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Abstract

Let Nk be the maximal integer such that there exist subsets
A1, . . . , ANk

⊆ {1, 2, . . . , n} for which Ai ∩ Aj is an arithmetic pro-
gression of length at least k for every 1 ≤ i < j ≤ Nk. R. L. Graham,
M. Simonovits and V. T. Sós gave the exact value of N0. For k ≥ 2,
Simonovits and T. Sós determined the asymptotic behavior of Nk.

In this paper we prove a conjecture of Simonovits and T. Sós con-
cerning the asymptotic value of N1. We show that

N1 =
n2

2
+ O(n

5
3 log3 n).

Moreover, we slightly improve the best known construction, thus dis-
proving their conjecture on the exact extremal system.

1 Introduction

Intersection properties of sets have always been in the main focus of the
theory of extremal set systems. The general question can be put the follow-
ing way. Let I be a set of n elements and P be a property. What is the
maximal number N = N(P, n) such that there exist N subsets A1, . . . , AN

of I for which each of the pairwise intersections Ai ∩ Aj, i 6= j, have prop-
erty P? In classical results (e.g., [1, 2]) I is just a set having no additional
structure, while property P is a restriction on the cardinality of the pairwise
intersections.

In the late 70’s Simonovits and T. Sós started to study problems where
the baseset I had some structure (say it is the complete graph on n labelled
vertices [8, 9] or the first n positive integers [6, 12]) and the intersection
property P is formulated in terms of this structure. There are also nice
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results on some intersection properties of t-valued functions [4, 7]. A good
survey of intersection theorems of structural type, along with open problems
and conjectures can be found in [3, 11].

In the present paper we are considering an intersection problem on the
positive integers. Let I = [1, n] denote the first n positive integers. One of
the basic questions is the following: what is the largest number N0 such that
we can choose N0 subsets A1, . . . , AN0 ⊆ [1, n] and Ai ∩ Aj is an arithmetic
progression for every 1 ≤ i < j ≤ N0.

In many of the classical problems of extremal set theory the maximal
system is based on a simple constructions, where the intersection property
is satisfied trivially. When trying to find extremal systems, two “straightfor-
ward” constructions seem to be natural:

1. All the subsets have ≤ 3 elements

2. All the subsets are arithmetic progressions.

Graham, Simonovits and T. Sós [6] settled the question about N0, proving
that Construction 1 gives the only maximal system. As a consequence,

N0 =

(

n

3

)

+

(

n

2

)

+

(

n

1

)

+ 1.

Empty intersections can be considered as a kind of “degeneracy”. We can
avoid them by requiring the intersections to be “real” arithmetic progressions,
having at least k > 0 elements and ask for the maximal number Nk of such
subsets. This question was addressed in [12] by Simonovits and T. Sós. They
obtained for k ≥ 2 that an appropriate construction of type 2 provides an
asymptotically best family of sets. That is, for k ≥ 2 we have

Nk =

(

π2

24
+ ok(1)

)

n2.

A somewhat surprising feature of the bounds is that the asymptotic values
are independent of k.

Our objective is to determine the asymptotic value of N1, i. e. when
only the empty arithmetic progression is excluded as an intersection. The
definition below will be useful.
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Definition 1 We call a family F of subsets of [1, n] well-intersecting, if for
A, B ∈ F , A 6= B, the subset A ∩ B is a non-empty arithmetic progression.

For k = 1, we still have a version of Construction 1 which provides a larger
family than any kind of system obtained by Construction 2. Let c ∈ [1, n]
be a fixed integer and consider the system of all subsets of [1, n] with at
most three elements which contain c. This is a well-intersecting family of
cardinality

(

n
2

)

+ 1. Simonovits and T. Sós conjectured [12, 3, 11] that this

is an extremal system. As for an upper bound, in [12] they proved that

N1 ≤

(

π2

24
+

1

2
+ o(1)

)

n2.

In Section 5 we give constructions having slightly more than
(

n
2

)

+ 1
elements, disproving their conjecture on the extremal system. This also
suggests that the extremal well-intersecting systems may have more subtle
structure than the “straightforward” constructions. In the other direction
we prove (Theorem 2.1) that

N1 =
n2

2
+ O(n

5
3 log3 n).

This shows that the conjecture is true in an asymptotic sense.
Our strategy is the following: in Section 2 we separate two cases and

take care of the case of the big non-arithmetic progressions and of the small
arithmetic progressions when their intersection is empty. This is a quite
immediate consequence of results of [12]. In Section 3 we gather Lemmas
needed for the second case. Finally Section 4 contains the argument for this,
much longer case.

2 The Theorem

We introduce some notation: let I = I(n) = [1, n] = {1, 2, . . . , n}. When
considering intervals, we refer just to the integers contained in the interval.
By the length of an interval X = [x, y] we understand |X| = y − x + 1, that
is the number of integers in X. C1, C2, . . . denote absolute constants. For
x1, . . . , xm ∈ I we denote by P (x1, . . . , xm) the shortest arithmetic progres-
sion containing the numbers x1, . . . , xm. We borrow the notion of δ- and
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ν-triplets from [12]. If F is a family of subsets of I and F ∈ F , then we
say that a triplet {x, y, z}, contained in F , is a determining- or δ-triplet of
F for F , if there is no other F ′ ∈ F such that {x, y, z} ⊆ F ′. We often drop
references to F and F , when this causes no ambiguity. If {x, y, z} ⊆ F is
not a δ-triplet of F , then we call it a non-determining or ν-triplet. Let us
note here a key property of ν-triplets: if the family F is well-intersecting and
{x, y, z} is a ν-triplet of some F ∈ F , then P (x, y, z) ⊆ F , since for some
F ′ 6= F ∈ F we have {x, y, z} ⊆ F ∩ F ′.

