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Abstract

Let p and q be positive integers and let H be any hypergraph. In a (p, q,H)
Avoider-Enforcer game two players, called Avoider and Enforcer, take turns selecting
previously unclaimed vertices of H. Avoider selects p vertices per move and Enforcer
selects q vertices per move. Avoider loses if he claims all the vertices of some hyper-
edge of H; otherwise Enforcer loses. We prove a sufficient condition for Avoider to
win the (p, q,H) game. We then use this condition to show that Enforcer can win
the (1, q) perfect matching game on K2n for every q = O(n/ log n), and the (1, q)
Hamilton cycle game on Kn for every q = O(n log log log log n/ log n log log log n).
We also determine exactly those values of q for which Enforcer can win the (1, q)
connectivity game on Kn. Our method extends easily to improve a result of Lu [15],
regarding forcing an opponent to pack many pairwise edge disjoint spanning trees in
his graph. The last two results are somewhat surprising, as they differ strongly from
their Maker-Breaker analog.

1 Introduction

Let p and q be positive integers and let H be any hypergraph. In a (p, q,H) Avoider-
Enforcer game two players, called Avoider and Enforcer, take turns selecting previously
unclaimed vertices of H. Avoider selects exactly p vertices per move and Enforcer selects
exactly q vertices per move. The only exception to this rule, is the last move, in which a
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player must select all the remaining vertices, which might be less than his share. The game
ends when every vertex has been claimed by one of the players. Avoider loses if he claims
all the vertices of some hyperedge of H; otherwise Enforcer loses. The integer p is called
the bias of Avoider, and q is called the bias of Enforcer. We assume that Avoider starts
the game unless stated otherwise, although for the asymptotic nature of our results it is
usually irrelevant who starts the game.

The hypergraph H is sometimes referred to as the game (without mentioning the biases).
We call the game (p, q,H) an Avoider’s win (Enforcer’s win) if Avoider (Enforcer) has a
winning strategy in (p, q,H). It is not hard to see that every game (p, q,H) is either an
Avoider’s win or an Enforcer’s win, but not both.

Arguably, the goals of the players in Avoider-Enforcer games are not the most natural ones.
The goal of Avoider is defined through a negation, that is, he wins if he does not occupy
any member of H. The variant of these games with “positive” goals is indeed much more
thoroughly studied. In a Maker-Breaker type game, the player called Maker wins if he
does occupy all the vertices of some member of H; otherwise the other player (Breaker)
wins. However, we argue that Avoider-Enforcer games are equally natural. First of all, any
game in which the goal of one of the players is to build a graph satisfying some monotone
decreasing property is an Avoider-Enforcer game (that player being Avoider: his goal is
to avoid fully occupying a minimal graph not satisfying the property). Furthermore, in
discrepancy-type games (see [9], [10]) the goal of one of the players is to claim some fixed
percentage (not more and not less) of every winning set, hence he plays as both Breaker
and Avoider.

Putting aside a few scattered results, the theory of Maker-Breaker games started with a gen-
eral criterion of Erdős and Selfridge [8] for Breaker’s win in the (1, 1) game. Subsequently,
Beck started a systematic study of Maker-Breaker games with a bias. In particular, in [1]
he proved the following generalization of the Erdős-Selfridge criterion: If

∑

D∈H
(1 + q)−|D|/p <

1

1 + q
(1)

then Breaker has a winning strategy for the (p, q,H) Maker-Breaker game.

Lu [14] proved that an identical criterion guarantees Avoider’s win in the (1, 1) game. One
can (somewhat naively) assume that the theory of Avoider-Enforcer games is very similar
to that of Maker-Breaker games, and that criterion (1) guarantees a winning strategy for
Avoider for every p and q. As it turns out, things are much more complicated, as the case
of (1, 1) games is somewhat special and hides the difficulties that arise in biased games.

Further thought reveals that the differences between Maker-Breaker and Avoider-Enforcer
games go much deeper. Without giving it much thought, one expects (and rightly so) that
Maker’s win and Breaker’s win will be appropriately monotone in the bias. That is, if for
example Maker wins the (1, 1) game on some hypergraph, then he will also win the (2, 1)
game on the same hypergraph. The simple-minded reason for this is that “more occupied
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vertices cannot hurt Maker, and in fact, might even help him”. This is indeed true and
will be discussed further in Section 6. Now, it is equally plausible to assume that in case
Enforcer wins the (1, 1) game, he will also win the (2, 1) game, since “less occupied vertices
cannot hurt Enforcer”. It turns out that this intuition fails. For example, it is possible to
give examples of (1, q) (resp. (p, 1)) Avoider-Enforcer games which are won by Enforcer iff
q (resp. p) is of a certain parity. We explore these issues of monotonicity in Section 6.

Despite these major differences, one is able to adapt Beck’s argument to some extent and
to provide an analogous criterion for Avoider’s win.

Theorem 1.1 If Avoider is the last player (i.e. the player to make the last move) and

∑

D∈H

(

1 +
1

p

)−|D|
<

(

1 +
1

p

)−p

then Avoider wins the (p, q,H) game for every q ≥ 1.
If Enforcer is the last player then the above sufficient condition can be relaxed to

∑

D∈H

(

1 +
1

p

)−|D|
< 1.

