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Abstract

In the max-min allocation problem a set P of players are to be allocated disjoint subsets of
a set R of indivisible resources, such that the minimum utility among all players is maximized.
We study the restricted variant, also known as the Santa Claus problem, where each resource
has an intrinsic positive value, and each player covets a subset of the resources. Bezáková
and Dani [15] showed that this problem is NP-hard to approximate within a factor less than 2,
consequently a great deal of work has focused on approximate solutions. The principal approach
for obtaining approximation algorithms has been via the Configuration LP (CLP) of Bansal and
Sviridenko [12]. Accordingly, there has been much interest in bounding the integrality gap of this
CLP. The existing algorithms and integrality gap estimations are all based one way or another
on the combinatorial augmenting tree argument of Haxell [26] for finding perfect matchings in
certain hypergraphs.

Our main innovation in this paper is to introduce the use of topological methods, to re-
place the combinatorial argument of [26] for the restricted max-min allocation problem. This
approach yields substantial improvements in the integrality gap of the CLP. In particular we
improve the previously best known bound of 3.808 to 3.534. We also study the (1, ε)-restricted
version, in which resources can take only two values, and improve the integrality gap in most
cases. Our approach applies a criterion of Aharoni and Haxell, and Meshulam, for the existence
of independent transversals in graphs, which involves the connectedness of the independence
complex. This is complemented by a graph process of Meshulam that decreases the connect-
edness of the independence complex in a controlled fashion and hence, tailored appropriately
to the problem, can verify the criterion. In our applications we aim to establish the flexibility
of the approach and hence argue for it to be a potential asset in other optimization problems
involving hypergraph matchings.
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1 Introduction

In this paper we consider the restricted max-min allocation problem. An instance I = (P,R, v, {Lp :
p ∈ P}) of the problem consists of a set P of players, a set R of indivisible resources, where each
resource r ∈ R has an intrinsic positive value vr > 0, and each p ∈ P covets a set Lp ⊆ R of
resources. An allocation of the resources is a function a : P → 2R, with a(p) ⊆ Lp for each p ∈ P ,
such that every resource is allocated to (at most) one player, that is a(p)∩a(q) = ∅ for every p 6= q.
The min-value of allocation a is minp∈P v(a(p)), where for a set S ⊆ R of resources v(S) =

∑
r∈S vr

represents the total value of S. The objective is to maximize the min-value over all allocations of
resources. This value will be denoted by OPT = OPT (I).

The choice of a max-min objective function is arguably a good one for achieving overall individ-
ual “fairness” in the distribution of a set of indivisible resources that are considered desirable by the
players.1 Since the seminal paper of Bansal and Sviridenko [12], the restricted max-min allocation
problem often goes under the name Santa Claus Problem, where the players represent children, and
the resources are presents to be distributed by Santa Claus. One imagines each present r having
a “catalogue” value vr, but some presents may not be interesting to some children.2 To be fair3,
Santa might wish to distribute the presents so that the smallest total value received by any child
is as large as possible.

The problem of how to find an optimal solution efficiently was studied first in the special case
when Lp = R for every player p ∈ P . In this case Woeginger [40] and Epstein and Sgall [22]
gave polynomial time approximation schemes (PTAS), and Woeginger [41] gave an FPTAS when
the number of players is constant. For the general case however, Bezáková and Dani [15] showed
that the problem is hard to approximate up to any factor < 2. On the positive side, there has
been a great deal of progress towards finding good approximations. In [15] an approximation ratio
of |R| − |P | + 1 is achieved, as well as an additive approximation algorithm using the standard
assignment LP relaxation of the problem. This finds a solution of value at least TALP −maxr∈R vr,
where TALP is the optimal value of the assignment LP. This algorithm however does not offer any
approximation factor guarantee when maxr∈R vr is large.

To address the fact that the assignment LP can have arbitrarily large integrality gap in general,
Bansal and Sviridenko [12] introduced the important innovation of using a stronger LP, called the
configuration LP for the problem, which we now describe. Given a problem instance I and T ≥ 0,
for each player p ∈ P we define the family Cp(T ) = {C ⊆ Lp : v(C) ≥ T} of configurations for
p. The configuration LP for I with target T has a variable xp,S ≥ 0 for every player p ∈ P and
configuration S ∈ Cp(T ), and a constraint ∑

S∈Cp(T )

xp,S ≥ 1

for every player p ∈ P and a constraint∑
p∈P

∑
S∈Cp(T ),S3r

xp,S ≤ 1

for every resource r ∈ R.

1This is in contrast with the situation where resources are considered rather “chores”, when one would usually
aim to minimize the maximum values of the subsets of resources allocated to each player. That would be the setup
for example in the classical makespan minimization problem, where various jobs have to be allocated to a set of
machines.

2... since perhaps they already secured the latest edition of their favorite smartphone for their birthday.
3... and to avoid criticism from jealous parents
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We will refer to this LP as CLP(T ) for I. Formally we minimize the objective function 0,
but the main point is whether CLP(T ) is feasible. For a given instance I, let T ∗ = T ∗(I) be
the maximum T for which CLP(T ) is feasible. It is a striking fact from [12] that even though
CLP(T ) has exponentially many variables, T ∗ can be approximated up to any desired accuracy in
polynomial time. Note that any allocation for I of min-value T ′ gives an (integer) feasible solution
to CLP(T ′). Hence OPT ≤ T ∗. We will refer to T ∗/OPT as the integrality gap.

Using their configuration LP, Bansal and Sviridenko [12] obtained anO(log log |P |/ log log log |P |)-
approximation algorithm for the Santa Claus problem. They also formulated a combinatorial con-
jecture and connected it to the problem of finding an allocation with large min-value given a feasible
solution of CLP(T ). Feige [23] proved this conjecture via repeated applications of the Lovász Local
Lemma and hence established a constant integrality gap for the CLP. This was later made algorith-
mic by Haeupler, Saha, and Srinivasan [25] using Local Lemma algorithmization, which provided
the first (huge, but) constant factor approximation algorithm for the Santa Claus problem.

Asadpour, Feige, and Saberi [10] formulated the problem in terms of hypergraph matching and
proved an upper bound of 4 on the integrality gap of the CLP. Via the machinery of [12] this result
implies an efficient algorithm to estimate the value of OPT up to a factor (4 + δ). The approach of
[10] is based on a local search technique introduced by Haxell [26], where the corresponding proce-
dure is not known to be efficient. Polacek and Svensson [37] modified the local search of [10] and
were able to prove a quasi-polynomial running time for a (4 + δ)-approximation algorithm. Finally,
Annamalai, Kalaitzis, and Svensson [9] managed to adapt the local search procedure to terminate
in polynomial time, introducing several influential novel ideas, which resulted in a polynomial time
12.33-approximation algorithm. Subsequently Cheng and Mao [18] altered the algorithm to estab-
lish a (6 + δ)-approximation guarantee, improving further in [20] to obtain a (4 + δ)-approximation
algorithm. Davies, Rothvoss, and Zhang [21] also gave an (4+δ)-approximation algorithm, working
in a more general setting, where a matroid structure is imposed on the players. The integrality gap
of the configuration LP was further improved by Cheng and Mao [19] and Jansen and Rohwed-
der [32] to 3.833 and then to 3.808 by Cheng and Mao [20] by better and better analysis of the
procedure of [10].

A special case of the problem, that already captures much of its difficulty, comes from limiting
the number of distinct values taken by resources to two. In the (1, ε)-restricted allocation problem
resources can take only two values 1 or ε, where 0 < ε ≤ 1. The relevance of this case is also
underlined by the fact that a key reduction step in the foundational result of [12] required an
approximation algorithm for the (1, ε)-restricted allocation problem for arbitrarily small ε > 0.

Chan, Tang, and Wu [17], extending work of Golovin [24] and Bezáková and Dani [15], show
that approximating OPT up to a factor less than 2 is already NP-hard for the (1, ε)-restricted
problem, for any fixed ε ≤ 1/2. Note that when ε = 1, so each resource has the same value, the
problem can be solved exactly and easily via applications of a bipartite matching algorithm. This
algorithm can also be used to give a 1/ε-approximation, which is better than 2-approximation for
ε > 1/2. In [17] it was proved that the integrality gap of the CLP for the (1, ε)-restricted allocation
problem is at most 3, for every ε. The paper also gives a quasipolynomial-time algorithm that finds
a (3 + 4ε)-approximation.

1.1 Our contributions

The existing algorithms and integrality gap estimation for the Santa Claus problem are, one way or
another, based on the combinatorial augmenting tree argument of [26] for finding perfect matchings
in certain hypergraphs. Many of them are sophisticated variants of the local search technique of
[10] and its efficient algorithmic realization in [9].
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Our main innovation in this work is to introduce the use of topological methods for the Santa
Claus problem, and replace the combinatorial argument of [26]. This approach yields substantial
improvements in the integrality gap of the CLP.

Our first main result improves the integrality gap from 3.808 to 3.534.

Theorem 1.1. The integrality gap of the CLP is at most 53
15 .

For our approach we make use of a criterion of Aharoni and Haxell [7] and Meshulam [36] for
the existence of independent transversals in graphs, using the (topological) connectedness of the
independence complex. In our application we apply this to an appropriately modified line graph
of the multihypergraph of all those subsets that are valuable enough to be potentially allocated to
the players. In order to show that the connectedness of the independence complex is large enough,
we run a graph theoretic process, which is based on a theorem of Meshulam [36]. In the process we
dismantle our line graph, but control the topological connectedness of the independence complex
throughout, to make sure that the process runs for long enough. This necessitates that we choose
our dismantling process with care and apply intricate analysis of the underlying structures, carefully
tailored to the specifics of the problem. We employ the dual of the CLP to certify the length of
the process.

Our approach is conceptually different from that of all previous work on the Santa Claus prob-
lem. The topological theorems in the background provide an incredibly rich family of independent
sets in the modified line graph, that is geometrically highly structured via a triangulation of a
high-dimensional simplex. This is in sharp contrast to the much simpler sparse spanning tree-like
structure at the heart of the combinatorial approach.

This general strategy to show the existence of a solution of large minimum utility seems quite
flexible and we expect it to be a useful asset for other algorithmic problems of interest involving
hypergraph matchings.

Our machinery developed for the proof of Theorem 1.1 can also be used to improve significantly
the known results on the integrality gap of the CLP for the (1, ε)-restricted allocation problem. In
the next theorem we highlight some of the main consequences of this aspect of our work.

Theorem 1.2. Let ε < 1
2 and let I be an instance of the (1, ε)-restricted Santa Claus problem

with maximum CLP-target T ∗ := T ∗(I). Then the integrality gap of I is at most f( ε
T ∗ ), where

f : (0, 1]→ R+ is a function satisfying

• f(x) < 3 unless x = 1
6 or x = 1

3 ,

• f(x) ≤ 2.75 for all x ∈ (0, 16) ∪ [ 2
11 ,

1
3) ∪ [ 4

11 , 1], and

• limx→0 f(x) < 2.479.

One important message of this theorem is the identification of a couple of specific instances that
seem especially hard to crack. For example, we would be delighted to see a (1, 1/3) instance with
an optimal CLP target of 1 and no allocation of min-value 2/3. Furthermore, we see that as long
as ε

T ∗ is not too close to either of the two problematic values, the integrality gap is substantially
below 3.