The main contribution of the paper is the following.

Theorem 2.1 If F is a well-intersecting family of subsets of I(n), then

|F| <
n2

2
+ O(n

5
3 log3 n).

In their paper [12], Simonovits and T. Sós obtained an upper bound by
establishing that a well-intersecting system containing only non-arithmetic
progressions (i.e. subsets, which are not arithmetic progressions) can have
at most (1/2 + o(1))n2 elements, while a well-intersecting system containing
only arithmetic progressions has at most (π2/24 + o(1))n2 elements. To get
rid of the extra term (π2/24)n2, we shall examine the restrictions originated
from the well-intersection of arithmetic progressions and non-arithmetic pro-
gressions. These estimates, which are the crucial points of the proof, are
contained in Lemma 3.2, Corollary 3.3 and in part (ii) of Theorem 4.1.

Proof of Theorem 2.1: We put F = F1 ∪ F2, where

F1 = {F ∈ F : F is an arithmetic progression} and

F2 = {F ∈ F : F is not an arithmetic progression}.

First we are dealing with F2. We split F2 into Small and Big sets. We
write F2 = B ∪ S, where

B = {F ∈ F2 : |F | > n
2
3},

S = {F ∈ F2 : |F | ≤ n
2
3 }.

Big sets are handled by a Lemma of [12].
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Lemma A ([12, Lemma 1]) Let 1 > c > 0 be fixed and B =
{B1, . . . , BM} ⊆ 2I be a well-intersecting family containing no arithmetic
progressions. If |B1| = h > nc, then for every x ∈ B1 and t ≤ h/20 (for
n > n0(c)) either

(i) B1 contains an arithmetic progression of at least h − t elements, or
(ii) B1 contains at least th/50 log h δ-triplets of form {x, y, z}.

Lemma 2.2 Let B ⊆ 2I be a well-intersecting family of subsets of integers
such that no B ∈ B is an arithmetic progression. If |B| > n

2
3 for every

B ∈ B, then
|B| = O(n

5
3 log n).

Proof. We divide B into two parts:

B′ = {B ∈ B : ∃ x ∈ B such that B \ {x} is an arithmetic progression},

B′′ = B \ B′.

Using Lemma A with parameters t = 1 and c = 2
3
, we can estimate |B′′|.

For every B ∈ B′′ and every x ∈ B, there are at least n
2
3 /50 log n δ-triplets

of the form {x, y, z} contained in B. Hence every B ∈ B′′ contains at least

n
4
3 /150 logn δ-triplets. On the other hand, the number of possible δ-triplets

is
(

n
3

)

, which implies that B′′ has at most O(n
5
3 log n) elements.

We now turn to the estimation of |B′|. One can assume that n ≥ 8. Then
for every B ∈ B′, there exists a unique arithmetic progression PB ⊂ B, such
that |PB| + 1 = |B|. Let dB be the difference of PB and let xB ∈ B \ PB be
the remaining element in B.

First fix an x and a d, and let A, B ∈ B′ be such that x = xA = xB and
d = dA = dB. If |PA ∩ PB| ≥ 3, then there exists a y ∈ A ∩ B such that
{x, y, y+d, y+2d} ⊂ A∩B. This would imply that the arithmetic progression
P (x, y, y+d, y +2d) of difference less than or equal to d is contained in A. If
this difference is d, then A itself is an arithmetic progression of difference d,
which contradicts the assumption, that A is not an arithmetic progression. If
the difference of P (x, y, y+d, y+2d) is less than d, then there is an element of
A, either between y and y +d, or between y +d and y+2d, which is different
from x. But this is impossible, since |PA| + 1 = |A|. Thus, for fixed x and d

we obtained that |PA ∩ PB| ≤ 2. Since |PA| > n
2
3 − 1, we infer that for d, x
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fixed there are at most n/(n
2
3 − 3) ≤ 4n

1
3 elements B of B′ with xB = x and

dB = d.
We can select x n different ways and since |PB| ≥ n

2
3 , we can choose at

most n
1
3 different d’s. We conclude that |B′| = O(n

5
3 ). The lemma is proved.

2

Having the Big sets taken care of, we now consider S. We distinguish two
cases.

Case 1:
⋂

S = ∅ or

Case 2:
⋂

S 6= ∅.

The argument for Case 1 is implicitly contained in [12].
Theorem B ([12, Theorem 4]) Let S be a well-intersecting family, such

that |S| ≤ s for every S ∈ S, and assume also that no S ∈ S is an arithmetic
progression. In addition suppose that

⋂

S = ∅. Then

|S| ≤ sn −

(

s

2

)

+ O(n
5
3 log3 n).

We can apply Theorem B for S with s = n
2
3 and obtain that |S| =

O(n
5
3 log3 n). Combining this with the result of Lemma 2.2, it gives us that

|F| = |F1|+ O(n
5
3 log3 n). In view of the following easy Corollary 2.4 |F1| ≤

π2

24
n2 + O(n log n), hence we are done with Case 1.
We formulate the next statement in a slightly more general form than is

needed here. This version will be useful later on.
For a family A ⊆ 2I of arithmetic progressions we denote by Ad the

subfamily of A, which contains the arithmetic progressions of difference d. If
X, Y ⊆ I, then

AY
X = {A ∈ A : one endpoint of A is in X, the other is in Y }.