Note, that even though we assume for convenience in our paper that Avoider starts the
game, the assertion of Theorem 1.1, holds also when Enforcer starts the game.

Our criterion does not take into account the value of q, so it is unlikely to be best possible.
For any constant value of q, however, we show that the criterion is “not far” from being
best possible. Beck [1] proved that his sufficient condition (1) for Maker-Breaker games is
best possible by building explicitly an infinite family of hypergraphs H such that equality
holds in (1) and Maker has a winning strategy for the corresponding game. We think that
the problem of finding a useful, and possibly “best possible” criterion for Avoider’s win
when q > 1, is one of the most interesting open problems of the topic.

Theorem 1.2 For every positive integers p and q there are infinitely many hypergraphs H
such that
∑

D∈H(1 + 1
p
)−|D| ≤

(

p+q−1
q−1

)

p+1
2

, and yet Enforcer wins the (p, q,H) game.

Note that
(

p+q−1
q−1

)

p+1
2

is polynomial in p for every fixed q.

In this paper we study more closely three quite natural Avoider-Enforcer games: “connec-
tivity”, “perfect matching” and “hamiltonicity”. Let Tn be the set of all spanning trees,
Mn the set of all perfect matchings (here we assume of course that n is even), and Hn the
set of all Hamilton cycles, in the complete graph Kn on n vertices.
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It will be convenient to introduce the following notation. For a hypergraph B we define
b−B to be the largest integer such that Enforcer can win (1, b,B) for every b ≤ b−B , and b+B
to be the smallest integer such that Avoider can win (1, b,B) for every b > b+B . Except
for certain degenerate cases, b−B and b+B always exist and satisfy b−B ≤ b+B . However, as was
indicated above, we do not know in general that b−B = b+B , that is, we do not know whether
a well-defined threshold exists. In case b−B = b+B , we denote this number by bB and call it
the threshold bias of the game B.

For Maker-Breaker games a similar threshold bias, at which a Maker’s win turns into
a Breaker’s win, could be defined and does exist for all hypergraphs. It was proved by
Chvátal and Erdős [5] and by Beck [2] that the threshold bias for all three Maker-Breaker
games Tn,Mn, and Hn is of order n/ log n.

As a first application of Theorem 1.1 we consider the perfect matching game (1, q,Mn).

Theorem 1.3 Enforcer has a winning strategy in (1, q,M2n) if q < n
(2+o(1)) log2 n

and n is

sufficiently large. Thus,

b−Mn
= Ω

(

n

logn

)

.

Although it looks plausible we do not know whether the perfect matching game is monotone.
Moreover, even if a threshold does exists, we do not know whether it is of order n/ logn.

Next, we will use Theorem 1.1 to prove a sufficient condition for Enforcer to win the
Hamilton cycle game (1, q,Hn). Beck [3] asked whether Enforcer, playing with a bias of
Θ(n/ logn), can force Avoider to build a Hamilton cycle. Although we are not able to solve
his question completely, we can get quite close. For every positive integer k, we denote by
log(k) n the k-fold natural logarithm of n, (that is, log(1) n = logn, log(2) n = log log n,
etc).

Theorem 1.4 Enforcer has a winning strategy in (1, q,Hn) if q < n log 2 log(4) n

8500 log n log(3) n
and n is

sufficiently large. Thus,

b−Hn
= Ω

(

n

log n
·

log(4) n

log(3) n

)

.

Note that, though we are unable to prove it at the present stage, we believe that the answer
to Beck’s question is positive.

In [5] and [1] it is shown that the threshold bias for the (1, q) Maker-Breaker connectivity
game is between (log 2 − ε) n

log n
and (1 + ε) n

log n
for every ε > 0. It is also suggested there

that the order of magnitude n/ logn is very reasonable for this problem as, at the end of the
game, Maker will have about 1

2
n log n edges which is the threshold for the connectivity of

a random graph G(n,m) (see e.g. [12] for background on random graphs). Hence, we find
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it somewhat surprising that this insight fails badly for the Avoider-Enforcer connectivity
game. We would also like to stress, that this is the only case where we could establish the
monotonicity of a game of interest.

Theorem 1.5 Avoider wins the (1, q) connectivity game Tn iff at the end of the game
he has at most n − 2 edges. In particular the threshold bTn

exists for every n. We have
bTn

=
⌊

n
2

⌋

− 1, except when n is odd and Avoider starts the game, in which case bTn
=
⌊

n
2

⌋

.

To a certain extent we can generalize the assertion of Theorem 1.5 to the ”k-edge connec-
tivity game”, in which Avoider loses iff he builds a k-edge connected spanning subgraph of
Kn. Unfortunately, if k > 1, we do not know the exact bias, nor do we know whether it
exists, that is, whether the corresponding game is monotone.

Theorem 1.6 Playing on Kn, if q ≤ n
2k

− 1 then Enforcer wins the k-edge connectivity
game. If q ≥ n

k
then Avoider wins the k-edge connectivity game.