As observed in [17] (and also explained in the proof of Theorem 1.2), the assumption 1 ≤ T ∗ < 2
captures the challenging case of the problem. Under this assumption, the last part tells us that the
integrality gap is less than 2.479 when ε → 0. This estimate compares favorably with an instance
of the problem given in [17], that has integrality gap 2 for arbitrarily small ε.
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We remark that the restriction on ε in the theorem is not crucial since, as mentioned earlier, there
is a simple 1

ε -approximation algorithm based on bipartite matchings, which gives an approximation
ratio ≤ 2 if ε ≥ 1

2 . Moreover the restriction x ≤ 1 is also natural as T ∗ ≥ ε whenever T ∗ is positive.
Finally, we note that our proofs in this paper can be turned into an algorithmic procedure that

constructs an allocation with the promised min-value, but at the moment we have no control over
the running time. Thus our results are in the same spirit as those of [23, 10, 17, 32, 19, 20] in
which the strongest estimate on the integrality gap did not come with a corresponding efficient
algorithm to find an allocation. Nevertheless, together with the machinery of [12], our work can
be used to efficiently estimate the min-value of an optimal allocation. As an application of such
a theorem we can imagine a scenario where Santa Claus might be prone to favoritism. Having
supernatural powers, he can certainly calculate an optimal allocation, yet may choose a suboptimal
one benefitting his favorites. Our Theorem 1.1 combined with [12] leads to a polynomial time
algorithm that parents can use to uncover any bias Santa might have that is more blatant than
(1553 − δ)-times the optimum.

1.2 Related work

The max-min allocation problem is also widely studied in the more general case, where different
players p might have different utility value vpr for resource r ∈ R. The Santa Claus problem
corresponds to the case when vpr ∈ {0, vr}. This scenario was first considered by Lipton, Markakis,
Mossel, and Saberi [34]. The NP-hardness result of Bezáková and Dani [15] about approximating
with a factor less than 2 is still the best known for the general case. Bansal and Sviridenko [12]
showed that their CLP has an integrality gap of order Ω(

√
|P |) for the general problem. Asadpour

and Saberi [11] could match this with an O(
√
|P | log3 |P |)-approximation algorithm using the CLP.

Chakrabarty, Chuzhoy, and Khanna [16] give an |R|ε-approximation algorithm for any constant ε,
that works in polynomial time, as well as a O(log10 |R|)-approximation algorithm that works in
quasipolynomial time.

The special case where each resource is coveted by only two players is interesting algorithmically.
In this case Bateni, Charikar, and Guruswami [13] showed that the Santa Claus problem is NP-hard
to approximate to within a factor smaller than 2. Complementing this, Chakrabarty, Chuzhoy, and
Khanna [16] give a 2-approximation algorithm, even if the values are unrestricted. The case when
resources can be coveted only by three players is shown to be equivalent to the general case [13].

For the classical dual scenario of min-max allocation Lenstra, Shmoys, and Tardos [33] gave a
2-approximation algorithm and showed that it is NP-hard to approximate within a factor of 3/2.
Using a configuration LP and a local search algorithm inspired by those developed for the Santa
Claus problem, Svensson [39] managed to break the factor 2-barrier for the integrality gap of the
restricted version of the min-max allocation problem. Once more, this result comes with an efficient
algorithm to estimate the optimum value up to a factor arbitrarily close to 33

17 , but not with an
efficient algorithm to find such an allocation. The approximation factor was subsequently improved
to 11

6 by Jansen and Rohwedder [30], who later [31] also provided an algorithm that finds such an
allocation in quasipolynomial time.

Organization of the paper In Section 2 we present our topological tools and describe our proof
strategy. In Section 3 we demonstrate how our method works by giving a clean proof of the fact
that the integrality gap is at most 4. In Section 4 we introduce the two innovations that make our
improvement on the integrality gap possible, and we use them in Section 5 to prove Theorem 1.1.
In the subsequent Section 6 we give the proof of the two main statements from Section 4. Finally,
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in Section 7 we prove Theorem 1.2 on the two-values problem. Background and intuition for the
topological notions we use are provided for the interested reader in the Appendix.

2 Topological tools and the proof strategy

2.1 The setup

Let I = (P,R, v, {Lp : p ∈ P}) be an instance of the Santa Claus problem. A subset e ⊆ Lp of
coveted resources of some player p ∈ P with the property that v(e) ≥ αT and v(e′) < αT for every
proper subset e′ ⊂ e is called an α-hyperedge. We say that p is the owner of e or e is an α-hyperedge
of p. To indicate this we might write ep if necessary. Note that the hypergraph consisting of all
α-hyperedges is a multihypergraph, since the same subset e may be an α-hyperedge of several
players p. For example if an α-hyperedge e ⊆ Lp ∩ Lq with p 6= q, we will have both ep and eq

in the multihypergraph. An allocation with min-value at least αT constitutes choosing for every
player p ∈ P an α-hyperedge of p, such that they are pairwise disjoint.

Let T ∈ R be a target such that CLP(T ) is feasible. For α ∈ R, the α-approximation allocation
graph H(I, T, α) = H(α) is the auxiliary |P |-partite graph with vertex set

V (H(α)) = ∪p∈PVp, where Vp = {ep : e ⊆ R is an α-hyperedge of p},

and edge set
E(H(α)) = {epf q : p 6= q, e ∩ f 6= ∅}.

An independent transversal in a vertex-partitioned graph such as H(α) is an independent set (i.e.
one that induces no edges) that is a transversal, i.e. it consists of exactly one vertex in each
partition class. Thus a problem instance I with feasible CLP(T ) has an allocation with min-value
at least αT for some α > 0 if and only if the α-approximation allocation graph H(I, T, α) has an
independent transversal. Hence our Theorem 1.1 can be reformulated as follows.

Theorem 2.1. Let (P,R, {Lp : p ∈ P}, v) be an instance of the Santa Claus problem and let T ∈ R
be such that the CLP(T ) is feasible. Then the corresponding α-approximation allocation graph H(α)
has an independent transversal with α = 15

53 .

2.2 Topological tools

In this section we introduce the main topological tools needed and describe how we use them in
our arguments.

For a given graph G, let J (G) = {I ⊆ V (G) : I is independent} be its independence complex.
Following Aharoni and Berger [2] we define η(G) to be the (topological) connectedness of J (G)
plus 2. An advantage of this shifting by 2 is that the formulas for the following simple properties
of η simplify (see e.g. [1, 2, 6]). (In fact Part (2) is true in much greater generality, see e.g. [2], but
this simple statement is all we require.)

Fact 1. Let G be a graph.

(1) η(G) ≥ 0 with equality if and only if G is the empty graph (i.e. the graph with no vertices).

(2) If graph G is the disjoint union of G1 and a non-empty graph G2 then η(G) ≥ η(G1) + 1.
Moreover, if G2 is a single (isolated) vertex then η(G) =∞.
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Intuitively, η(G) represents the smallest dimension of a “hole” in the geometric realization of
the abstract simplicial complex J (G). For the purposes of this paper it suffices to regard η strictly
as a graph parameter satisfying Fact 1 and the upcoming Theorems 2.2 and 2.3. However, for the
interested reader we provide the formal definition, background and some intuition in the Appendix.

Our proof of Theorem 2.1 is based on two key theorems involving the parameter η. The first
one provides a sufficient Hall-type condition for the existence of independent transversals. This
result was implicit already in [7] and [35], and was first stated explicitly in this form in [36] (see
also [2]). Let I be an index set and J be an |I|-partite graph with vertex partition V1, . . . , V|I|. For
a subset U ⊆ I we denote by J |U the induced subgraph J [∪i∈UVi] of J defined on the vertex set
∪i∈UVi.

Theorem 2.2. Let I be an index set and J be an |I|-partite graph with vertex partition V1, . . . , V|I|.
If for every subset U ⊂ I we have η (J |U ) ≥ |U |, then there is an independent transversal in J .

The formal resemblance of Theorem 2.2 to Hall’s Theorem for matchings in bipartite graphs is no
coincidence: the latter is a consequence of the former. Indeed, for a bipartite graph B = (X ∪Y,E)
satisfying Hall’s Condition we can define an |X|-partite (simple) graph J(B), where for every x ∈ X
there is a part Vx = {yx : y ∈ NB(x)} and yx11 y

x2
2 is an edge if and only if y1 = y2. Then a matching

of B saturating X corresponds to an independent transversal in J(B). For a subset U ⊆ X, the
subgraph J(B)|U is the union of |N(U)| disjoint cliques, so η(J(B)|U ) ≥ |N(U)| ≥ |U | by Properties
(1) and (2) in Fact 1 and Hall’s condition.

Our second tool is a theorem of Meshulam [36], reformulated in a way that is particularly well-
suited for our arguments. Let G be a graph, and let e be an edge of G. We denote by G − e the
graph obtained from G by deleting the edge e (but not its end vertices). We denote by G> e the
graph obtained from G by removing both endpoints of e and all of their neighbors. The graph
G> e is called G with e exploded.

Theorem 2.3. Let G be a graph and let e ∈ E(G), such that η(G− e) > η(G). Then we have that
η(G) ≥ η(G> e) + 1.

Inspired by Meshulam’s Theorem we call an edge e of G deletable if η(G − e) ≤ η(G) and
explodable if η(G>e) ≤ η(G)−1. By the theorem, if an edge is not deletable then it is explodable. A
deletion/explosion sequence, or DE-sequence, starting with graph Gstart is a sequence of operations,
which, starting with Gstart, in each step either deletes a deletable edge or explodes an explodable
edge in the current graph. The length `(σ) of the sequence σ is the number of explosions in σ. The
following are simple yet crucial properties of DE-sequences.

Observation 2.4. Let G be the outcome of a DE-sequence σ of length `, starting with Gstart. Then
the following are true.

(i) If G has an edge then σ can be extended by a further deletion or explosion.

(ii) η(Gstart) ≥ η(G) + `.

(iii) If G has an isolated vertex then η(Gstart) =∞.

We call a DE-sequence σ satisfying the property of part (iii) a KO-sequence. Note the obvious:
appending a KO-sequence after any DE-sequence results in a KO-sequence. In Appendix 9.2 we
give a small concrete example demonstrating how to use DE-sequences to obtain a lower bound on
η.
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Proof. By Meshulam’s Theorem in any graph G every edge is either deletable or explodable. Hence
(i) follows. Part (ii) follows since during performing the DE-sequence σ the deletion of a deletable
edge does not increase the value of η and the explosion of an explodable edge decreases the value
of η by at least 1. For (iii), by (ii) and by Fact 1(2) we have η(Gstart) ≥ η(G) =∞.

2.3 The proof strategy

Let T be such that CLP (T ) of instance I with the target T has a feasible solution. Our proof
strategy is to take, for our chosen α, the graphH(α) defined in the introduction and use Theorem 2.2
to derive the existence of an independent transversal in it.

Those α-hyperedges that contain a single resource will have a special status. A resource r ∈ R
is called fat if vr ≥ αT , otherwise it is called thin. The set F = F (α) := {r ∈ R : vr ≥ αT} is the
set of fat resources. Any set S ⊆ R of resources with S ∩F = ∅ is called thin. We will in particular
be speaking of thin α-hyperedges and thin configurations. Note that an α-hyperedge is thin if and
only if it contains at least two elements. The corresponding vertices of H(α) are also called thin.
For a fat resource r ∈ R, the singleton {r} is called a fat α-hyperedge, and if r ∈ Lp then rp is
called a fat vertex of H(α). Each fat resource r ∈ F corresponds to a clique Cr := {rp : r ∈ Lp} in
H(α) which forms a component, since no other α-hyperedge contains r (due to their minimality).