Lemma 2.3 Let A ⊆ 2I be a well-intersecting family of arithmetic progres-
sions and let d be a positive integer, X, Y ⊆ I intervals. Then

|AY
d,X | ≤

|X||Y |

d2
+

3n

d
.
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Proof. Since A ∩ B 6= ∅ for any two A, B ∈ AY
d,X , the elements of A and

B are in the same residue class D modulo d. The two endpoints determine
an arithmetic progression uniquely. The endpoint from X can be selected at
most |D ∩ X| < |X|/d + 1 different ways. Similarly we can choose at most
|D ∩ Y | < |Y |/d + 1 different endpoints from Y . Hence the lemma follows.

2

Corollary 2.4 Let A ⊆ 2I be a well-intersecting family of arithmetic pro-
gressions and let d be a positive integer. Then

|Ad| ≤
n2

4d2
+

4n

d
.

Proof. Since every two elements of A have nonempty intersections, they
must be in the same residue class D modulo d. Within D, each arithmetic
progression determines an interval, such that their pairwise intersection is
nonempty. Thus there exists an element a ∈

⋂

Ad. We can use the preceding
lemma with X = [1, a] and Y = [a, n].

2

3 Preparations

Before attacking Case 2, we prove some preparatory statements. They will
be used extensively throughout the whole proof. The first one is a variant of
Lemma 2 of [12], with a slightly simpler proof.

Lemma 3.1 Let S ⊆ 2I be a well-intersecting family containing no arith-
metic progressions. Assume that there is an integer c ∈ I contained by each
element of S and that there exists a set P ⊆ I \ {c}, such that S ∩P 6= ∅ for
every S ∈ S. Then there exists a subfamily H = H(P ) ⊆ S, such that every
H ∈ H contains a δ-triplet {c, x, p} for S, where p ∈ P , x ∈ I \ {c, p} and
|S \ H| = O(n1+ε) for any ε > 0.

Proof. For every S ∈ S we fix an element pS of P ∩ S. We define H in
the following way:

H = {H ∈ S : ∃ δ-triplet {c, pH , xH} ⊆ H, xH ∈ I}.

7



We partition the rest of S into two subfamilies:

S ′ = {S ∈ S \ H : S ∩ [c, pS] is an arithmetic progression}

S ′′ = {S ∈ S \ H : S ∩ [c, pS] is not an arithmetic progression}

We intend to prove that |S ′ ∪ S ′′| = O(n1+ε).
If S ∈ S ′ ∪ S ′′, then S 6∈ H. In particular, for every z ∈ S \ {c, pS} the

subset {c, z, pS} is a ν-triplet, which implies that P (c, z, pS) ⊂ S.
First let S ∈ S ′. Let dS be the difference of S ∩ [c, pS]. Let AS be the

arithmetic progression of difference dS, which is the extension of S ∩ [c, pS]
to the whole I. The difference dz of P (c, z, pS) must be a multiple of dS

for every z ∈ I \ {c, pS}, because S ∩ [c, pS] is an arithmetic progression of
difference dS. Thus S ⊆ AS. Let y ∈ S be an element, for which |y−c| = dS.
As S is not an arithmetic progression, there is at least one z = zS ∈ S such
that P (c, y, z) 6⊆ S. In this case {c, y, z} is clearly a δ-triplet of S.

Thus the pair (zS, dS) almost uniquely determines S (up to a factor of
two). Observe that dS must divide |c − z|. We infer that for every d and z,
such that d||c − z|, there can be at most two sets S ∈ S ′, with dS = d and
zS = z corresponding to the two possible selections of y. By [5, Theorem
320] we have

|S ′| ≤ 2
n
∑

z=1

d(|z − c|) = O(n logn).

Now let S ∈ S ′′. Since P (c, z, pS) ⊆ S for every z ∈ S, [c, pS] ∩ S is the
union of at least two arithmetic progressions. Let d1 and d2 the difference
of two, such that they are not contained in a third one (or in each other).
Due to the well-intersecting property of S ′′, S is uniquely determined , once
d1, d2 and pS are fixed. Also d1, d2||c − pS|, so by [5, Theorem 315]

|S ′′| ≤
∑

p∈P

d(|c − p|)2 ≤ |P |n2ε.

2

The following lemma will often be convenient. Let H ⊆ 2I be a family of
subsets of integers, and let c ∈

⋂

H be a fixed integer. Then let

H∗ = H∗(c) = {H ∈ H : ∃ δ-triplet {c, xH , yH} ⊆ H for H,

such that P (c, xH , yH) ⊂ H}.
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Lemma 3.2 Let H ⊆ 2I be a family of subsets of integers. Assume, that
there is an integer c ∈ I such that c ∈ ∩H. Then

|H∗(c)| = O(n log n).

Proof. For H ∈ H∗, let dH be the difference of P (c, xH , yH). If H 6= G ∈
H∗ such that dH = dG = d, then P (c, xH , yH) 6⊆ P (c, xG, yG) ⊆ G, since
{c, xH , yH} is a δ-triplet for H. In particular, P (c, xG, yG) and P (c, xH, yH)
can not share an endpoint. This in turn implies that the number of elements
of H∗ with dH = d is at most dn

d
e/2. Hence |H∗| ≤

∑n
d=1

1
2
dn

d
e < n log n.

2

We define now the notation HY
d,X for a family H which do not contain

arithmetic progressions. (For families containing only arithmetic progressions
this notion was already introduced before Lemma 2.3.) Let H ⊂ 2I be a
family of non-arithmetic progressions, c ∈

⋂

H and suppose that we have
fixed a δ-triplet {c, pH, xH} of every H ∈ H. We call pH and xH the essential
elements of H. For X, Y ⊆ I we put

HY
X = {H ∈ H : one essential element of H is in X, the other is in Y }.

