-saturated graph the distance of any two
points is ≤ 2 (see [1]). (By a K_{3}-saturated graph we mean a graph G which does not contain a triangle, but adding any new edge to G results in a triangle.) A drawback of our construction is that locally it has a lot of edges, so it can not answer any other of the open problems discussed at the end of [2].

2. THE CONSTRUCTION

Following the notation of [2] if G and H are two graphs, we denote by $G \otimes H$ the graph what we obtain by joining a copy of G to a copy of H completely (each vertex of G to each vertex of H). To keep this note selfcontained we prove a variant of a lemma used in [2].

Lemma: Let C be a non-bipartite graph. If we colour the edges of $K_{3} \otimes C$ with two colours, then we get a monochromatic K_{3}.

Proof: Let $V\left(K_{3}\right)=\{p, q, r\}$.
Suppose to the contrary, that there is a 2 -colouring of $K_{3} \otimes C$ without monochromatic triangles.

Thus we can assume that two of the edges of the K_{3} have the same colour (say RED) and the third one is different (BLUE). Let, say, r be the common endpoint of the two RED edges.

Suppose that one of the edges between r and C, say $\left\{r, c_{1}\right\}$, is RED. Then either one of the edges $\left\{c_{1}, p\right\},\left\{c_{1}, q\right\}$, say $\left\{c_{1}, p\right\}$, is RED and r, c_{1} and p form a RED triangle or both $\left\{c_{1}, p\right\}$ and $\left\{c_{1}, q\right\}$ are BLUE making c_{1}, p and q a BLUE triangle.

But this is impossible, thus we can assume that all the edges between C and r are BLUE. Therefore all the edges of C must be RED, otherwise we would have a BLUE triangle $\{r, c, d\}$, for some $c, d \in C$.

The neighbours of p in C, which are connected by a RED edge to p must form an independent set. The BLUE neighbours are independent also, since they must be the subset of the RED neighbours of q. (If not, there would be a vertex in $V(C)$ which together with p and q would form a BLUE triangle.)

This is a contradiction, since we partitioned $V(G)$ into two independent subsets.

Definition: Let G and H be two graphs. We define their or-product $G \vee H$ by the following:
$V(G \vee H)=V(G) \times V(H)$ and
$\left\{(g, h),\left(g^{\prime}, h^{\prime}\right)\right\} \in E(G \vee H)$ if either $\left\{g, g^{\prime}\right\} \in E(G)$ or $\left\{h, h^{\prime}\right\} \in E(H)$.

Theorem: If G and H are non-bipartite K_{3}-saturated graphs then $G \vee H$ is $\left(K_{3}, K_{3}\right)$-co-critical.

Proof: We can give a trivial good colouring of the edges of $G \vee H$ by colouring an edge RED if the first coordinates of the two vertices formed an edge in G and colouring BLUE all the remaining edges.

Let's add a new edge to $G \vee H:\left\{(g, h),\left(g^{\prime}, h^{\prime}\right)\right\}$. Originally it is not an edge of $G \vee H$ which means $\left\{g, g^{\prime}\right\} \notin E(G)$ and $\left\{h, h^{\prime}\right\} \notin E(H)$. Since G and H are maximal K_{3}-free graphs there exist $g_{1} \in V(G)$ and $h_{1} \in V(H)$ such that $\left\{g, g_{1}\right\},\left\{g_{1}, g^{\prime}\right\} \in E(G)$ and $\left\{h, h_{1}\right\},\left\{h_{1}, h^{\prime}\right\} \in E(H)$.

So $(g, h),\left(g^{\prime}, h^{\prime}\right)$ and $\left(g_{1}, h\right)$ form a triangle and also each of these points are connected to every vertex of the form $\left(x, h_{1}\right), x \in V(G)$. Thus, by our Lemma, this subgraph can not be coloured with two colours without getting a monochromatic triangle.

Theorem: There exists an infinite sequence of (K_{3}, K_{3})-co-critical graphs with

$$
d_{\max }\left(G_{n}\right)=O\left(n^{3 / 4}\right)
$$

Proof: Füredi and Seress [1] constructed K_{3}-saturated graphs with maximal degree $\frac{2}{\sqrt{3}} \sqrt{n}+O\left(n^{7 / 24}\right)$. This quantity is sufficiently small for our purposes. Taking the or-product of two such graphs we get a (K_{3}, K_{3})-co-critical graph by the previous theorem. The maximal degree of the product graph is $O\left(n^{3 / 4}\right)$.

Acknowledgment: I would like to thank Ákos Seress for help and encouragement, Miklós Simonovits for improving the presentation of this paper.
[1] Z. Füredi, Á. Seress: Maximal triangle-free graphs with restrictions on the degrees. Journal of Graph Theory Vol. 18, No. 1, 11-24 (1994).
[2] A. Galluccio, M. Simonovits, G. Simonyi: On the structure of co-critical graphs. Proceedings of the Seventh International Conference on Graph Theory, Combinatorics, Algorithms and Applications, Kalamazoo, 1992, to appear.