As we show next, we can shift our main focus to the subgraph J(α) := H(α)−∪r∈FCr of H(α)
induced by the set of thin vertices. To verify the condition of Theorem 2.2 we need to consider an
arbitrary subset U ⊆ P of the players and the corresponding induced subgraph H(α)|U of H(α). By
Fact 1(2) the disjoint clique components corresponding to fat vertices r ∈ FU := F ∩ (∪p∈ULp) each
contribute at least one to the value of η(H(α)|U ). We thus need to prove that for the remaining
graph we have η(J(α)|U ) ≥ |U | − |FU |.

To that end, starting with Gstart = J(α)|U we will specify a DE-sequence σ and prove that
either σ is a KO-sequence or `(σ) ≥ |U | − |FU |. In the former case Observation 2.4(iii) implies
η(J(α)|U ) =∞. In the latter case, denoting by Gend the final graph of σ, Observation 2.4(ii) and
Fact 1(1) imply η(J(α)|U ) ≥ η(Gend) + |U | − |FU | ≥ |U | − |FU |. In both cases we have that

η(H(α)|U ) ≥ η(J(α)|U ) + |FU | ≥ |U |,

so the condition of Theorem 2.2 is verified. Hence there exists an independent transversal in H(α)|U
and we are done. We have just proved the following.

Theorem 2.5. Let I = (P,R, v, {Lp : p ∈ P}) be a problem instance and T ∈ R such that
CLP(T ) has a feasible solution. Suppose for every U ⊆ P there exists a DE-sequence σ starting
with Gstart = J(α)|U such that either σ is a KO-sequence, or `(σ) ≥ |U | − |FU |. Then H(α) has
an independent transversal.

We remark that this approach to proving the existence of an independent transversal using η
was described in terms of a game in [6], and used in many settings, see e.g. [4, 5, 8, 27, 28, 29].

With Theorem 2.5 we have reduced our task to constructing, for every U ⊆ P , a DE-sequence
σ starting with Gstart = J(α)|U such that either σ is a KO-sequence, or `(σ) ≥ |U | − |FU |. To
prove lower bounds on the length of a DE-sequence σ that starts with J(α)|U , we will maintain a
cover W ⊆ R of all α-hyperedges that correspond to vertices of J(α)|U , that disappeared during
explosions of σ, and control the size of W . If we are able to do this, then the complement of W
is large, allowing us to find an α-hyperedge in it and hence extend the DE-sequence further. Note
that deletions do not remove any vertices of J(α)|U .

More generally, we say W is a cover of the DE-sequence σ starting with a subgraph Gstart ⊆
J(α)|U and ending with Gend if
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(?) every vertex ep of Gstart with e ∩W = ∅ is present in Gend.

The natural choice to cover the α-hyperedges corresponding to vertices that disappeared from
Gstart ⊆ J(α)|U during the explosions in a DE-sequence σ is

⋃
(e ∪ f), where the union is over all

edges epf q of Gstart exploded in σ. This will be called the basic cover of σ. Note that for the basic
cover Wσ, every vertex hs of Gstart with h∩Wσ = ∅ is unaffected by each explosion that happened
during σ and hence is still present in the graph Gend.

In the next subsection we will demonstrate how the simple accounting by adding up the values
of the basic covers of the explosions of an arbitrary DE-sequence starting with J(α)|U and ending
with a graph with no edges is already sufficient to derive the existence of an allocation of min-value
at least 1

4T . To achieve our improved bounds in Theorem 2.1, in Sections 4 and 5 we will choose
our DE-sequences and account for their accompanying covers more carefully.

3 The demonstration of the method

In this section, as a warm-up, we set α = 1
4 and construct for every U ⊆ P , a DE-sequence σ

starting with Gstart = J(α)|U such that either σ is a KO-sequence, or `(σ) ≥ |U | − |FU |. Then by
Theorem 2.5 we have proved Theorem 2.1 with 1

4 in place of 15
53 .

Fix U ⊆ P . We choose an arbitrary DE-sequence σ starting with Gstart = J(α)|U and ending
with a graph Gend with no edges. This is possible because of Observation 2.4(i). If Gend contains
a vertex then σ is a KO-sequence and we are done, so we may assume that Gend has no vertices.
We are left to show that `(σ) ≥ |U | − |FU |.

To estimate the value of covers the following definition will be useful. Let m = m(α) :=
max{v(s) : s ⊆ Lp for some p ∈ P and v(s) < αT} be the maximum value of a “non-α-hyperedge”.
Note that in particular m < αT and the value of every configuration S is greater than m/α. A
subset s ⊆ R is called a block if v(s) ≤ m. Note that any proper subset of an α-hyperedge is a
block.

We estimate the value of the basic cover Wσ by simply adding up estimates for the basic covers
of its individual explosions.

Observation 3.1. For the explosion of edge epf q the value of its basic cover e ∪ f is at most 3m.

Proof. The cover e∪ f is a subset of the union of three blocks: (e \ {x})∪{x}∪ (f \ e), where x ∈ e
is arbitrary. Indeed, f \ e is a block since it is a proper subset of f , and both e − x and {x} are
blocks since they are proper subsets of e. For this recall that all α-hyperedges under consideration
are thin. Consequently v(e ∪ f) ≤ 3m.

Hence v(Wσ) ≤ 3m`(σ).
To give a lower bound on this value we invoke the dual DCLP(T) of the configuration LP. In

DCLP(T) there is a variable yp ≥ 0 for each player p ∈ P , a variable zr ≥ 0 for each resource r ∈ R,
and for each configuration S ∈ Cp(T ) there is a constraint yp ≤

∑
r∈S zr. The objective function∑

p∈P yp−
∑

r∈R zr has to be maximized. The following proposition, that, with foresight, is stated
here under general conditions, provides feasible solutions to the dual LP and a lower bound on the
value of Wσ.

Proposition 3.2. Let U ⊆ P be arbitrary and let Y ⊆ R \F such that v(Y ∩S) ≥ c for every thin
configuration S ∈ Cp(T ) for p ∈ U . Then

yp =

{
0 p 6∈ U
c p ∈ U zr =


c r ∈ FU
vr r ∈ Y
0 otherwise
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is a feasible solution of DCLP(T). In particular

v(Y ) ≥ c(|U | − |FU |).

Proof. To check the feasibility of the solution, let S ∈ Cp(T ) be an arbitrary configuration. If p 6∈ U ,
then yp = 0 and the corresponding constraint holds by the non-negativity of the zr.

If p ∈ U , then yp = c. If there is a fat resource s ∈ S, then s ∈ FU , so
∑

r∈S zr ≥ zs = c = yp.
Otherwise S ∩ F = ∅ and hence

∑
r∈S vr ≥

∑
r∈S∩Y vr ≥ c = yp. So the solution is feasible.

That means that the value
∑

p∈P yp −
∑

r∈R zr = |U |c − |FU |c −
∑

r∈Y vr is a lower bound on
the value 0 of the primal CLP(T ) and the second claim follows.

To obtain a lower bound on v(Wσ) we apply Proposition 3.2 with U , Y = Wσ and c = 3m. To
that end we need to check v(S∩Wσ) ≥ 3m for every thin configuration S ∈ Cp(T ) with p ∈ U . Note
that since α = 1/4, the value of every configuration S is v(S) > 4m. Hence it is enough to verify
that v(S \Wσ) ≤ m. Since Gend has no vertices, Property (?) of Wσ implies that R\F \Wσ should
contain no α-hyperedge of any p ∈ U . Consequently, for any thin configuration S ∈ Cp(T ) with
p ∈ U , the value of S \Wσ should not be large enough for an α-hyperedge. Hence v(S \Wσ) ≤ m
as needed.

Proposition 3.2 then implies v(Wσ) ≥ 3m(|U | − |FU |). Combining this with v(Wσ) ≤ 3m`(σ),
we obtain `(σ) ≥ |U | − |FU | and we are done by Theorem 2.5.

4 Economical DE-sequences

In this section we start our proof of Theorem 2.1 by establishing a couple of important tools.
Our improvement on Section 3 relies on finding DE-sequences whose accounting (through their
covers) is done more economically when some of the explosions are packed together. We use two
different approaches, one based on total value (treated in Section 4.1) and the other based on total
cardinality (Section 4.2).

For our setup in this section we let I = (P,R, v, {Lp : p ∈ P}) be a problem instance and T ∈ R
be such that CLP(T ) has a feasible solution. We fix α, 0 < α < 1, and subset U ⊆ P . We let
G∗ ⊆ J(α)|U be a subgraph of the graph of interest and W ⊆ R \ F be a subset of resources such
that (?) holds with Gstart = J(α)|U and Gend = G∗.

4.1 Cheap DE-sequences

We say that a DE-sequence σ is cheap if there exists a cover of σ of value at most 2m`(σ). Note
that any sequence of deletions is a cheap DE-sequence, hence the following holds by Meshulam’s
Theorem.

Observation 4.1. Suppose there is no cheap DE-sequence starting with graph G∗. Then every
edge of G∗ is explodable.

In practice we often demonstrate that a DE-sequence σ is cheap by exhibiting a cover that is a
subset of the union of at most 2t blocks. Recall that the value of any block is at most m and hence
any proper subset of an α-hyperedge is a block.

We will extensively use the following simple fact about KO-sequences.

Observation 4.2. Suppose there is no KO-sequence starting with graph G∗. Let G be the current
graph in some DE-sequence σ starting with G∗. For any α-hyperedge ep ∈ V (G), there exists a
(possibly empty) sequence of deletions, after which ep can be exploded (with a neighbor in G).
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Proof. Note that appending a sequence of deletions to the end of a DE-sequence starting with G∗

would form a KO-sequence starting with G∗ if these deletions would make ep an isolated vertex in
G. Recall also that by Meshulam’s Theorem for every edge of G it is possible to perform either a
deletion or an explosion.

Before stating our results we introduce a few conventions. For an element x and set e we write
e− x and e+ x as shorthand for e \ {x} and e ∪ {x}, respectively. We use the term α-edge for an
α-hyperedge with exactly two elements.

Our main theorem of this section states that if there is no cheap DE-sequence and no KO-
sequence starting with G∗, then configurations with substantial value outside W can only contain
α-edges (i.e., α-hyperedges of size 2) outside W .

Theorem 4.3. Suppose there is no KO-sequence and no cheap DE-sequence starting with G∗ =
(V,E). Let C ∈ Cp(T ) be a configuration of player p ∈ U , such that C \W contains an α-hyperedge
e with |e| ≥ 3. Then C \ (W + s) contains no α-hyperedge, where s is the second-most valuable
element of e (ties broken arbitrarily). In particular v(C \W ) ≤ 3m/2.

4.2 Cardinality based economical DE-sequences

In this subsection we describe short DE-sequences that have an economical cover in terms of
cardinality.

A DE-sequence σ is called a γ-DE-sequence if it has a cover of cardinality at most γ`(σ). In
our proofs γ will be either 7/3 or 5/2.

Lemma 4.4. Let j = 2 or 3. Suppose there is no KO-sequence and no cheap DE-sequence starting
with G∗. If there is a thin configuration C ∈ Cp(T ) with p ∈ U and v(C ∩W ) < T − jm, then there
exists a (2j + 1)/j-DE-sequence starting with G∗.