Later we shall somehow fix a δ-triplet of every H ∈ H and the essential
elements will be defined using those very triplets. If we say that the essential
elements of an arithmetic progression are its endpoints, then the previous
definition of HY

X will also be valid for families consisting of arithmetic pro-
gressions.

If d is a positive integer and H ⊆ 2I is a family containing no arithmetic
progressions, then we write

Hd = {H ∈ H : gcd(|pH − c|, |xH − c|) = d}.

The next easy Corollary turns out to be very useful for estimating families
which contain both arithmetic progressions and non-arithmetic progressions.
In fact, this will be one of our main tools to exploit the well-intersection of
progressions with non-progressions.

Corollary 3.3 Let c be a positive integer. Let H ∪ E ⊆ 2I be a well-
intersecting family, such that each element of the family contains c. E con-
sists of arithmetic progressions, while H does not contain any.
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Assume that we have fixed a δ-triplet {c, pH , xH} of every set H ∈ H for
H ∪ E . If X, Y ⊆ I are two intervals, then

|





[n/d]
⋃

i=1

HY
id,X



 ∪ EY
d,X | ≤

|X||Y |

d2
+

3n

d
.

If we require the chosen δ-triplets to be a δ-triplet only for H (as opposed
to H∪E) an easy upper bound, worse by a factor of 2, would follow just from
the definitions. With the extra condition, the extra factor of 2 disappears.
Lemma 3.2 will enable us to ensure this extra condition (and thus apply the
Corollary) by paying practically no price in the main term.

Proof. Let D stand for the residue class of c modulo d.
Then for every pair p ∈ Y ∩ D, x ∈ X ∩ D, at most one of the two

possibilities can hold:
—there is an arithmetic progression E in EY

d,X with endpoints p and x.

—there is an element H of
⋃n/d

i=1 H
Y
id,X , such that pH = p and xH = x.

Indeed, the occurrence of both events would imply that {c, pH , xH} is a
ν-triplet for E ∪ H.

Moreover, E or H is uniquely determined by the pair (p, x). The number
of such pairs is at most (|X|/d + 1)(|Y |/d + 1) and the statement follows.

2

We conclude this section by proving a number theoretical lemma. It is a
slight generalization of a familiar fact on the average behavior of Euler’s ϕ
function:

∑j
i=1 ϕ(i) = 3j2/π2 + O(j log j) [5, Theorem 330].

Lemma 3.4 Let K, J ⊆ [−n, n] be two intervals. Then there exist absolute
constants C1, C2 such that

N = N(K, J, n) = #{(a, b) : a ∈ K, b ∈ J, gcd{a, b} = 1} ≤

≤
6

π2
|K||J | + C1n log n + C2.

Proof. It suffices to assume that K, J ⊆ I. The statement follows easily
from this case.

Let f : I2 → Z be a function. We recall a version of the Möbius Inversion
Formula:

∑

(x,y)∈I2

gcd{x,y}=1

f(x, y) =
n
∑

d=1

µ(d)Sd,
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where µ is the Möbius function and

Sd =
∑

(x,y)∈I2

d|x,d|y

f(x, y).

We apply this to the following function f :

f(x, y) =

{

1 if x ∈ K, y ∈ J
0 otherwise

It is immediate that

Sd =

(

|K|

d
+ εK,d

)(

|J |

d
+ εJ,d

)

,

where 0 ≤ |εK,d|, |εJ,d| ≤ 1. We have

N(K, J, n) =
∑

(x,y)∈I2

gcd{x,y}=1

f(x, y) =
n
∑

d=1

µ(d)

(

|K|

d
+ εK,d

)(

|J |

d
+ εJ,d

)

=

=
n
∑

d=1

µ(d)|K||J |

d2
+

n
∑

d=1

µ(d)

d
(|K|εJ,d + |J |εK,d) +

n
∑

d=1

µ(d)εK,dεJ,d ≤

≤
n
∑

d=1

µ(d)|K||J |

d2
+ 2n(log n + 1) + n =

=
∞
∑

d=1

µ(d)|K||J |

d2
−

∞
∑

d=n+1

µ(d)|K||J |

d2
+ 2n log n + 3n ≤

≤
6

π2
|K||J | + 2n log n + 4n.

For the evaluation of the first of the infinite sums the reader is referred to
Theorem 287 of [5].

2

Let d be a positive integer. We extend the preceding lemma to count the
pairs from K, J with gcd-value precisely d. The reduction to the relatively
prime case is straightforward; we work with [−[n

d
], [n

d
]] in the place of [−n, n].
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Corollary 3.5 Let K, J ⊆ [−n, n] be two intervals and d be positive integer.
Then there exist absolute constants C3, C4 such that

#{(a, b) : a ∈ K, b ∈ J, gcd{a, b} = d} ≤
6

π2

|K||J |

d2
+

C3n log n

d
+ C4.

2

This Corollary is used to estimate |HY
d,X |, where H ⊆ 2I is a family con-

taining no arithmetic progressions. (In this sense Corollary 3.5 corresponds
to Lemma 2.3.)

4 Case 2:
⋂

S 6= ∅

This section contains the remaining (and most laborious) part of the proof
of Theorem 2.1. We assume throughout that

⋂

S 6= ∅. We remark here that
the conditions |S| ≤ n

2
3 for S ∈ S will no longer have significance.