In [15], Lu considered the (1, 1) Avoider-Enforcer game on the edges of Kn, in which
Enforcer’s goal is to force Avoider to build as many pairwise edge disjoint spanning trees
as possible. Clearly bn/4c is an upper bound. Lu proved that for every ε > 0 there exists
an integer n0 = n0(ε) such that if n ≥ n0 then, playing on Kn, Enforcer can force Avoider
to build (1− ε)n/4 pairwise edge disjoint spanning trees. We improve this by showing that
the trivial upper bound bn/4c is in fact tight.

Theorem 1.7 For every positive integer n, playing the (1, 1) game on Kn, Enforcer can
force Avoider to build bn/4c pairwise edge disjoint spanning trees.

Theorems 1.5, 1.6 and 1.7 are relatively easy consequences of the following theorem.

Theorem 1.8 If G contains q+ 1 pairwise edge disjoint spanning trees, then Enforcer, as
first or second player, wins the (1, q) connectivity game on G.

Observe that the case q = 1 of the above theorem can be considered as the Avoider-Enforcer
analog of the celebrated Lehman’s criterion [13] for Maker’s win in connectivity games.

Throughout the paper, for the sake of simplicity and clarity of presentation, we omit
floor and ceiling signs whenever these are not crucial. All logarithms are natural unless
explicitly stated otherwise. Our graph-theoretic notation is standard and follows that
of [6]. In particular, for a graph G = (V,E) and a set A ⊆ V , let NG(A) = {u ∈ V : ∃w ∈
A, (u, w) ∈ E} be the neighborhood of A in G. Often, when there is no risk of confusion,
we abbreviate NG(A) with N(A).
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The rest of the paper is organized as follows: In Section 2 we prove Theorems 1.1 and 1.2.
In Section 3 we prove Theorem 1.3, in Section 4 we prove Theorem 1.4, in Section 5 we
prove Theorem 1.8 and then derive Theorems 1.5,1.6 and 1.7. In Section 6 we discuss
the non-monotonicity of biased games, and in Section 7 we present several related open
problems.

2 A sufficient condition for Avoider’s win

Proof of Theorem 1.1: Our argument is based on Beck’s proof of a sufficient condition
for Breaker to win the (p, q,H) Maker-Breaker game [1], which in turn is based on the
potenial function method of Erdős and Selfridge [8].

Given a hypergraph H and disjoint subsets X and Y , of the vertex set V of H, let
ϕ(X, Y,H) =

∑′
D(1+ 1

p
)−|DrX| where the summation

∑′ is extended over those D ∈ H for

which D∩Y = ∅. Given z ∈ V , let ϕ(X, Y,H, z) =
∑′′

D(1+ 1
p
)−|DrX| where the summation

∑′′ is extended over those D ∈ H for which z ∈ D and D ∩ Y = ∅.

Now, consider a play according to the rules; assume first that Avoider starts the game. Let
x

(1)
i , . . . , x

(p)
i and y

(1)
i , . . . , y

(q)
i denote the vertices chosen by Avoider and Enforcer on their

ith move, respectively.

Let Xi = {x(1)
1 , . . . , x

(p)
1 , . . . , x

(1)
i , . . . , x

(p)
i }, Yi = {y(1)

1 , . . . , y
(q)
1 , . . . , y

(1)
i , . . . , y

(q)
i }, where

X0 = ∅ and Y0 = ∅. Furthermore let Xi,j = Xi ∪ {x
(1)
i+1, . . . , x

(j)
i+1} and Yi,j = Yi ∪

{y
(1)
i+1, . . . , y

(j)
i+1} where Xi,0 = Xi and Yi,0 = Yi. Whenever Avoider claims some vertex x,

the ”danger” that Avoider will completely occupy a hyperedge that contains x (and there-
fore lose) increases. On the other hand, if Enforcer claims some vertex y, then Avoider can
never completely occupy a hyperedge that contains y, that is, such a hyperedge poses no
”danger” at all for Avoider. This leads us to define the following potential function: for
every non-negative integer i, let the potential of a hyperedge D ∈ H after the ith round
be (1 + 1

p
)−|D\Xi| if D ∩ Yi = ∅ and 0 otherwise. Furthermore, we define the function

ψ(i) = ϕ(Xi, Yi,H) which we call the potential of the game after the ith round. Observe
that the potential of the game is just the sum of the potentials of the hyperedges. Avoider
loses if and only if there exists an integer i such that D ⊆ Xi for some D ∈ H. If this is
the case then the potential of D is (1 + 1

p
)0 = 1. It follows that if the potential ψ(i) of

the game is less than 1 for every i ≥ 0 then Avoider wins. Avoider’s winning strategy is
then the following: on his (i + 1)st move, for every 1 ≤ k ≤ p, he computes the value of

ϕ(Xi,k−1, Yi,H, x) for every vertex x ∈ V r (Yi ∪ Xi,k−1) and then selects x
(k)
i+1 for which

the minimum is attained. We show that the value of ψ does not increase throughout the
game. If Avoider claims a vertex x