The proofs of both Theorem 4.3 and Lemma 4.4 are quite intricate and postponed to Section 6.

5 Proof of Theorem 2.1

In this section we prove Theorem 2.1.

Proof. Recall that as we saw in Section 2 it is sufficient to verify the conditions of Theorem 2.5
with α = 15/53. That is, for any fixed subset U ⊆ P of the players we will prove that there
exists a DE-sequence σ starting with Gstart = J(α)|U such that either σ is a KO-sequence, or
`(σ) ≥ |U | − |FU |.

We define σ in four phases. Here G denotes the current graph of the sequence.

• Phase 1. WHILE a KO-sequence or cheap DE-sequence τ exists in G, DO perform τ

• Phase 2. WHILE there exists a 7/3-DE-sequence τ in G, DO perform τ , and then iteratively
perform any KO-sequence or cheap DE-sequence until no further one exists.

• Phase 3. WHILE there exists a 5/2-DE-sequence τ in G, DO perform τ , and then iteratively
perform any KO-sequence or cheap DE-sequence until no further cheap DE-sequence exists.

• Phase 4. WHILE G has an edge DO perform a deletion or an explosion in G.
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When the procedure terminates, the final graph Gend has no edge. If Gend contains a vertex,
then σ is a KO-sequence starting with Gstart, as desired. Therefore we may assume that Gend has
no vertices. Note that in this case we did not perform a KO-sequence at any point during our
procedure.

Let n1 denote the total number of explosions performed in the cheap DE-sequences throughout
Phases 1, 2, and 3, and W1 be the union of all the covers associated to these cheap DE-sequences.
By definition of cheap DE-sequence we know that

v(W1) ≤ 2mn1. (5.1)

For j = 2, 3, let nj denote the number of explosions performed in 7/3-DE-sequences during Phase 2
and 5/2-DE-sequences during Phase 3, respectively, and let Wj be the union of their corresponding
covers. For a (2j+1)/j-DE-sequence the number of resources in the cover is 2j+1 and the number
of explosions is j. Hence

|W3| ≤
7

3
n2 and |W2| ≤

5

2
n3. (5.2)

For these sets it will also be useful to estimate their values. For this, recall that each thin resource
is of value at most m. Therefore

v(W3) ≤
7

3
mn2 and v(W2) ≤

5

2
mn3. (5.3)

Let n4 be the number of explosions performed in Phase 4 and W4 the union of the basic covers
corresponding to them. Then by Observation 3.1 we have

v(W4) ≤ 3mn4. (5.4)

We will use the dual DCLP(T) to take snapshots at various points during σ in order to derive
lower bounds involving linear combinations of the quantities nj , j = 1, 2, 3, 4. A couple of times we
will find our estimates using a more refined version of Proposition 3.2.

Proposition 5.1. Let U ⊆ P be arbitrary. Let 0 ≤ c ≤ 2d, Y ⊆ R \F , such that if S ∈ Cp(T ) is a
thin configuration owned by p ∈ U with |Y>d ∩ S| ≤ 1 then

v(Y≤d ∩ S) ≥
{
c if Y>d ∩ S = ∅
c− d if |Y>d ∩ S| = 1.

Then

yp =

{
0 p 6∈ U
c p ∈ U zr =


c r ∈ FU
d r ∈ Y>d
vr r ∈ Y≤d
0 otherwise

is a feasible solution of DCLP(T) and

c|U | − c|FU | ≤ d|Y>d|+ v(Y≤d).

Moreover for any partition of Y = Y1 ∪ Y2 we have

c|U | − c|FU | ≤ d|Y1|+ v(Y2).
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Note that we can recover the final conclusion of Proposition 3.2 by setting d = c and using that
d|Y>d| ≤ v(Y>d).

Proof. First we check feasibility of the given solution. Let S ∈ Cp(T ) be an arbitrary configuration.
If p 6∈ U , then yp = 0 and the corresponding constraint holds by the non-negativity of the zr.

Otherwise p ∈ U and we must check
∑

r∈R vr ≥ yp = c.
If there is a fat resource s ∈ F ∩ S ⊂ FU , then

∑
r∈S zr ≥ zs = c = yp. Otherwise S ∩ F = ∅

and we make a case distinction based on |Y>d ∩S|. If Y>d ∩S = ∅, then
∑

r∈S zr ≥
∑

r∈S∩Y≤d
zr =

v(S ∩ Y≤d) ≥ c.
If Y>d∩S = {s}, then

∑
r∈S zr ≥

∑
r∈S∩Y>d

zr +
∑

r∈S∩Y≤d
zr = zs+v(S∩Y≤d) ≥ d+ c−d = c.

Finally, if |Y>d ∩ S| ≥ 2, then
∑

r∈S zr ≥
∑

r∈S∩Y>d
zr ≥ 2d ≥ c.

So in all cases the solution is feasible. That means that the value
∑

p∈P yp −
∑

r∈R zr =
c|U | − c|FU | − d||Y>d| − v(Y≤d) is a lower bound on the value 0 of the primal LP and our second
conclusion follows. To derive the final conclusion note that

d|Y>d|+ v(Y≤d) = d|(Y1)>d|+ v((Y1)≤d) + d|(Y2)>d|+ v((Y2)≤d)

≤ v((Y1)>d) + v((Y1)≤d) + d|(Y2)>d|+ d|(Y2)≤d|
= v(Y1) + d|Y2|.

We derive our first inequality after Phase 2 is complete.

Lemma 5.2.

|U | − |FU | ≤
2m

T − 3m
n1 +

7

3
n2. (5.5)

Proof. Let G be the current graph after the end of Phase 2 and set W = W ′1 ∪W2, where W ′1 is
the union of the covers associated with cheap DE-sequences up to the end of Phase 2. We use
Proposition 5.1 with U , c = d = T −3m, and Y = W . For this we only need to check for every thin
configuration S ∈ Cp(T ) with p ∈ U and W>T−3m∩S = ∅ that v(W≤T−3m∩S) = v(W∩S) ≥ T−3m.
This follows from Lemma 4.4 applied with W , j = 3, G∗ = G, and C = S, since after Phase 2 is
complete there is no KO-sequence, cheap DE-sequence, or 7/3-DE-sequence starting with G. By
Proposition 5.1 we conclude that

(T − 3m)(|U | − |FU |) ≤ v(W ′1) + (T − 3m)|W2|.

By (5.1) we have v(W ′1) ≤ v(W1) ≤ 2mn1 and by (5.2) we have |W2| ≤ 7
3n2. This completes the

proof.

In our next lemma we take a snapshot after Phase 3 and derive two inequalities.

Lemma 5.3.

|U | − |FU | ≤
m

T − 3m
n1 +

7

6
n2 +

5

4
n3 (5.6)

|U | − |FU | ≤
2m

T − 2m
n1 +

7m

3(T − 2m)
n2 +

5m

2(T − 2m)
n3. (5.7)
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Proof. Let G be the current graph at the end of Phase 3 and set W = W1 ∪W2 ∪W3 to be the
corresponding cover. As there is no KO-sequence, cheap DE-sequence, or 5/2-DE-sequence at the
end of Phase 3, Lemma 4.4, applied with W , j = 2, G∗ = G, and C = S, implies v(W ∩S) ≥ T−2m
for any thin configuration S ∈ Cp(T ) with p ∈ U .

For the first inequality we use Proposition 5.1 with U , c = 2(T −3m), d = T −3m, and Y = W .
We need to check for every thin S ∈ Cp(T ) with p ∈ U and |W>T−3m ∩ S| ≤ 1 that its value is
large enough. If W>T−3m ∩ S = ∅ then v(W≤T−3m ∩ S) = v(W ∩ S) ≥ T − 2m ≥ 2(T − 3m),
since 4m > T (otherwise we are done by Section 3). If W>T−3m ∩ S = {s} then v(W≤T−3m ∩ S) =
v(W ∩ S)− vs ≥ T − 2m−m, since s is thin.

By Proposition 5.1 we conclude that

2(T − 3m)(|U | − |FU |) ≤ v(W1) + (T − 3m)|W2 ∪W3|.

Using (5.1) and (5.2), we are done.
For the second inequality we use Proposition 3.2 with U , c = T−2m, and Y = W . Recall that by

the application of Lemma 4.4, we already know that v(W ∩S) ≥ T−2m for every thin configuration
S ∈ Cp(T ) with p ∈ U . Hence by Proposition 3.2 we conclude that (T − 2m)(|U | − |FU |) ≤ v(W ) ≤
v(W1) + v(W2) + v(W3). Using (5.1) and (5.3), the inequality follows.

Finally, after Phase 4, we also measure the covers.

Lemma 5.4.

|U | − |FU | ≤
2m

T −m
n1 +

7m

3(T −m)
n2 +

5m

2(T −m)
n3 +

3m

T −m
n4. (5.8)

Proof. Set W = W1 ∪W2 ∪W3 ∪W4 and apply Proposition 3.2 with U , c = T −m, and Y = W .
This is possible as after Phase 4 is complete, there are no vertices left in the final subgraph Gend
of J(α)|U . Consequently the value of resources in S \W is at most m for any thin configuration
S ∈ Cp(T ) with p ∈ U . That means v(W ∩ S) ≥ T −m holds.

By Proposition 3.2 we then find that (T −m)(|U | − |FU |) ≤ v(W ) ≤ v(W1) + v(W2) + v(W3) +
v(W4). Using (5.1), (5.3) and (5.4), the inequality follows.

Now it is easy to check that if T ≥ 53
15m, then the convex combination of the inequalities (5.5),

(5.6), (5.7), and (5.8) with coefficients 1
35 , 26

245 , 46
2205 , and 38

45 , respectively, imply that

|U | − |FU | ≤ n1 + n2 + n3 + n4 = `(σ).

This completes the proof of Theorem 2.1.

6 Proofs of the existence of economical DE-sequences

In what follows, when our attention is focused on the multihypergraph of α-hyperedges, we often
refer to a vertex ep of J(α)|U as α-hyperedge e of p or owned by p. When the identity of the owner
is irrelevant or already established, we often omit the reference to the owner. In particular we also
sometimes say the pair of α-hyperedges e and f are explodable, without specifying their owners.
We refer to α-hyperedges e of p and f of q as decoupled in the current graph G of our DE-sequence
if epf q is not an edge of G. We also say that an α-hyperedge g of p survives an explosion if the
vertex gp is still present in the current graph G after the explosion. We say that α-hyperedges e
and f are explodable at resource r if e ∩ f = {r} and the pair e and f are explodable.
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Lemma 6.1. Suppose there is no KO-sequence and no cheap DE-sequence starting with G∗ =
(V,E). Let f q ∈ V be an α-hyperedge of player q. Then the following hold.

(i) If for player p ∈ U there exists an α-hyperedge gp ∈ V such that gpf q ∈ E then for every
α-hyperedge ep ∈ V of p we have |f ∩ e| ≤ 1.
In particular, for any ep ∈ V with |e ∩ f | ≥ 2, we have epf q 6∈ E.
Even more in particular, if ep, eq ∈ V , then epeq 6∈ E.

(ii) For every resource r ∈ f there exists an α-hyperedge g in V that is explodable with f at r.

Proof. Recall that since there is no cheap DE-sequence starting with G∗, every edge of G∗ is
explodable.