We fix a c ∈
⋂

S and partition F1 (the subfamily of F containing the
arithmetic progressions) into

P = {P ∈ F1 : c /∈ P} and

E = {E ∈ F1 : c ∈ E}.

We set out to prove that |P ∪E ∪S| ≤ n2

2
+O(n1+ε). This, together with

Lemma 2.2, implies Theorem 2.1.
As for the strategy of our proof, we shall divide I into subintervals given

by a few (3 or 4) division points. We are going to classify the elements
of P ∪ E ∪ S by the subintervals containing their essential elements. We
estimate then the cardinalities of these subsystems separately. In doing this,
we ignore sets which have one (or both) of their essential elements at the
division points, because there are just O(n log n) of those.

The following theorem deals with the hardest case of the argument.

Theorem 4.1 Let c ∈ [1, n] be an integer. Let P be a family of arithmetic
progressions such that none of the elements of P contains c. Let E be a family
of arithmetic progressions such that every element of E contains c. Let S be a
family of non-arithmetic progressions, such that each of the elements contains
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c. Suppose that P ∪E ∪S is well-intersecting. In addition assume that there
is a P ′ ∈ P such that min P ′ > c or max P ′ < c. Then

|P ∪ E ∪ S| ≤
n2

2
+ O(n1+ε)

Proof. Without loss of generality we can assume that there is a P ′ ∈ P
such that min P ′ > c (If max P ′ < c, then we can reflect the set system
about (n + 1)/2). Let P ′ be one with the greatest left-endpoint c + q. Let
T ∈ P be an arithmetic progression with the smallest right-endpoint c+q+r.
Obviously, since T ∩ P ′ is nonempty, we have 0 ≤ r. Let x = n − r − q − c,
C = [1, c], Q = (c, c + q], R = (c + q, c + q + r] and X = (c + q + r, n]. The
following figure shows the setup.

r r r

c n
C Q R X

P ′

T

-

�

After designating the division points c, c+ q and c+ q + r, we can assume
without loss of generality that no element of P ∪ E has endpoints in one or
both of these points. Leaving out these arithmetic progressions decreases
|P ∪ E| only by O(n log n). Let us note here that although P ′ and T are
among the arithmetic progressions “left out”, we do not forget that every
element of P ∪ E ∪ S still has to intersect P ′ and T nontrivially.

We can use Lemma 3.1 with P = [c + q, n] to obtain a subfamily K of
S, such that for every H ∈ K there exist a δ-triplet {c, pH, xH} of H for K,
where pH ∈ P ∩ H and |S \ K| = O(n1+ε).

Quite possibly we have a choice in selecting the δ-triplet of an H ∈ K. We
fix one by the following list of preferences: first we choose δ-triplets to make
|KI

R| maximal. After this, we choose δ-triplets to make |KC∪Q
X | maximal.

Finally we favor choices where |xH − pH | is minimal.
Furthermore, we can leave out the elements of K∗(c) from K and obtain

a family H such that P (c, xH , pH) 6⊆ H for any H ∈ H. In particular
{c, xH , pH} is a δ-triplet of H for H ∪ E , that is the “extra condition” of
Lemma 3.3 holds. By Lemma 3.2 |K \ H| = O(n logn), hence |S \ H| =
O(n1+ε).

We can also assume without loss of generality that H does not contain a
set H, which contains a δ-triplet of the form {c, d1, d2}, where either d1 or d2

is a division point. We can simply leave out those sets from H which contain
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a δ-triplet of this kind, and repeat this procedure until we got rid of all of
them. All together we left out only O(n) sets. (Less than n sets for each
division point.)

We estimate the sizes of the essential parts of P ∪ E ∪H in six steps.
(i) HX

X = ∅.
Assume there exists H ∈ HX

X . Since H ∩ T 6= ∅, there must exist a
z ∈ H ∩ (I \ X), z 6= c. Let zH 6= c be an element of H ∩ (I \ X), such that
|zH − c| is minimal. Here zH is different from xH and pH , because both xH

and pH are in X.
The maximality of KI

R and KQ∪C
X implies that {c, zH , xH} and {c, zH , pH}

were ν-triplets for K. Hence P (c, zH , xH), P (c, zH , pH) ⊂ H, and both arith-
metic progressions have difference |zH − c|, since |zH − c| is minimal. Thus
P (c, xH , pH) ⊂ H, which is a contradiction, so HX

X = ∅.
(ii) |P1 ∪ HQ

X | ≤ xq + O(n).
Obviously we have P1 = PQ

1,X , so an upper bound of 2xq is trivial. In

order to estimate the cardinality more carefully, we shall partition HQ
X in the

following way:

Ĥ = {H ∈ HQ
X : [pH , xH ] ∩ H = {pH , xH}},

H̄ = {H ∈ HQ
X : [pH , xH ] ∩ H is not an arithmetic progression},

Ḣ = {H ∈ HQ
X : [pH , xH ] ∩ H is an arithmetic progression of length ≥ 3}.

First we show that Ḣ = ∅. Assume there exists H ∈ Ḣ. Let a =
min H ∩X and b = max H ∩ (Q∪R). Obviously xH ≤ b < a ≤ pH and since
|H ∩ [xH , pH]| ≥ 3, {xH , pH} 6= {a, b}.

If b ∈ R, then {a, b, c} is a ν-triplet for K, since first KI
R was chosen to

be maximal.
If b ∈ Q, then {a, b, c} also must be a ν-triplet for K, since |xH − pH | was

chosen to be minimal and |xH − pH | > |a − b|.
Thus in each case P (a, b, c) ⊂ H. Because of the definition of a and b,

there is no element of H between a and b, which fact implies that

difference of (H ∩ [xH , pH ]) = |a − b| = difference of P (a, b, c).