(k)
i+1, then the potential of every hyperedge that contains

x
(k)
i+1 is multiplied by 1 + 1

p
. Hence, every such hyperedge e, which currently has potential

f(e), adds an extra 1
p
f(e) to the potential of the game. On the other hand, if Enforcer
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claims some vertex y, then the potential of every hyperedge that contains y drops to 0
(equivalently, the potential of such a hyperedge is subtracted from the potential of the
game). Thus, we have

ψ(i+ 1) = ψ(i) +
1

p

p
∑

k=1

ϕ(Xi,k−1, Yi,H, x
(k)
i+1) −

q
∑

t=1

ϕ(Xi+1, Yi,t−1,H, y
(t)
i+1). (2)

Using the minimum property of x
(k)
i+1 and the simple observation ϕ(X, Y,H, z′) ≤ ϕ(X ∪

{z′′}, Y,H, z′), we get ϕ(Xi,k−1, Yi,H, x
(k)
i+1) ≤ ϕ(Xi,k−1, Yi,H, y

(1)
i+1) ≤ ϕ(Xi+1, Yi,H, y

(1)
i+1)

for every 1 ≤ k ≤ p. By this, equation (2), and since ϕ(Xi+1, Yi,t−1,H, y
(t)
i+1) ≥ 0 for every

2 ≤ t ≤ q, we have

ψ(i + 1) ≤ ψ(i) +
1

p

p
∑

k=1

ϕ(Xi,k−1, Yi,H, x
(k)
i+1) − ϕ(Xi+1, Yi,H, y

(1)
i+1)

≤ ψ(i) +
1

p
pϕ(Xi+1, Yi,H, y

(1)
i+1) − ϕ(Xi+1, Yi,H, y

(1)
i+1)

= ψ(i).

If Enforcer is the last player to move, then by our assumption ψ(0) < 1, we have ψ(i) < 1
for every i, implying Avoider’s win. Note that on his last move Enforcer might claim
strictly less than q vertices (but at least one). This will affect the equality (2), but not the
overall inequality ψ(i+ 1) ≤ ψ(i) derived above.

If Avoider is the last player to move, then by our assumption ψ(0) <
(

1 + 1
p

)−p

, and so

ψ(i) < 1 for every integer i except maybe for i = r which denotes the last round of the
game. In this round only Avoider will participate, but then ψ(r) ≤ (1 + 1

p
)pψ(r − 1) ≤

(1 + 1
p
)pψ(0) < 1.

Finally, assume that Enforcer starts the game, and on his first move he claims, say, ver-
tices y1, . . . , yq. Let H̃ be the hypergraph, obtained from H by deleting the vertices
y1, . . . , yq and deleting every hyperedge e ∈ H such that e ∩ {y1, . . . , yq} 6= ∅. Clearly,
∑

D∈H̃

(

1 + 1
p

)−|D|
≤
∑

D∈H

(

1 + 1
p

)−|D|
. Hence, by the proof above, Avoider wins the

game on H̃ as the first player, entailing his win on H as the second player. This concludes
the proof of the theorem. 2

Proof of Theorem 1.2:
For every positive integers p and q, we define an infinite sequence of hypergraphs {Hn

p,q}n≥1.
Let Gn

p,q be an auxiliary tree consisting of a path of length n on vertices v0, . . . vn with edges
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ei = (vi−1, vi) for every 1 ≤ i ≤ n, and p+ q− 1 new leaves, attached to each vertex of the
path except for vn. The set containing ei and the p+ q− 1 edges connecting vi−1 to leaves,
is called the ith level.

The vertices of Hn
p,q are the edges of Gn

p,q. The hyperedges of Hn
p,q are of the form

{e1, . . . , ei−1} ∪ W , where W is a subset of the ith level, |W | = p and ei /∈ W , or of
the form {e1, . . . , en} ∪W where W is a subset of the nth level, |W | = p− 1 and en /∈ W
(see Figure 1).

leaves
(lowest)

(highest)

p edges

ei−1

e1

en

e2

e1

ith levellevel n

p+ q edges

level 1

Figure 1: Gn
p,q and a typical hyperedge of Hn

p,q.

We have:

∑

D∈Hn
p,q

(

1 +
1

p

)−|D|
=

(

p+ q − 1

p

) n−1
∑

i=0

(

1 +
1

p

)−(i+p)

+

(

p+ q − 1

p− 1

)(

1 +
1

p

)−(n−1+p)

=

(

p+ q − 1

q − 1

)

[

(

1 +
1

p

)−(n−1+p) (1 + 1
p
)n − 1

1 + 1
p
− 1

+
p

q

(

1 +
1

p

)−(n−1+p)
]

≤

(

p+ q − 1

q − 1

)

p

(

1 +
1

p

)(

1 +
1

p

)−p

≤

(

p+ q − 1

q − 1

)

p+ 1

2
,

where the first inequality follows since q ≥ 1.

Finally, we need to show that Enforcer wins the (p, q) game on Hn
p,q. His strategy is very

simple - he always picks edges from the lowest possible levels (level i + 1 is considered to
be lower than level i), breaking ties arbitrarily.