To prove (i), first we show that if ep ∈ V with |e ∩ f | ≥ 2 then epf q 6∈ E. Indeed, otherwise
epf q is explodable and (e−x)t ((f \ e) +x)), where x ∈ e∩ f , is a partition of the basic cover e∪ f
into two blocks. This demonstrates the explosion of the edge epf q is cheap, a contradiction. Here
we use that e − x is a proper subset of the α-hyperedge e since x ∈ e, and (f \ e) + x is a proper
subset of the α-hyperedge f , since |e ∩ f | ≥ 2.

Let now gp ∈ V be an α-hyperedge of p that is explodable with f q. Suppose on the contrary that
there exists an α-hyperedge ep of p such that |e∩f | ≥ 2. By the above epf q 6∈ E and e 6= g. We define
a DE-sequence of length two (starting with G∗) and show that it is cheap, giving a contradiction.
First explode f q with gp. Note that ep survives, since f q is decoupled from ep and gp and ep are
owned by the same player. Then, since there is no KO-sequence isolating ep, after possibly some
deletions, we can explode ep with some neighbor h. (See Observation 4.2.) Then the basic cover
f ∪g∪e∪h of this DE-sequence of length two has a partition (e−x)t ((f \e)+x)t (g \f)t (h\e),
where x ∈ e ∩ f , into four blocks. Hence this DE-sequence is cheap, as claimed. This verifies the
main statement of (i), which in turn implies the second statement.

For the last statement of (i) note that in our setting V contains only thin hyperedges, so |e| ≥ 2.
For (ii) note that since there is no KO-sequence starting with G∗, f has some neighbor in G∗.

Once again, every edge of G∗ is explodable. For a contradiction assume that every α-hyperedge g
with f ∩ g = {r} is not explodable with f . Explode f with an arbitrary neighbor h. By (i) we
know that f ∩ h = {s} for some s. By our assumption s 6= r. The key observation here is that the
set W ∗ = (f ∪ h) − r, i.e. something less than the basic cover, is also a cover of the explosion of
the edge fh. For this, let g be an α-hyperedge of G∗ that did not survive the explosion of the edge
fh. If g is a neighbor of h in G∗ then W ∗ ∩ g ⊇ h ∩ g 6= ∅, since r 6∈ h. Otherwise g is a neighbor
of f and is covered by W ∗ unless g ∩ f = {r}. However our starting assumption was that f had no
such neighbor in G∗. Then the cover W ∗ = (f − r) ∪ (h \ f) of the single explosion of the edge fh
is the union of two blocks, which makes it cheap, a contradiction.

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. To begin we observe that from our setup it follows that if a subset S ⊆ C\W
has value v(S) > m then S contains some α-hyperedge h of p and by property (?) of W we have
hp ∈ V . Throughout this proof, when talking about α-hyperedges contained in C \W , we mean
those owned by p, unless otherwise specified.

To derive the last statement from the main conclusion note first that the second-most valuable
element s of e satisfies vs ≤ m/2, otherwise the value of the two most valuable elements of e would
exceed m, contradicting that |e| ≥ 3. Then v(C \W ) = v(C \ (W + s)) + vs ≤ m+m/2.

Suppose on the contrary that C \ (W + s) contains an α-hyperedge. We claim that some such
α-hyperedge g intersects e − s nontrivially. Let f ⊆ C \ (W + s) be an α-hyperedge and suppose
it is disjoint from e− s. We know f contains at least two elements, so removing the least valuable
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element r from f results in v(f − r) ≥ v(f)/2 > m/2. Similarly, since s is not the unique most
valuable element of e we find that v(e−s) ≥ v(e)/2 > m/2. Therefore (f−r)∪(e−s) ⊆ C \(W +s)
is valuable enough to contain an α-hyperedge g of p, and since f − r is not valuable enough to
contain it, we have g ∩ (e− s) 6= ∅, as claimed.

Recall that since g ⊆ C \W , we know gp ∈ V . Let a be the most valuable element in g∩ (e−s).

Case 1. |g ∩ (e − s)| ≥ 2. Let b 6= a such that b ∈ g ∩ (e − s). Then va ≥ vb, so vs ≥ vb and
therefore v((g ∪ e)− b) ≥ v(g − b+ s) ≥ v(g) > m. Hence (g ∪ e)− b contains an α-hyperedge h of
p and hp ∈ V .

We achieve a contradiction by defining a DE-sequence of length two starting with G∗, which
turns out to be cheap. First explode gp at b with some α-hyperedge d1 in G∗, which exists by
Lemma 6.1(ii). By part (i) |d1 ∩ e| ≤ 1 and hence d1 ∩ e = {b}. Consequently hp survives the
explosion of the edge gd1, since h ∩ d1 ⊆ ((g ∪ e) − b) ∩ d1 = ∅ and h has the same owner as g.
Since there is no KO-sequence isolating hp starting with G∗, after possible deletions now we can
explode hp with some α-hyperedge d2. We claim that the basic cover of this DE-sequence of length
two (starting with G∗) is a subset of the union of four blocks:

d1 ∪ g ∪ h ∪ d2 ⊆ (d1 \ g) ∪ (e− b) ∪ (g − a) ∪ (d2 \ h).

Here we used that (h \ g) + a is contained in e− b. This contradiction completes Case 1.

Case 2. g ∩ (e− s) = {a}.

Case 2.a. v((g ∪ e)− a) > m.
Let us choose an α-hyperedge f ⊆ (g ∪ e) − a of p, as follows. If there is a resource b ∈ e − a

such that v(g−a+ b) > m, choose f ⊆ g−a+ b ⊆ (g∪ e)−a, and otherwise choose one arbitrarily.
By Lemma 6.1(ii) gp has an explodable neighbour d at a in G∗. Since g and e are both α-

hyperedges of p, by Lemma 6.1(i) we have that |d ∩ e| ≤ 1 and consequently d ∩ e = {a}.
We achieve a contradiction by defining a DE-sequence of length two starting with G∗, which

turns out to be cheap. First we explode gp with d. The α-hyperedge fp survives this explosion since
f ∩d ⊆ ((g∪ e)−a)∩d = ∅ and f and g are both α-hyperedges of p. Secondly, (after some possible
deletions) we explode fp with some neighbour h. This is possible since there is no KO-sequence
isolating fp.

We claim that the basic cover d ∪ g ∪ h ∪ f of this DE-sequence of length two is the subset of
the union of four blocks, providing the contradiction we seek. There is a slight difference in the
accounting depending how f was chosen.

If b is such that v(g−a+b) > m and f ⊆ g−a+b, we take the blocks (d\g)∪(h\f))∪(g−a)∪{a, b}.
Note that {a, b} is a block since it is a proper subset of the α-hyperedge e with at least three
elements.

Otherwise f ⊆ (g ∪ e)− a and g − a+ b is a block for every b ∈ e− a. Then we take the blocks
(d \ g) ∪ (h \ f)) ∪ (g − a + b) ∪ (e − b), where b ∈ e − a is arbitrary. Here note that the union of
the third and the fourth term is g ∪ e, which in turn contains f . This completes Case 2.a.

Case 2.b v((g ∪ e)− a) ≤ m.
Let x denote the most valuable element in g−a (here {x} = g−a is possible). By Lemma 6.1(ii)

there is an α-hyperedge h, that is explodable with gp at x in G∗.
We claim that h ∩ (e − a) 6= ∅. Suppose not. We define a cheap DE-sequence starting with

G∗, giving a contradiction. We start by exploding gp with h. The α-hyperedge ep survives this
explosion, since h∩e = ∅ (note that a 6∈ h since a ∈ g−x = g\h) and g and e are both α-hyperedges
of p. Again, since there is no KO-sequence isolating ep, after possibly some deletions, we explode
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ep with some neighbour d. The basic cover g ∪ h ∪ e ∪ d of this DE-sequence is the subset of the
union of four blocks: (h \ g) ∪ {a} ∪ ((g ∪ e)− a) ∪ (d \ e).

This contradiction establishes h ∩ (e− a) 6= ∅.
Since e is an α-hyperedge of the owner of gp, by Lemma 6.1(i) we have |h ∩ e| ≤ 1, and hence

h ∩ e = {b} for some b 6= a. To complete the proof, we will argue that the explosion of the
edge hg is cheap by establishing that the basic cover h ∪ g can be partitioned into two blocks:
(h− b)∪ (g−x+ b). The rest of the proof is concerned with demonstrating that g−x+ b is indeed
a block (the first term is clearly a block).

If g−a = {x} is a singleton, then g−x+ b = {a, b} which is a proper subset of the α-hyperedge
e of size at least three and hence is a block.

Otherwise fix a resource y ∈ g− a− x, and suppose on the contrary that v(g− x+ b) > m. We
will find an α-hyperedge d of p with h ∩ d ⊇ {b, x}, which would contradict Lemma 6.1(i) since h
is explodable with an α-hyperedge of p, namely g.

Since y ∈ g, we have vx ≥ vy, and hence for X := g − y + b we have v(X) ≥ v(g − x+ b) > m.
Note however, that both X − a and X − b are blocks, since v(X − a) ≤ v(g ∪ e) − a) ≤ m, and
X − b = g − y is a proper subset of the α-hyperedge g. Hence a, b ∈ f for any α-hyperedge f ⊆ X
of p.

If x ∈ f as well, then we are done. Otherwise let us fix an α-hyperedge f = {a, b, u1, . . . , ut} ⊆ X
and modify it slightly to obtain the appropriate d.

Note that t ≥ 1 since {a, b} is a proper subset of e. Then f ′ = f − u1 + x = {a, b, x, u2, . . . , ut}
contains an α-hyperedge d of p because v(x) ≥ v(u1) since u1 ∈ f−a−b ⊆ g−y−a. Note that since
d ⊆ f −u1 +x ⊆ X+x and x ∈ g−a ⊆ X we find d ⊆ X, and so {a, b} ⊂ d (since X−a and X− b
are blocks). Furthermore d must also contain x, since otherwise d ⊆ f ′ − x = {a, b, u2, . . . , ut} is a
block (as a proper subset of f). This completes the proof of Case 2.b, and that of the theorem.

To end this section we give the proof of Lemma 4.4.

Proof of Lemma 4.4. Since v(C \W ) = v(C)− v(C ∩W ) > T − (T − jm) = jm there are strictly
more than j resources in C \W ; let s, t1, t2, . . . , tj be the j + 1 most valuable ones, in increasing
order of value. Then v(C \ (W ∪ {t2, . . . , tj)}) > m and consequently C \ (W ∪ {t2, . . . , tj}) must
contain an α-hyperedge.

Since v(C \W ) > jm > 3
2m, by Theorem 4.3 every α-hyperedge in C \W has cardinality two.

So in particular the two most valuable elements s and t1 of C \ (W ∪{t2, . . . , tj}) form an α-edge of
p and (st1)

p ∈ V . Then, since vt1 ≤ vti for i ∈ {2, . . . , j}, we also know that each sti is an α-edge
of p and (sti)

p ∈ V .
Next we derive a couple of crucial observations about the explodable neighbors of sti at ti.

Claim. For every i = 1, . . . , j, if an α-hyperedge f q (of some player q 6= p), with ti ∈ fi, is
explodable with (sti)

p in G∗ then

• f is an α-edge and

• f ∩ (C \W ) = {ti}.