Hence the arithmetic progression P (c, xH , pH) is contained in H, which is a
contradiction, so Ḣ = ∅.

14



Now we turn to Ĥ ∪ H̄ ∪ P1 by defining further subdivisions. For i ∈ Q
let us define:

Ĥi = {H ∈ Ĥ : xH = i},

H̄i = {H ∈ H̄ : xH = i},

P i
1 = {[i, l] ∈ P1}.

Let i1 < i2 < . . . < ik ∈ Q be the indices ij for which P
ij
1 is nonempty. We

fix a j ≥ 2. Let [ij, l] be the element of P
ij
1 with the smallest right-endpoint l.

Let pK = min{pH : H ∈ H̄ij} with a corresponding set K ∈ H̄ij . If H̄ij = ∅,
then we define pK := n + 1. Obviously l < pK, otherwise [ij, l]∩K is not an
arithmetic progression.

—If H ∈ Ĥij−1 , then pH ≤ l, otherwise H ∩ [ij, l] would be empty. Thus

|Ĥij−1 | ≤ l − (n − x). (This is actually true for any Ĥm, where m < ij.)

—If [ij, f ] ∈ P
ij
1 , then l ≤ f by the definition of l and also f < pK , since

[ij, f ] ∩ K must be an arithmetic progression. Thus |P
ij
1 | ≤ pK − l.

—If H ∈ H̄ij , then pK ≤ pH ≤ n by the definition of K, which gives us
|H̄ij | ≤ n − pK + 1.

Combining the previous three inequalities we obtain that |Ĥij−1 ∪ P
ij
1 ∪

H̄ij | ≤ x + 1 for every 2 ≤ j ≤ k.
If P i

1 is empty for some i ∈ Q, then |Ĥi ∪ H̄i| ≤ x, because for every
element p ∈ X, {c, i, p} can be a δ-triplet of at most one set in Ĥi ∪ H̄i.
Summing up we have

|Ĥ ∪ P1 ∪ H̄| = |
c+q−1
⋃

i=c+1

(Ĥi ∪ P i
1 ∪ H̄i)| =

= |
k
⋃

j=2

(Ĥij−1 ∪ P
ij
1 ∪ H̄ij )| + |Ĥik ∪ P i1

1 ∪ H̄i1 | + |
⋃

i:Pi
1=∅

(Ĥi ∪ H̄i)| ≤

≤ (k − 1)(x + 1) + 3n + (q − 1 − k)x = qx + O(n).

(iii) |
n
⋃

i=2

(Pi ∪ EC
i,X)| ≤ (

π2

6
− 1)x(q + c) + O(n logn)

By the definition of x and q obviously Pi = PQ∪C
i,X . We can apply

Lemma 2.3 for the well-intersecting family P ∪ E of arithmetic progressions
and sum up the results.
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(iv) Trivially |HR
X | ≤ rx.

(v) |EC
1,X ∪HC

X | ≤ xc + O(n)
Since the δ-triplets {c, xH , pH} of the elements of H are δ-triplets for

H ∪ E , we can apply Corollary 3.3 with d = 1, Y = C.
(vi)d There exist absolute constants C5, C6 such that for any positive

integer d

|EC
d,R ∪ HQ∪C∪R

d,R | ≤
1

d2

6

π2
f(r, q, c, sd) + C5

n log n

d
+ C6, where

c + q + r − sd is the greatest right-endpoint among the elements of EC
d,R (if

EC
d,R = ∅, then we can set sd := r), 0 ≤ sd ≤ r, and

f(r, q, c, sd) =
π2

6
c(r − sd) + sd(q + c + r) −

s2
d

2
.

Proof. Assume first that EC
d,R is not empty. Let c − yd be the smallest

left-endpoint occurring among the elements of EC
d,R, 0 ≤ yd ≤ c. We define

Yd = [c − yd, c] and Sd = (c + q + r − sd, c + q + r].

r rr r

p p p p p p p p p p

ppppppppppppppp

-

�
c n − x

C \ Yd Yd Q R \ Sd Sd

d

To make notations easier to read, we write S instead of Sd and Y instead
of Yd. By Corollary 3.3, |EY

d,R\S ∪HY
d,R\S | ≤ (r − sd)(yd + 1)/d2 + 3n/d.

By the definition of sd for any H ∈ H
Q∪(R\S)
d,R\S there exists an E ∈ ER

d,C con-
taining the δ-triplet {c, pH , xH}. This would mean {c, pH, xH} is a ν-triplet

for H ∪ E , which is not possible. Thus we have H
Q∪(R\S)
d,R\S = ∅.

With the aid of Corollary 3.5, we estimate the following decomposition
term-by-term:

EC
d,R ∪ HQ∪C∪R

d,R = EY
d,R\S ∪HY

d,R\S ∪ H
C\Y
d,R\S ∪ H

Q∪C∪(R\S)
d,S ∪ HS

d,S.

We obtain that

|EC
d,R ∪ HQ∪C∪R

d,R | ≤
(r − sd)yd

d2
+

6

π2

(r − sd)(c − yd)

d2
+

+
6

π2

sd(q + c + r − sd)

d2
+

3

π2

s2
d

d2
+ C5

n log n

d
+ C6
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This function is increasing in yd. By putting in yd = c, we obtain the bound
of (vi)d. In the case EC

d,R = ∅ the claim follows immediately from the previous
estimates.