With this strategy, he ensures that the number of edges claimed by Avoider in the first
level is at least p. If this number is strictly larger than p, or e1 was claimed by Enforcer
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then Avoider lost. Assume then, that Avoider has claimed exactly p edges in the first level
and one of them is e1. Now, Enforcer’s strategy ensures that Avoider has claimed at least
p edges of the second level. If Avoider did not claim a winning set in the second level then
by the same reasoning he has claimed at least p edges of the third level and so on. Since,
in the nth level, every p edges form a winning set, Avoider must have claimed one (in some
level) and therefore lost. 2

3 Enforcing a matching

Proof of Theorem 1.3
Let 0 ≤ t ≤ q be the smallest integer such that (q+1) | n(n−1)+ t. Let G = (U ∪V,E) be
a copy of Kn,n in K2n and let F be an arbitrary set of t edges from E. Let E1 = ErF and
let E2 denote the remaining edges of K2n. Whenever Avoider picks an edge of E2, Enforcer
picks q edges of E2. This is always possible as |E2| = n(n − 1) + t which is divisible by
q + 1. Whenever Avoider picks an edge of E1, Enforcer, picks q edges of E1 (this is always
possible except for maybe once). It is therefore sufficient to prove that Enforcer can win
the (1, q) perfect matching game on E1.

We will provide Enforcer with a strategy, which guarantees that at the end of the game
Avoider’s graph will satisfy Hall’s condition. To this end we define an auxiliary game
which we denote by HALL on E1 with hypergraph F2n (which is defined below), where
Enforcer takes the role of Avoider (to avoid confusion, Enforcer will be referred to as
“HALL-Avoider”) and HALL-Avoider’s win in (q, 1,F2n) implies Enforcer’s win in the
(1, q) perfect matching game.

The vertices of F2n are the elements of E1 and the hyperedges of F2n are all the edge-sets
E(X, Y ) ⊆ E1 between two subsets X ⊆ U and Y ⊆ V for which |X|+|Y | = n+1. Clearly,
if HALL-Avoider avoids completely occupying any such set E(X, Y ), then in his opponent’s
graph |N(X)| ≥ |X| for every X ⊆ U , where N(X) = {v ∈ V : ∃u ∈ X, (u, v) ∈ E1}.
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We apply Theorem 1.1. For q = cn/ log2 n, we have:

∑

D∈F2n

(

1 +
1

q

)−|D|
≤
∑

D∈F2n

2−|D|/q ≤
n
∑

k=1

(

n

k

)(

n

n− k + 1

)

2− (k(n−k+1)−t) log2 n

cn

≤ 2

n/2
∑

k=1

(

n

k

)2

21− k(n−k+1) log2 n

cn

≤ 2

√
n

∑

k=1

[

n2 · 21− (n−k+1) log2 n

cn

]k

+ 2

n/2
∑

k=
√

n

[

(en

k

)2

21− (n−k+1) log2 n

cn

]k

≤ 2

√
n

∑

k=1

[

2n2 · n
−

“

1− 1
√

n

”

1
c

]k

+ 2

n/2
∑

k=
√

n

[

n · 2e2 · n−( 1
2
+ 1

n ) 1
c

]k

.

Both sums are o(1) provided c = 1
2
− o(1). Hence Theorem 1.1 applies and the proof of

Theorem 1.3 is complete. 2

Remark. Theorem 1.3 can be easily adapted to show that playing the (1, q) game on
K2n+1, Enforcer can force Avoider’s graph to admit a matching which covers all vertices
but one for every q ≤ cn

log n
. We omit the straightforward details.

4 Enforcing a Hamilton cycle

Proof of Theorem 1.4
We will use the following special case of a theorem from [11]:

Theorem 4.1 Let G = (V,E) be a graph on n vertices and let d = log(3) n

log(4) n
. Assume that G

satisfies the following two properties:

P1 For every S ⊂ V , if |S| ≤ n log(2) n log d

d log n log(3) n
then |N(S)| ≥ d|S|.

P2 There is an edge in G between any two disjoint subsets A,B ⊆ V such that |A|, |B| ≥
n log(2) n log d

4130 log n log(3) n
.

Then G is hamiltonian, for sufficiently large n.

Let H1
n be the hypergraph whose vertices are the edges of Kn and whose hyperedges are

all the copies of Kr,r in Kn where r = n log(2) n log d

4130 log n log(3) n
. Let H2

n be the hypergraph whose
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vertices are the edges of Kn and whose hyperedges are all the copies of Ks,t in Kn for every

1 ≤ s ≤ n log(2) n log d

d log n log(3) n
and t = n − d · s. In order to win, Enforcer will make Avoider build

a graph that satisfies the properties of Theorem 4.1, that is, Enforcer would like to avoid

selecting all the edges connecting any two disjoint subsets of V of size at least n log(2) n log d

4130 log n log(3) n

each, and to avoid selecting all the edges connecting any two disjoint subsets of V , one of

size 1 ≤ s ≤ n log(2) n log d

d log n log(3) n
and the other of size n− d · s. Thus, by Theorem 1.1 it suffices to

prove that
∑

D∈H1
n∪H2

n
(1 + 1

q
)−|D| < (1 + 1

q
)−q. We have

∑

D∈H1
n

(

1 +
1

q

)−|D|
≤
∑

D∈H1
n

2−|D|/q

≤

(

n
n log(2) n log d

4130 log n log(3) n

)2

exp







− log 2

(

n log(2) n log d

4130 logn log(3) n

)2
8500 logn log(3) n

n log 2 log(4) n







≤

(

4130e logn log(3) n

log(2) n log d

)2 n log(2) n log d

4130 log n log(3) n

exp

{

−
(1 − o(1))8500n(log(2) n)2 log d

(4130)2 log n log(3) n

}

≤ exp

{

(2 + o(1))
n(log(2) n)2 log d

4130 logn log(3) n
−

8500n(log(2) n)2 log d

(4130)2 log n log(3) n

}

= o(1).