Proof. If f had at least 3 resources then the explosion would be cheap, contradicting our assumption.
To see this choose a ∈ f − ti, and observe that the basic cover {s, ti} ∪ f can be partitioned into
two blocks {a, ti} and f \ {a, ti} + s. Indeed, {a, ti} is a proper subset of f and hence is a block,
and using vs ≤ vti we see that v(f \ {a, ti} + s) ≤ v(f \ {a, ti} + ti) = v(f − a) ≤ m. Thus every
such f is an α-edge.
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If f ⊆ C \W then by our setup (?) implies that fp ∈ V . This contradicts Lemma 6.1(i) since
f q explodable with an α-hyperedge owned by p (that is sti) and |f ∩ f | ≥ 2. So f \ (C \W ) 6= ∅
and the Claim follows.

We now define a DE-sequence τ of length j starting with G∗ that has basic cover Wτ of size
(2j + 1).

We construct τ by finding explosions one by one. Let τ0 be the empty DE-sequence. Suppose
for some i, 1 ≤ i ≤ j we have already found DE-sequence τi−1 which performs explosions of the
edges (st1)f1, . . . , (sti−1)fi−1, in this order, such that for every k = 1, . . . i− 1 we have

(a) fk is an α-edge and

(b) fk ∩ (C \W ) = {tk}.

Note that by (a) and (b) for the basic cover Wτi−1 = {s} ∪ ∪i−1k=1fk we have |Wτi−1 | = 2i − 1 and
v(Wτi−1) ≤ (2i− 1)m (since every element is thin).

Our first step in constructing τi from τi−1 is to perform, iteratively, all possible deletions, so any
remaining edge in the current graph G is explodable. Note that (sti)

p survived all the explosions
of τi−1 since it is disjoint from f1, . . . , fi−1 by (a) and has the same owner as each other (stj)

p.
To complete the definition of τi, our aim is to find an explodable neighbor fi of (sti)

p at ti in the
current graph G, and explode it.

Note we cannot apply Lemma 6.1(ii) here directly to show the existence of such an fi, since
after executing τi−1, we do not know any more that there is no cheap DE-sequence starting with
the current graph G. So we suppose that (sti)

p has no explodable neighbour at ti in the current
graph G and obtain a contradiction. Since there is no KO-sequence starting with G∗ that isolates
(sti)

p there exists an α-hyperedge e with s ∈ e, that is explodable with (sti)
p. If we now perform

this explosion then we claim that the resulting DE-sequence τ ′ starting with G∗ would be cheap,
providing a contradiction. Indeed, the basic cover of τi−1 together with e forms a cover of τ ′.
(Recall that no neighbor of (sti)

p in the current graph gets destroyed in the last explosion just
because it contained ti.) The value v(Wτi−1) + v(e − s) ≤ (2(i − 1) + 1)m + m = 2im shows that
τ ′ is cheap. So for some player q 6= p there exists an α-hyperedge f qi ∈ V (G) which is explodable
with (sti)

p at ti in G.
Now we show that fi satisfies properties (a) and (b). To see this observe that f qi was also

explodable with (sti)
p in G∗. Otherwise, by Meshulam’s Theorem, the edge f qi (sti)

p was deletable
in G∗. But the existence of a deletable edge in G∗ contradicts our assumption that G∗ has no cheap
DE-sequence. Hence our Claim applies to fi and so (a) and (b) hold for k = i.

For the basic cover of the ultimate DE-sequence τj we have |Wτj | = 2j + 1, showing that τj is
a (2j + 1)/j-DE-sequence.

7 Two values

Here we consider the (1, ε)-restricted version of the Santa Claus problem, in which vr ∈ {1, ε}
for each r ∈ R, where ε is a constant satisfying 0 < ε < 1. Our overall approach in this section
conceptually parallels our work in the earlier sections. We will derive Theorem 1.2 from the following
technical result.

Theorem 7.1. Let ε < 1
2 . Let I be an instance of the (1, ε)-restricted Santa Claus problem

and let T ∈ R be such that CLP(T ) has a feasible solution. Suppose that 1 ≤ T < 2, and that
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c := dT/εe ≥ 4. Fix a positive integer r. For each integer X ≥ r define

a(X) = ar(X) :=


3r −X − 1 r ≤ X ≤ 3r−1

2

2r − X+1
3

3r
2 ≤ X ≤ 2r

4r−1
3 2r + 1 ≤ X.

Suppose r ≥ 2 is an integer such that
∑c

X=r
1

a(X) ≥ 1. Then for α = rε
T , the corresponding

α-approximation allocation graph H(α) has an independent transversal. In particular, there is an
allocation with min-value at least rε.

For each integer c ≥ 4, we will apply this theorem with the largest integer r ∈ N, denoted by
rc, satisfying

∑c
X=r

1
a(X) ≥ 1. For convenience, we provide a table showing the triples (c, rc, c/rc)

for 1 ≤ c ≤ 30 (with c/rc truncated to two decimal places).

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
rc 1 1 1 2 2 2 3 3 4 4 4 5 5 6 6
c/rc 1 2 3 2 2.5 3 2.33 2.66 2.25 2.5 2.75 2.4 2.6 2.33 2.5

c 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
rc 6 7 7 8 8 8 9 9 10 10 11 11 11 12 12
c/rc 2.66 2.42 2.57 2.37 2.5 2.62 2.44 2.55 2.4 2.5 2.36 2.45 2.54 2.4 2.5

The idea of the proof of Theorem 7.1 is to use the same basic framework as that of Theorem 2.1.
As before, we will define a DE-sequence by concatenating many shorter DE-sequences constructed
in phases, in which each phase lasts as long as there remains a configuration C with value v(C \W )
exceeding a certain threshold associated with that phase. Note however that in the (1, ε)-restricted
setting we can measure value entirely in terms of cardinality. These DE-sequences are described in
Section 7.1 and parallel our arguments in Section 4. We will then define a dual solution based on
each phase and obtain from it a lower bound on the total length of the DE-sequences constructed
during that phase. The result will be an overall lower bound on the length of the whole DE-
sequence, which we then optimize to derive the conclusion of Theorem 7.1. This part of the proof
corresponds to Section 5 and is done in Section 7.2.

In the following subsections we will need to refer to some simple properties of the pairs (c, rc).
These are spelled out in the following observation.

Observation 7.2. (i) rc ≥ c
4 for every c ≥ 4,

(ii) c ≥ 2rc + 1 for every c ≥ 5,

(iii) c ≥ 2rc + 2 for every c ≥ 10.

Proof. The sum A =
∑c

X=r
1

a(X) has c − r + 1 terms, that form a non-decreasing sequence. The

smallest term is 1
2r−1 , implying that if c − r + 1 ≥ 2r − 1 then A ≥ 1. This is easily satisfied by

r = d c4e, implying (i).
The largest term in A is (at most) 3

4r−1 . Note that 3
4r−1 <

1
r+1 when r ≥ 5, so to reach 1 in

this case there must be at least c− r + 1 > r + 1 terms. Hence c ≥ 2rc + 1 if r ≥ 5. For values of
r ≤ 4 see the table to complete the proof of (ii).

Similarly 3
4r−1 <

1
r+2 when r ≥ 8, so to reach 1 in this case there must be at least c−r+1 > r+2

terms. Hence c ≥ 2r + 2 if r ≥ 8, and again the table completes the proof of (iii) for the smaller
values.
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7.1 DE-sequences

For our setup in this subsection we fix ε ∈ (0, 1/2), and let I = (P,R, v, {Lp : p ∈ P}) be an instance
of the (1, ε)-restricted problem, where T ∈ [1, 2) is such that CLP(T ) has a feasible solution. Set
c = dT/εe. By assumption c ≥ 4. Let r ≥ 2 be such that

∑c
X=r

1
a(X) ≥ 1. For r = 2 this certainly

satisfied (although in practice we will want to choose r as large as possible to get the strongest
result). Set α = rε/T . Then in particular ε ≤ αT

2 , in other words the resources of value ε are thin.
We also claim that resources of value 1 are fat, i.e. that 1 ≥ αT . When c = 4 and r = 2, the

assumption ε < 1/2 implies αT = rε < 1. Otherwise, by Observation 7.2(ii) we know c ≥ 2rc + 1,
so 2

ε + 1 > T
ε + 1 > c ≥ 2r + 1, implying r < 1

ε as claimed.
Hence we conclude that c is a lower bound on the size of every thin configuration, and r = dαT/εe

is the common size of every thin α-hyperedge.
As in the proof of Theorem 2.1, we fix a subset U ⊆ P . We let G∗ ⊆ J(α)|U be a subgraph of

the thin part of the α-approximation allocation graph H(α) and W ⊆ R\F be a subset of resources
such that (?) holds with Gstart = J(α)|U and Gend = G∗. We will also assume that there is no
KO-sequence starting with G∗ and there is no deletion possible, so all edges of G∗ are explodable.

We say that a DE-sequence σ starting with G∗ is based in a configuration C if one α-hyperedge
out of every pair of α-hyperedges exploded during σ is in C \W (and is owned by the owner of C).
We write av(σ) = |Wσ|/`(σ) for the average cost of the cover Wσ of σ.

In our first lemma we describe two criteria that guarantee that a DE-sequence based in C can
be continued.

Lemma 7.3. Let C ∈ Cp(T ) be a thin configuration with p ∈ U and let σ be a DE-sequence starting
with G∗ based in C, with explosions of e1f1, . . . , e`f`, in this order, where ei ⊆ C \W , 1 ≤ i ≤ `,
is owned by p.

(a) If e ⊆ (C \W ) \
(⋃`

i=1 fi

)
is of size |e| = r, then σ can be extended to a longer DE-sequence

based in C with an explosion involving ep. In particular, if σ is maximal, then av(σ) ≤ r+ r−1
`(σ) .

(b) Let G be the current graph immediately before the `th explosion and suppose G has only

explodable edges. If e`f` ∈ E(G) was chosen such that e` ⊆
(

(C \W ) \
⋃`−1
j=1 fj

)
and |e` ∩ f`|

is maximized with this property, and if f` ∩ e` 6= f` ∩
(

(C \W ) \
⋃`−1
j=1 fj

)
, then σ can be

extended to a longer DE-sequence based in C.

Proof. For part (a), note that being disjoint from all fjs, the α-hyperedge ep survived all explosions
so far. Since there is no KO-sequence starting with G∗ isolating ep, after possible deletions, there
will be an explodable edge incident to ep in the current graph. So we can extend σ with a further

explosion based in C involving ep. Therefore if σ is maximal then
∣∣∣((C \W ) \

⋃`
j=1 fj

)∣∣∣ ≤ r − 1

and for the size of the basic cover we have

|Wσ| ≤

∣∣∣∣∣
(⋃̀
i=1

fi

)
∪ (C \W )

∣∣∣∣∣ ≤ r`(σ) + r − 1.

For part (b) let us take y ∈ (f` \ e`) ∩
(

(C \W ) \
⋃`−1
j=1 fj

)
6= ∅ and w ∈ e` \ f` 6= ∅. Then

the α-hyperedge g = e` −w+ y is contained in
(

(C \W ) \
⋃`−1
j=1 fj

)
, and consequently by part (a)

gp in particular is present in the current graph G immediately before the explosion of e`f`. Since
|f`∩ g| > |f`∩ e`|, the α-hyperedge gp was not explodable with f` immediately before the explosion
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of e`f`, when G had only explodable edges. Hence gpf` was not an edge of G. Therefore gp survives
the `th explosion as well and since there is no KO-sequence isolating gp, another explosion involving
gp is possible.

The main lemma of this section provides DE-sequences, based in C, with low average cost.