By adding up the estimates (i)-(v) and (vi)d for every d ≤ n we obtain

|E ∪ H ∪ P| ≤
π2

6
x(q + c) + rx + O(n logn)+

+
n
∑

d=1

(

1

d2

6

π2
f(r, q, c, sd) + C5

n log n

d
+ C6

)

.

To conclude the proof of our Theorem, it suffices to show that

π2

6
x(q + c) + rx +

∞
∑

d=1

1

d2

6

π2
f(r, q, c, sd) ≤

n2

2
,

when q + c + x + r = n, and 0 ≤ sd ≤ r.
Or, equivalently, since

π2

6
x(q + c) + rx =

∞
∑

d=1

1

d2

6

π2

(

π2

6
x(q + c) + rx

)

,

it is enough to show, that if n = q + c + x + r, 0 ≤ s ≤ r then

π2

6
x(q + c) + rx + f(r, q, c, s) ≤

n2

2
.

We rewrite our function using the new variable z = r − s. In this setting we
seek the maximum of

π2

6
x(q + c) + (s + z)x +

π2

6
cz + s(q + c + s + z) −

s2

2
, (1)

subject to constraints n = c + q + x + s + z and c, q, x, s, z ≥ 0. We do not
decrease the maximum of (1) replacing c by q + c and q by 0:

π2

6
xc + (s + z)x +

π2

6
cz + s(c + s + z) −

s2

2
≤

π2

6
c(x + z) +

(

x + z

2

)2

+ s(c + z + x) +
s2

2
.
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Here we introduce new variables again replacing x by x + z and z by 0:

π2

6
cx +

x2

4
+ sx + sc +

s2

2
=

(s + x + c)2

2
−

x2

4
−

c2

2
+

(

π2

6
− 1

)

cx =

=
n2

2
−

(

x

2
−

(

π2

6
− 1

)

c

)2

−





1

2
−

(

π2

6
− 1

)2


 c2 ≤
n2

2
.

We have finished the proof of Theorem 4.1.
2

To complete our reasoning, we just have to treat the families where every
element of P “jumps over” c, that is for each P ∈ P minx∈P x < c <
maxx∈P x. In particular P1 = ∅.

Theorem 4.2 Assume that there exists a P ′ ∈ Pk for some k ≥ 2. Then

|E1 ∪ S| ≤ max

{

n2

4
,
(

1

k
−

1

2k2

)

n2

}

+ O(n1+ε).

Proof. Let c − x the smallest left-endpoint, c + y the greatest right-
endpoint occurring among the elements of E1. If E1 is empty, then we set
x = y = 0. Let P be the arithmetic progression of difference k, which is the
extension of P ′ to I,

[

n
k

]

≤ |P | ≤
[

n
k

]

+ 1. Let U = [1, c − x), X = [c − x, c],

Y = [c, c + y] and V = (c + y, n], u = c − x, v = n − c − y.

rr r

c n
U X Y V

-

�

b b b b b b b b b b b b b b b b b b b b b b b b

P = b

We can apply Lemma 3.1 with this P to obtain a subfamily H, such
that every H ∈ H contains a δ-triplet {c, pH, xH} for S with pH ∈ P , xH ∈
I \{c, pH} and |S \H| ≤ O(n1+ε). Let us fix such a δ-triplet of every H ∈ H.
With the aid of Lemma 3.2 we can assume that they are δ-triplets for H∪E .
(We can simply leave out O(n logn) “bad” sets, like we did in the proof of
Theorem 4.1.)

By Corollary 3.3

|EY
1,X ∪ HY

X | ≤ (x + 1)(y + 1) + O(n) ≤
(

x + y

2

)2

+ O(n). (2)
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By the definition of X and Y , for any set H ∈ HX
X ∪ HY

Y there is a set
E ∈ E1 which contains H’s δ-triplet {c, pH, xH}. This is a contradiction,
since {c, pH , xH} should be a δ-triplet for H ∪ E . Hence

HX
X ∪HY

Y = ∅. (3)

Next we count the remaining part of H (see the figure):

|HI
U∪V | ≤

x + y

k
(u + v) +

u + v

k
n −

x + y

k

u + v

k
−

(

u+v
k

)2

2
+ O(n). (4)

The definition of X and Y implies that E1 = EY
1,X, hence by (3)

|E1 ∪ H| ≤ (r.h.s. of (2)) + (r.h.s. of (4)). (5)

We do not decrease the maximum of the right hand side of (5), if we substitute
y = 0, v = 0 and replace x and u by x + y and u + v, respectively. Up to an
“error term” of O(n) we obtain the expression

x2

4
+

ux

k
+

u

k
n −

ux

k2
−

u2

2k2
.

It is a routine task to determine the maximum of this on the domain x, u ≥ 0,
with the constraint x + u = n. For k ≥ 4 the maximum is attained at
u = 0, x = n and the value is n2/4, while for k = 2 or 3 the maximum is at
u = n, x = 0 and the maximal value is (1/k − 1/2k2)n2.

2

By the previous theorem and by Corollary 2.4, if
⋃n

i=3 Pi 6= ∅, then

|E ∪ P ∪ S| = |E1 ∪ S| + |
n
⋃

i=2

(Ei ∪ Pi) | ≤

≤

(

1

3
−

1

18
+

π2

24
−

1

4

)

n2 + O(n1+ε) <
n2

2
+ O(n1+ε).