Similarly, for every 1 ≤ s ≤ n log(2) n log d

d log n log(3) n
and D ∈ H2

n of size s we have

(

n

s

)(

n

n− d · s

)(

1 +
1

q

)−|D|
≤ nsnd·s2−|D|/q

≤ exp

{

s(1 + d) logn− log 2(n− d · s)s
8500 logn log(3) n

n log 2 log(4) n

}

= o

(

1

n

)

.

Thus
∑

D∈H2
n
(1+ 1

q
)−|D| = o(1). It follows that

∑

D∈H1
n∪H2

n
(1+ 1

q
)−|D| ≤

∑

D∈H1
n
(1+ 1

q
)−|D|+

∑

D∈H2
n
(1 + 1

q
)−|D| < (1 + 1

q
)−q. 2

5 Connectivity-related games

Proof of Theorem 1.8
Let T1, T2, . . . , Tq+1 be pairwise edge disjoint spanning trees of G = (V,E). Let I =

⋃q+1
i=1 Ti
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and let L = E r I. Enforcer’s strategy is the following: he maintains acyclic graphs
G1, G2, . . . , Gq+1. In the beginning Gi = Ti for every 1 ≤ i ≤ q + 1. Whenever Avoider
picks some edge e ∈ Gj, Enforcer picks one edge fi ∈ Gi for every 1 ≤ i 6= j ≤ q + 1
(hence a total of q edges). If Gi ∪ {e} is acyclic then fi is chosen arbitrarily. Otherwise
Gi ∪ {e} contains a unique cycle Ci and then Enforcer picks some unclaimed fi ∈ Ci. In
both cases Enforcer replaces Gi with Gi ∪ {e} r {fi}. If Avoider picks an edge of L then
Enforcer picks any q previously unclaimed edges of L. If there are only r < q edges left
in L then Enforcer picks these r edges and another single arbitrary edge fi ∈ Gi for every
1 ≤ i ≤ q − r. Finally, if Enforcer starts the game then on his first move he picks any q
edges of L if |L| ≥ q and otherwise all the edges of L and one arbitrary edge fi ∈ Gi for
every 1 ≤ i ≤ q − |L|. In any case Enforcer removes fi from Gi.
We will prove that Enforcer’s strategy is a winning strategy. First, note that every un-
claimed edge of I is in exactly one Gi, every edge of I claimed by Avoider is in every Gi

and every edge claimed by Enforcer is in no Gi. This is clearly true in the beginning, and
then an edge is removed from Gi iff it is chosen by Enforcer and added to every Gi iff it
is chosen by Avoider. Furthermore, after every round (a move by Avoider and a counter
move by Enforcer) Gi is either a spanning tree or a spanning tree minus one edge for every
1 ≤ i ≤ q + 1. This is clearly true in the beginning. Assume it is still true after the kth
round. If on his (k+1)st move Avoider picks e ∈ Gj, then Enforcer picks fi ∈ Gi according
to his strategy. If Gi ∪{e} is acyclic then it must be a spanning tree and so Gi ∪{e}r {fi}
is a spanning tree minus one edge. Otherwise Gi∪{e} contains a cycle Ci and since fi ∈ Ci

(such an fi must exist as all the Gi’s were acyclic on the kth round) Gi ∪ {e}r {fi} is the
same as Gi was (both are spanning trees or both are spanning trees minus an edge). If both
players play in L then there is nothing to prove. It is possible (as was mentioned above)
that there will be one (and only one) round in which Avoider does not pick any edges of
I and Enforcer does. Clearly (by the above argument), before that round every Gi was a
spanning tree. Now several Gi’s will still be spanning trees and the rest will be spanning
trees minus one edge. Thus, in the end Gi = GA ∩ I for every 1 ≤ i ≤ q + 1, where GA is
the graph built by Avoider. It follows that GA ∩ I is either a spanning tree or a spanning
tree minus an edge, and since |GA ∩ I| = |V | − 1, the former must hold. 2