Lemma 7.4. For every thin configuration C ∈ Cp(T ) with p ∈ U and X := |C \W | ≥ r there exists
a DE-sequence σ starting with G∗ based in C with av(σ) ≤ a(X).

Proof. First we assume that X ≤ 3r−1
2 . If there is a DE-sequence of length two based in C, then

by Lemma 7.3(a) it has average cost at most r + r−1
2 ≤ 3r −X − 1.

We may thus assume that there is no DE-sequence of length two based in C. Among all
explodable pairs ef ∈ E(G∗) with e ⊆ C \W , let us choose one with |e ∩ f | largest. If f ∩ e 6=
f ∩ (C \W ), then by Lemma 7.3(b) there is a second explosion based in C, a contradiction. For
this recall that G∗ has only explodable edges.

Otherwise f ∩e = f ∩(C \W ). Since no further explosion based in C is possible, |(C \W )\f)| ≤
r− 1 by Lemma 7.3(a). In other words |f ∩ (C \W )| ≥ X − r+ 1, in which case for the size of the
basic cover f ∪ e we have |e|+ |f | − |f ∩ (C \W )| ≤ 2r − (X − r + 1) = 3r −X − 1, as desired.

We consider now the range 3r
2 ≤ X. We distinguish two cases and in each of them we either

construct a DE-sequence based in C with average cost at most 2r − X+1
3 or one of length at

least 3, which has average cost at most 4r−1
3 by Lemma 7.3(a). This shows that av(σ) ≤ max{2r−

X+1
3 , 4r−13 }. The bound on av(σ) in the second and third ranges then follows since 2r− X+1

3 ≥ 4r−1
3

if and only if 2r ≥ X.
For the purposes of this proof we set b = 2r − X+1

3 .

Case 1. Suppose first that some explodable neighbor f is such that |(C \W )∩ f | ≤ d2X−13 e − r =
3r − 1− b2bc =: t1 (note that this expression is non-negative for X in our range).
We perform this explosion and then deletions until no more are possible. Then at least X − t1 ≥ r
resources remain in (C \W ) \ f , so by Lemma 7.3(a) there is a further explosion possible. Among
all edges hg in the current graph, we choose one with g ⊆ (C \W )\f and |h∩ g| largest. Note that
hg was an edge of G∗ as well, and hence we can assume |h∩g| ≤ 2r−1−bbc. Indeed, otherwise the
single explosion of hg at the beginning would have constituted a DE-sequence with average cost
|h ∪ g| ≤ |h|+ |g| − |h ∩ g| ≤ bbc ≤ b. Now for our second explosion we explode hg.

If h∩ g = h∩ ((C \W ) \ f), then we still have |(C \W ) \ f | − |h∩ g| ≥ X − t1− (2r− 1−bbc) ≥
X − 5r + 2 + bbc + b2bc ≥ X − 5r + 2 + b + 2b − 1 = X − 5r + 1 + 6r − (X + 1) = r resources in
(C \W ) \ (f ∪h). Hence by Lemma 7.3(a) our sequence can be extended to a sequence of length 3.

Otherwise h ∩ g 6= h ∩ (C \W ) \ f), in which case Lemma 7.3(b) guarantees the extension of
our sequence.

Case 2. Suppose now that |(C \W )∩f | ≥ t1+1 for every explodable neighbor f of an α-hyperedge
in C \W owned by p.
For our first explosion we choose edge hg of G∗ with g ⊆ C \W such that |g ∩ h| is largest. Unless
our first explosion is already a DE-sequence of the type we are looking for, we have that its basic
cover h ∪ g satisfies |h ∪ g| ≥ bbc+ 1.

If h∩g = h∩(C\W ) then the set (C\W )\h contains X−|h∩(C\W )| = X−(|h|+g|−|h∪g|) ≥
X − (2r − (bbc+ 1)) = X − dX+1

3 e+ 1 resources, which is at least r for X ≥ 3r
2 . Consequently we

can apply Lemma 7.3(a) to extend our DE-sequence with a second explosion.
If h ∩ g 6= h ∩ (C \W ), then by Lemma 7.3(b) we can also extend our DE-sequence with a

second explosion.
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Either way we have a DE-sequence σ of length two, based in C, with explosions gh and g′h′.
We claim that the set Wσ = h ∪ h′ ∪ (C \W ) \ Y , where Y ⊆ (C \W ) \ (h ∪ h′) is an arbitrary
subset of size min{t1, |(C \W ) \ (h∪h′)|}, is a cover. Indeed, let f be an α-hyperedge disjoint from
Wσ, and let us show that f survived the explosions of σ. Since f is in particular disjoint from h
and h′, the only way f could have disappeared is if it had an edge of the current graph, and hence
also of G∗, to g or g′. But then f is owned by some q 6= p and the inequality in Case 2 applies to
f , so we know that |f ∩ (C \W )| ≥ t1 + 1. Since f ∩Wσ = ∅ we have that f ∩ (C \W ) ⊆ Y , which
is a contradiction since Y is too small for that.

The DE-sequence σ is based in C and has length two, so unless its average cost is already small
enough for our lemma, we have that 2b < |Wσ| = |h|+ |h′|+ |((C \W )\ (h∪h′))\Y |, which implies

|(C \W ) \ (h ∪ h′)| ≥ b2bc+ 1− 2r + |Y |.

We claim that this implies |(C \W ) \ (h∪h′)| ≥ r and therefore by Lemma 7.3(a) we can extend σ
to a third explosion. Indeed, if |Y | = t1, then this is immediate from t1 = 3r− 1−b2bc. Otherwise
we have 2r− 1 ≥ b2bc = 4r−d2X+2

3 e, or equivalently d2X+2
3 e ≥ 2r+ 1, which implies X ≥ 3r. But

then |(C \W ) \ (h ∪ h′)| ≥ |C \W | − |h| − |h′| = X − 2r ≥ r as needed.

7.2 Proof of Theorem 7.1

Recall the assumptions of Theorem 7.1: let ε < 1
2 and let I = (P,R, v, {Lp : p ∈ P}) be an instance

of the (1, ε)-restricted Santa Claus problem. Let T ∈ R, 1 ≤ T < 2 be such that CLP(T ) has a
feasible solution and c = dT/εe ≥ 4. Suppose that for an integer r ≥ 2 we have

∑c
X=r

1
a(X) ≥ 1.

As in Theorem 2.1, we will apply Theorem 2.5 to infer the existence of the independent transver-
sal in H(α). To that end we fix a subset U ⊆ P , assume there is no KO-sequence starting with
J(α)|U , and seek a DE-sequence τ of length at least |U | − |FU | starting with J(α)|U . Our strategy
will be as follows.

INITIALIZATION. Let τ be a sequence of deletions starting with J(α)|U until no further
deletion is possible and let G∗ be the resulting subgraph. Let W = ∅. For each X, c ≥ X ≥ r,
in decreasing order, execute the following Phase X;

PHASE X: WHILE there is a configuration C with at least X resources remaining in C \W ,
DO perform a DE-sequence σ starting with G∗ based in C (as given by Lemma 7.4 corre-
sponding to the value of X) and perform all possible deletions afterwards. Update G∗ to be
the resulting current graph. Append σ to the end of τ . Let Wσ denote the cover of σ and set
W := W ∪Wσ.

Next we verify that this process is well-defined, that is, whenever Lemma 7.4 is called upon in
some Phase X, the graph G∗ and cover W satisfy the three conditions of the setup for Section 7.1.
These conditions are that W satisfies (?) with Gstart = J(α)|U and Gend = G∗, that there is no
KO-sequence starting with G∗, and that all edges of G∗ are explodable. Observe that each iteration
of Phase X is immediately preceded by an iteration of Phase X, of Phase X+1, or the initialization
phase.

The last property holds since we end the initialization phase and each iteration of Phase X
or X + 1 by performing deletions until no more were possible. Consequently all edges of G∗ are
explodable. The next to last property holds throughout since appending a KO-sequence to the
end of the current τ would form a KO-sequence starting with J(α)|U , contrary to our assumption.
Finally, the (?) property is maintained after each execution of an iteration of Phase X or X + 1,
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as the cover Wσ of the new segment of τ is added to W , and it holds trivially after initialization,
since no explosions have yet occurred so W = ∅ is a cover.

Let WX be the union of the covers and nX be the number of explosions done in Phase X. By
Lemma 7.4, for each X with c ≥ X ≥ r we have |WX | ≤ nXa(X).

For c ≥ X ≥ r we consider the moment after the last step in Phase X is executed and
set W = Wc ∪ . . . ∪ WX . For each thin configuration S ∈ Cp(T ) with p ∈ U , we know that
|S ∩W | ≥ c−X + 1, otherwise we could have continued with another step of Phase X. Recalling
that ε is the common value of all thin resources, we conclude that v(S ∩W ) ≥ ε(c − X + 1) for
each such S. Hence we may apply Proposition 3.2 with W in place of Y and ε(c−X + 1) in place
of c to obtain

ε|W | = v(W ) ≥ ε(c−X + 1)(|U | − |FU |).

Comparing the upper and lower bounds on | ∪cj=X Wj | for each X = c, c− 1, . . . , r, we obtain

c∑
j=X

a(j)nj ≥ (c−X + 1)(|U | − |FU |).

Since the coefficient function a is non-increasing in j, in order to minimize the objective function∑c
j=r nj , we have to choose nc, nc−1, . . . , nr in reverse order such that all the inequalities are

equalities
c∑

j=X

a(j)nj = (c−X + 1)(|U | − |FU |).

This implies that the length `(τ) =
∑c

j=r nj of the DE-sequence τ our process creates is minimized

when nj = |U |−|FU |
a(j) . Consequently `(τ) ≥

∑c
j=r

1
a(j)(|U | − |FU |), which is at least |U | − |FU |, as

required for Theorem 2.5. This completes the proof of Theorem 7.1.

7.3 Proof of Theorem 1.2

Proof of Theorem 1.2. We define f by

f(x) =
1

xrd 1
x
e
.

Here, recall, that for an integer c ∈ N, we denote by rc the largest integer r ∈ N such that∑c
X=r

1
a(X) ≥ 1. We show that f(x) bounds the integrality gap for I, where x = ε

T ∗ .

First observe that for any instance with T ∗ > 0, it is easy to check Hall’s condition on the
bipartite graph of players and coveted resources to demonstrate that there is a valid allocation of
one resource to each player. Hence, in the two-values case OPT ≥ ε. Since T ∗ ≥ OPT , we always
have that the integrality gap is at most T ∗

ε ≥ 1. This shows that f(x) = 1
x is an appropriate choice

to bound the integrality gap for every x ∈ (0, 1]. Since r1 = r2 = r3 = 1, this verifies the statement
when x ≥ 1

3 .
We proceed now with the case x := ε

T ∗ <
1
3 .

Analogously to [17] we start by reducing the problem to the case when 1 ≤ T ∗ < 2. If
T ∗ ≥ 2 recall that the additive approximation result of Bezáková and Dani [15], mentioned in the
Introduction, gives a polynomial-time algorithm to find an allocation with min-value TALP−max vr,
where TALP is the optimum of the standard assignment LP. Hence OPT ≥ TALP −1 ≥ T ∗−1 ≥ T ∗

2
as the CLP is stronger than the ALP and in our case max vr = 1. So the integrality gap is at most
2, which is less than f(x) for every x.
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If T ∗ < 1, then we create another instance I ′ where for each resource r ∈ R with vr = ε,
we change the value of r to v′r = ε′ := ε

T ∗ , and keep v′r = vr = 1 otherwise. It is easy check
that T ∗(I ′) = 1 and OPT (I) ≥ OPT (I ′)T ∗. Note that ε′ < 1

3 . Hence, applying our theorem to

the (1, ε′)-instance I ′, there is an allocation with min-value at least T ∗(I′)
f(ε′/T ∗(I′)) . The very same

allocation in I has min-value at least T ∗

f(ε′) and hence exhibits an integrality gap of at most f(ε/T ∗)
for I.