We are left with the case when
⋃n

i=3 Pi ∪ P1 = ∅.
If there exists an element P ∈ P2, then we choose our δ-triplets by em-

ploying Lemma 3.1 with this P . If P2 = ∅, then we just use P = I \ {c}.
We obtain a subfamily H ⊆ S, |S \ H| = O(n1+ε) such that every H ∈ H
contains a δ-triplet {c, pH , xH} for S with pH ∈ P and xH ∈ I \ {c, pH}. By
Lemma 3.2 we can assume again that {c, pH , xH} is a δ-triplet for H ∪ E .
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Lemma 4.3 Let d be a positive integer. There exists absolute constants
C7, C8 such that

|Ed ∪Hd| ≤
3

π2

n2

d2
+ C7

n log n

d
+ C8.

Proof. If Ed = ∅ then the statement follows immediately from Corol-
lary 3.5. Otherwise let c− x be the smallest left-endpoint, c + y the greatest
right-endpoint occurring among the elements of Ed. Let U = [1, c − x),
X = [c − x, c], Y = [c, c + y] and V = (c + y, n], u = c − x, v = n − c − y.

rr r

c n
U X Y V

p p p p p p p

pppppppppp

-

�

By Corollary 3.3

|EY
d,X ∪HY

d,X | ≤
(x + 1)(y + 1)

d2
+

3n

d
≤
(

x + y

2d

)2

+
6n

d
≤

3

π2

(

x + y

d

)2

+
6n

d
.

By the definition of X, Y , for any H ∈ HX
d,X ∪ HY

d,Y there exists an
E ∈ Ed which contains the δ-triplet {c, pH , xH}. This fact would imply
that {c, pH , xH} is a ν-triplet for H ∪ E , so we have

HX
d,X ∪HY

d,Y = ∅.

By Corollary 3.5

|Ed ∪Hd| = |EY
d,X ∪ HX∪Y

d,X∪Y | + |HU∪V
d,X∪Y | + |HU∪V

d,U∪V | ≤

≤
3

π2

(

x + y

d

)2

+
6

π2

x + y

d

u + v

d
+

3

π2

(

u + v

d

)2

+ C7
n log n

d
+ C8 =

=
3

π2

(

n

d

)2

+ C7
n log n

d
+ C8.

2

If P2 = ∅, then P = ∅ and we obtain |E ∪ H| ≤ n2/2 + O(n log2 n) by
summing up the bound of the preceding lemma over 1 ≤ d ≤ n.

If there exists an element P ∈ P2, then it must “jump over” c. This
fact ensures that H2 is empty, since pH ∈ P implies that |pH − c| is not
divisible by 2. Observe also, that either P2 = ∅ or E2 = ∅. We infer that
|H2∪E2∪P2| ≤ n2/16 < 3

π2
n2

22 . Combining this with the bound of the previous
lemma in cases d 6= 2, we obtain that |P ∪ E ∪ H| ≤ n2/2 + O(n log2 n).

This finishes the proof of Theorem 2.1. 2
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5 Constructions

Here we present constructions giving a lower bound on N1. The systems to
be described constitute a modest improvement over the best known families.
We start out with

C1 = {S ⊂ [1, n]; |S| ≤ 3 and c ∈ S},

where c = dn/2e. Obviously C1 is a well-intersecting system and |C1| =
(

n
2

)

+ 1. It was conjectured that C1 is an extremal family for N1. We show,
however, that simple alterations of C1 lead to larger families.

To this end, we add to C1 the sets of the form {c − 2x, c − x, c, c + x, c +
2x}, {c − 2x, c − x, c, c + x}, and {c − x, c, c + x, c + 2x} for 1 ≤ x ≤ [n−1

4
].

We have to take out the triplets that cause trouble: {c − 2x, c, c + x} and
{c − x, c, c + 2x}. We denote the new system by C. This way for every x we
put in one more set into C1 than we took out. We have

|C| = |C1| +
[

n − 1

4

]

=

(

n

2

)

+
[

n − 1

4

]

+ 1.

Several other equally good constructions can be obtained along similar
lines. We just mention one of them, which contains arithmetic progression
even of length nine. For X ⊆ [1, [n−1

8
]] we construct a well-intersecting system

CX in the following way: for every x ∈ X we add the arithmetic progressions
{c − 4x, c − 3x, c − 2x, c − x, c, c + x, c + 2x, c + 3x, c + 4x} to C, together
with all its sub-arithmetic progressions containing c. This means 16 new sets
for every x. (Some of the subprogressions were already contained in C; this
ensures that different values of x produce disjoint collections of new sets.)
Also, we have to leave out all the 16 triplets which would violate the well-
intersecting property. There is no triplet in C which gives a bad intersection
with progressions belonging to two different values of x, hence we do not
leave out the same triplet for two different elements of X. Thus, we have
|CX | = |C|.

6 Some open problems

It would be interesting to know the exact value of N1, ideally with a de-
scription of the extremal systems. Our families C and CX were obtained by
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taking in (and leaving out) O(n) elements to (from) C1. With this in sight,
it seems likely that even if C is not an extremal family, the extremal systems
differ only slightly from a family of type C1. Here are two precise questions
pointing to this direction: can one prove that every element of an extremal
system contains a fixed integer c? Is it true that N1 ≤ n2/2 + O(n)?

Finally we mention that to our knowledge, the following attractive ques-
tion from [12] is still open: is it true that the extremal systems for Nk, k ≥ 2
contain arithmetic progressions only.
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[1] N. G. de Bruijn and P. Erdős, On a combinatorial problem, Nederl.
Akad. Wetensch. Proc. 51 (1948), 1277-1279.
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