Remark. The opposite implication of Theorem 1.8 is ”almost” true, in the sense that it
is true if we add restrictions on the number of edges and the identity of the first player.
Indeed if G does not contain q+1 pairwise edge disjoint spanning trees then by the famous
theorem of Nash-Williams [16] and independently Tutte [17], for some r ≥ 2 there exists a
partition of the vertices of G into r parts with at most (q + 1)(r − 1) − 1 crossing edges.
So Avoider (depending of course on who starts the game and how many edges are there in
G) may claim less than r − 1 of them and thus win.
Note that something quite different happens in the (1, q) Maker-Breaker connectivity game.
Here if q ≥ 2 then the existence of q + 1 pairwise edge disjoint spanning trees does not
guarantee Maker’s win. In fact there are graphs with an arbitrarily large number s of such
trees which are a win for Breaker in the (1, 2) game (as was already mentioned in [5]). Such
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a graph is for example m copies of K2s such that copy i is connected by s edges to copy
i+ 1 for every 1 ≤ i ≤ m− 1 and m is sufficiently large.
If q = 1 then two edge disjoint spanning trees are enough to ensure Maker’s win (c.f. [13]).
If a graph G does not contains q+1 pairwise edge disjoint spanning trees then the outcome
depends on the identity of the first player (but not necessarily on the number of edges, as
Breaker wins if he starts the game). Again this follows from the theorem of Nash-Williams
and Tutte.

Remark. There is a polynomial time algorithm for finding q + 1 pairwise edge disjoint
spanning trees in a graph G, in case they exist, (c.f. [7]). Thus, combined with our proof
it yields an efficient explicit winning strategy for Enforcer.

Remark. The proof of Theorem 1.8 can be generalized to a game on any matroid (the
matroid contains q+1 pairwise disjoint bases and Avoider loses iff he selects all the elements
of some basis). We omit the straightforward details.

Proof of Theorem 1.5
If q ≤ bn

2
c − 1 then Enforcer wins the game by Theorem 1.8 as Kn contains bn

2
c pairwise

edge disjoint spanning trees. If Avoider is the first player in the (1, bn
2
c) game on Kn, where

n is odd, then at the end of the game he will have exactly n− 1 edges. So he will win iff he
will claim all the edges of some cycle in Kn. This Maker-Breaker game where Maker’s goal
is to build a cycle, was studied by Bednarska and Pikhurko [4] in a more general context.
In the particular case that we are interested in, their result shows that Breaker can break
all the cycles and so Enforcer can force Avoider to build a spanning tree. Finally, in any
other case, Avoider will not have enough edges to build a spanning tree so he will win no
matter how he plays. 2

Proof of Theorem 1.6
If q ≥ n

k
then at the end of the game Avoider will have at most d n(n−1)

2( n
k
+1)

e ≤ n(n−1)
2( n

k
+1)

+ 1

edges. Thus the minimum degree in Avoider’s graph, regardless of his strategy, will be at
most n−1

n
k
+1

+ 2
n
< k where the last inequality holds for every k ≥ 2. It follows that Avoider’s

graph will not be k-edge connected.

Let q ≤ n
2k

− 1 and let T1, . . . , Tbn/2c be pairwise edge disjoint spanning trees of Kn. For

every 1 ≤ i ≤ k, let Gi =
⋃ib n

2k
c

j=(i−1)b n
2k

c+1 Tj. Enforcer plays k separate games in parallel,

that is, whenever Avoider claims an edge of Gi, for some 1 ≤ i ≤ k, Enforcer plays all
his q edges in Gi (of course Avoider might sometimes play in E(Kn) \

⋃k
i=1Gi, but, as in

the proof of Theorem 1.8, it does not affect the outcome of the game). By Theorem 1.8,
Enforcer can make Avoider build a spanning tree in Gi for every 1 ≤ i ≤ k (as in every
Gi there are b n

2k
c pairwise edge disjoint spanning trees and q ≤ b n

2k
c − 1). The Gi’s are

pairwise edge disjoint and so Avoider’s graph will be k-edge connected. 2
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Proof of Theorem 1.7
Similarly to the second part of the proof of Theorem 1.6, Enforcer plays bn/4c separate
games in parallel. The board of each of these games consists of two edge disjoint spanning
trees, and so, by Theorem 1.8, Enforcer can make Avoider build one spanning tree on every
board and hence a total of bn/4c trees. 2

6 Non-monotonicity of biased games

In this section we give two examples which show that Avoider-Enforcer games are not
monotone in general. It would be extremely interesting to give at least a sufficient condition
for an Avoider-Enforcer game to be monotone.

Though quite straightforward, for the sake of completeness, we prove that Maker-Breaker
games are indeed monotone.

Proposition 6.1 If Maker wins the (p, q,H) game, where H is any hypergraph, then he
also wins the (p+ 1, q,H) game and the (p, q − 1,H) game. Similarly, If Breaker wins the
(p, q,H) game, then he also wins the (p− 1, q,H) game and the (p, q + 1,H) game.

Proof Assume first that Maker has a winning strategy Sm for the (p, q,H) game. When
playing the (p, q − 1,H) game, Maker plays according to Sm. Whenever Breaker picks his
q − 1 vertices, Maker (in his mind) chooses an arbitrary unclaimed vertex and ’gives’ it
to Breaker. If Breaker picks an unclaimed vertex that already ’belongs’ to him in Maker’s
mind, then Maker ’gives’ him another arbitrary unclaimed vertex. By the end (in Maker’s
mind) of the game he has already won (as he played according to Sm). Clearly, no matter
how they proceed, Maker will win the game.
When playing the (p + 1, q,H) game, Maker plays according to Sm, where in every turn
he picks one additional arbitrary unclaimed vertex. At a certain point during the game it
might happen that a vertex that Maker should pick according to Sm already belongs to
him; he will then pick another arbitrary unclaimed vertex. Since Maker played according
to Sm, at the end of the game, if we remove all the ’additional’ vertices picked by Maker,
we get a position from which Maker can win. Clearly, picking every remaining vertex is a
winning strategy.