From now on we assume 1 ≤ T ∗ < 2 and apply Theorem 7.1. For this we note that c := dT ∗ε e =
d 1xe > 3 and ε < 1

2 . Theorem 7.1 then implies that we have an allocation for I with min-value at
least rcε, thus OPT ≥ rcε. Hence the integrality gap for I is at most

T ∗

rcε
=

1

xrd 1
x
e

= f(x).

as promised.
To prove the assertions of Theorem 1.2 about the values, first note that when x ≥ 1

3 we have
f(x) = 1

x , which is less than 3 unless x = 1
3 , and at most 2.75 for x ≥ 4

11 . For x < 1
3 note that with

c = d 1xe, we have f(x) = 1
xrc
≤ c

rc
. It is easy to verify that for every c ≥ 4 we have c/rc ≤ 2.75,

unless c = 6. (In fact the ratio 2.75 is attained on the unique pair c = 11, r = 4.) That is, unless
d 1xe = 6 we have f(x) ≤ 2.75. When d 1xe = 6 we have x ≥ 1

6 and f(x) = 1
r6x

= 1
2x , which is at most

2.75 for x ≥ 2
11 and strictly less than 3 unless x = 1

6 .
Finally, we deal with the case in which x→ 0. Then c = d 1xe → ∞, and hence also rc ≥ c

4 →∞
by Observation 7.2(i).

Let us assume that x < 1
10 , so c ≥ 10 implying that c ≥ 2rc + 2 by Observation 7.2(iii). Setting

r := rc, we write the sum as
∑c

X=r
1

a(X) = Ar +Br + Cr, where

Ar :=

b(3r−1)/2c∑
X=r

1

3r −X − 1
=

2r−1∑
k=d(3r−1)/2e

1

k
= (H2r−1 −Hd(3r−1)/2e−1)→ ln(4/3),

Br :=
2r∑
d3r/2e

3

6r −X − 1
=

b 9r
2
−1c∑

k=4r−1

3

k
= 3(Hb 9r

2
−1c −H4r−2)→ 3 ln(9/8),

Cr :=
c∑

X=2r+1

3

4r − 1
=

3(c− 2r)

4r − 1
,

when r →∞. Here we use the well-known fact for the harmonic series Hn =
∑n

k=1
1
k , that Hn−lnn

converges to a constant.
By the maximality of rc and using c ≥ 2rc + 2, we have that

Arc+1 +Brc+1 +
3(c− 2(rc + 1))

4(rc + 1)− 1
< 1.

Recall that when x → 0, we also have c → ∞ and rc → ∞, so we obtain ln(4/3) + 3 ln(9/8) +
3
4 limx→0 f(x)− 3

2 ≤ 1, where we again use that f(x) ≤ c
rc

. Hence

lim
x→0

f(x) ≤ 10

3
− 4

3
ln(4/3)− 4 ln(9/8) < 2.479,

as desired.
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8 Conclusion

In this paper we give an entirely novel approach, based on topological notions, for bounding the
integrality gap of the Santa Claus problem. This leads to significant improvements on the best
known estimates. We believe that this approach will prove to be fruitful in addressing other
algorithmic problems involving hypergraph matchings.

As mentioned in the introduction, our argument at the moment does not come with an efficient
algorithm for finding an allocation with the promised min-value. This is primarily due to the fact
that we do not have a good upper bound on the number of simplices in the triangulation described
in the Appendix, which ultimately governs the running time of any algorithmic procedure based
on our argument. It would be of great interest to develop methods to make the approach more
efficient.

A possible ray of hope comes from recalling the eventual success of turning the initially highly
ineffective combinatorial procedure of [10], based on [26], into an efficient algorithm with the same
constant factor appriximation. This was achieved through a series of important contributions of
several authors, as described in the introduction. Even a quasipolynomial-time algorithm based on
our approach that provides any constant factor approximation would seem to require new ideas.
Such an algorithm would be a first step towards an efficient approximation algorithm that breaks
the factor 4 barrier.

Finally, we would like to recall from the introduction that our work on the (1, ε)-restricted case
identifies certain parameter choices that seem to capture a key difficulty for the CLP-approach.
Specifically, we would like to see a (1, 1/3)-restricted problem instance that has optimal CLP-target
T ∗ = 1, and no allocation of min-value 2/3.

Acknowledgements: The authors are grateful to Lothar Narins for helpful discussions in the
early stages of this work, and to Olaf Parczyk for computing the data in Section 7.
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9 Appendix

9.1 The parameter η

As mentioned in Section 2.2 for our results we need only that there exists a graph parameter η
that satisfies Fact 1 and Theorems 2.2 and 2.3. In fact such a parameter can be defined in a
purely combinatorial way, without any explicit reference to topology. For completeness we begin
with a precise definition of η following the treatment of [27], where the required properties are
verified. However, the intuition behind the parameter η and how we use it in our proofs is very
much topological, as we describe after the definition.

The definition. An abstract simplicial complex is a set A of subsets A of a finite set V = V (A) =
∪A∈AA with the property that if A ∈ A and B ⊂ A then B ∈ A. We call the sets A the simplices
of A, and the dimension of A is |A| − 1. The dimension of A is the maximum dimension of any
A ∈ A. Let A and Σ be abstract simplicial complexes. A function f : V (A) → V (Σ) is called a
simplicial map from A to Σ if f(A) ∈ Σ for every A ∈ A. We say that A is a d-PSC, i.e. a pure
d-dimensional simplicial complex, if every maximal A ∈ A has the same dimension d. Note then
that a d-PSC is the closure of the (d + 1)-uniform hypergraph Ad consisting of the d-dimensional
simplices of A, that is, we form A from Ad by adding all subsets of the hyperedges of Ad. For a
d-PSC A, the boundary ∂A of A is the (d− 1)-PSC that is the closure of the d-uniform hypergraph

{B : |B| = d, |{A ∈ Ad : B ⊂ A}| ≡ 1 mod 2}.

If ∂(A) is empty we say that A is a d-dimensional Z2-cycle. The abstract simplicial complex Σ
is said to be k-connected if for each d, −1 ≤ d ≤ k, for every d-dimensional Z2-cycle A and every
simplicial map f : A → Σ, there exists a (d+ 1)-PSC B and a simplicial map f ′ : B → Σ such that
∂B = A and the restriction f ′|A of f ′ to A satisfies f ′|A = f .

The independence complex of a graph is an abstract simplicial complex and the value of η(G)
for a graph G is defined as the largest integer t such that the independence complex J (G) is (t−2)-
connected. The parameter η is not explicitly defined in [27], but the main theorems about η are
stated and proved there in terms of the above definition of k-connected. (Theorem 2.2 and 2.3
appear as Theorems 11 and 12, respectively.) We may verify Fact 1 as follows. Fact 1(1) follows
directly from the definition of η, as saying that Σ is (−1)-connected is the same as saying that
V (Σ) is nonempty. For the second statement of Fact 1(2), suppose G has an isolated vertex x. Let
A be an arbitrary Z2-cycle, with a simplicial map f from A to J (G). Then f can be extended to
a simplicial map from the closure B of {A ∪ {w} : A ∈ A}, where w 6∈ V (A) is a new vertex, by
mapping w to x. Since the dimension of A is arbitrary, this implies that η(G) is infinite. Otherwise,
if G2 contains an edge, then by Theorem 2.3 we can keep deleting and/or exploding edges from
G2, one by one, until all edges of G2 have disappeared. The resulting graph Gend still contains G1.
If Gend has an isolated vertex, then η(G) ≥ η(Gend) = ∞ by the above. Otherwise at least one
explosion was performed and Gend = G1, hence η(G) ≥ η(G1) + 1 by Observation 2.4(ii).

The intuition. In what follows, we describe the topological nature of our work at an intuitive
level, without getting into precise details. The topological space X is said to be k-connected if
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for every d, −1 ≤ d ≤ k, every continuous map from the d-dimensional sphere to X extends to a
continuous map from the (d + 1)-dimensional ball to X. This property indicates that X lacks a
(d+ 1)-dimensional ”hole”.

To get a better understanding for the topological core of our arguments, it helps to think of
connectedness as defined in the following way, that provides a link between the notion of connect-
edness for a topological space and our earlier definition for abstract simplicial complexes. This
link goes via triangulations of a simplex, which are geometric simplicial complexes, that can be
viewed both as topological spaces and as abstract simplicial complexes. We say that an abstract
simplicial complex Σ is k-connected if for every d, −1 ≤ d ≤ k, for every triangulation T of the
boundary of the (d + 1)-dimensional simplex τ , and every simplicial map f from T to Σ, there
exists a triangulation T ′ of the whole of τ that extends T , and a simplicial map f ′ from T ′ to Σ
that extends f .

Our argument gives a process that, given an instance I of the Santa Claus problem with player
set P , produces an allocation with the promised min-value. Very broadly speaking, the process
has two main phases. Following the proofs of Theorems 2.2 and 2.3, the first phase constructs
a triangulation T of the (|P | − 1)-dimensional simplex τ , and a simplicial map f from T to the
independence complex of the graph H(α) (defined in Section 2.1), such that the |P |-coloring of
the points v ∈ V (T ), defined by the ”owner” of the α-hyperedge f(v), satisfies the conditions
of Sperner’s Lemma. The second phase applies Sperner’s Lemma to find a multicolored simplex,
which corresponds to an independent transversal of H(α), i.e. an allocation for instance I with
min-value at least αT as promised.

Executing the first phase is the main aim of our paper and here is where topological connect-
edness helps us. The triangulation T and the map f are built on the faces of τ one by one, in
increasing order of dimension. When T and f on a face σ of dimension d are to be defined, trian-
gulations and maps of all the facets of σ are already in place, forming the boundary of σ, and these
need to be extended to a triangulation and a map of the whole of σ. This notion of extending a
map from the boundary of σ to the interior is captured by the parameter η, so if η is sufficiently
large for each σ, then this extension is possible.

9.2 Demonstrating DE-sequences

Here we demonstrate how to use DE-sequences to show that η(G) ≥ 2 for the cycle G = C5 of length
5. (In fact η(G) = 2, since the independence complex itself is a 5-cycle, which has a 2-dimensional
hole.) For an edge e of G, the graph G>e consists of a single isolated vertex, and hence η(G>e) =∞
by Observation 2.4(iii). Therefore e is not explodable, and hence is deletable. Deleting e results in
the path P5 with 5 vertices, and by the definition of deletable edge η(G) ≥ η(P5). Next consider
an edge e′ of P5 joining two of its degree-2 vertices. Again P5 > e′ consists of a single isolated
vertex, showing that e′ is not explodable and hence deletable. The graph P5 − e′ consists of two
components, a P2 and a P3. Each of these has a positive value of η by Fact 1(1). Hence

η(G) ≥ η(P5) ≥ η(P5 − e′) ≥ 1 + η(P3) ≥ 2

by Fact 1(2).