The proof of monotonicity for Breaker’s win is analogous. 2

Next, we give examples showing that Avoider-Enforcer games need not be monotone.

Example 1: Consider the (1, q,Ht) game, where the vertices of Ht are the vertices of
t · K2 (i.e. t vertex disjoint edges), and the hyperedges of Ht are the edges of t ·K2. We
claim that, for sufficiently large t, Enforcer (as first or second player) wins this game iff q
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is even. Indeed, if q is even then in every turn (for as long as possible) Enforcer picks q
2

edges (unclaimed pairs of vertices). Clearly, if t > q( q
2

+ 1) then Avoider will lose. If q is
odd, then assuming that Enforcer is the first player, Avoider can always pick an unclaimed
vertex whose single neighbor was picked by Enforcer, and therefore win. Finally, if Avoider
is the first player, then in every turn, either Enforcer picks all unclaimed vertices which are
in the neighborhood of Avoider’s vertices, or he picks a vertex whose single neighbor w is
unclaimed. In the former case, Avoider claims an arbitrary vertex, whereas in the latter, he
claims w. Either way, after every move of Avoider, there is at most one unclaimed vertex
in the neighborhood of Avoider’s vertices. Since the number of vertices is even and q is
odd, Avoider is not the last player and so he wins.
It follows that this game in not monotone in q.

Example 2: Consider the (p, 1,H′
t) game, where the vertices of H′

t are the vertices of
t · K2 and the hyperedges of H′

t are the minimal vertex covers of t · K2. We claim that,
for sufficiently large t, Avoider (as first or second player) wins this game iff p is even.
This follows immediately from the analysis of Example 1 if Avoider (Enforcer) adopts
Enforcer’s (Avoider’s) strategy from that example.

It follows that this game in not monotone in p.

Note that though in general Avoider-Enforcer games are not monotone, the sufficient con-

dition given in Theorem 1.1 guarantees monotonicity in both p and q. Indeed,
(

1 + 1
p

)−1

is

monotone increasing in p and so if
∑

D∈H

(

1 + 1
p

)−|D|
< e−1 then

∑

D∈H
(

1 + 1
r

)−|D|
< e−1

for every r ≤ p. Hence, it follows from Theorem 1.1 that if
∑

D∈H

(

1 + 1
p

)−|D|
< e−1, then

Avoider wins the (r, q) game for every r ≤ p and q ≥ 1.

7 Concluding remarks and open problems

1. General criterion for Avoider’s win. It was already indicated in the introduction
that our criterion for Avoider’s win in the (p, q,H) game is not effective when q is
large. Such a criterion might help us improve our bound on b−Hn

. It would also have a
potentially significant impact on traditional Maker-Breaker type games. Often Maker
can achieve his goal in some game by creating a pseudo-random graph of a certain
edge-density (see e.g. [9], [10]). Such a graph might need to have a property of “at
most” type. Maker could try to achieve such conditions by playing as Avoider and
trying to “avoid” occupying too many elements of the winning sets.

2. General criterion for monotonicity. We say that an Avoider-Enforcer game B is
monotone, if Enforcer’s winning strategy for (p, q,B) implies his win in (p + 1, q,B)
and (p, q − 1,B), while Avoider’s winning strategy for (p, q,B) implies his win in
(p− 1, q,B) and (p, q + 1,B).
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Problem 7.1 Find a sufficient (and possibly also necessary) condition for an Avoider-
Enforcer game to be monotone.

3. (Asymptotic) monotonicity of Mn and Hn. For both the Hamilton cycle game
and the perfect matching game there is a significant gap between the corresponding
thresholds b−, b+ shown in this paper (the only bounds on b+Mn

and b+Hn
that we know

are the ones derived from the trivial lower bound on the number of edges in a perfect
matching and a Hamilton cycle respectively). It would be interesting to close, or at
least to reduce, these gaps.
We believe that even the following holds.

Conjecture 7.2 Both the perfect matching game and the Hamilton cycle game are
monotone. In particular b−Mn

= b+Mn
and b−Hn

= b+Hn
.

The function f(n) is called an asymptotic threshold bias of the game Bn if both
b−Bn

= Θ(f(n)) and b+Bn
= Θ(f(n)). If an asymptotic threshold bias exists, that is, if

b−Bn
= Θ

(

b+Bn

)

, then the game Bn is called asymptotically monotone.

It would be a significant step towards proving Conjecture 7.2 if one could establish
that the perfect matching and Hamilton cycle games are asymptotically monotone
and determine the order of magnitude of the asymptotic threshold bias. Recall that
currently we do not even know whether Avoider can win (1, o(n),Mn) or (1, o(n),Hn).

Acknowledgment. We are grateful to József Beck; his question about Enforcer’s strategy
in the biased Hamilton cycle game, greatly motivated this research.
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