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Abstract

The limited dependence between the additive and the multiplicative structure of fields is in the back-
ground of a number of explicit constructions of various types of pseudorandom objects. In this direction
we study the size of the intersection of (the additive) translates of fibers of the (multiplicative) norm
function over finite fields. Besides extending earlier upper bounds, our main focus here is on obtaining
lower bounds.
From our results we conclude several consequences in extremal combinatorics. Our motivation is the
projective norm graph NG(q, t) and its small subgraph statistics. NG(q, t) provides a tight construction
for the Turán number of complete bipartite graphs Kt,s with s > (t−1)!, in particular it does not contain
Kt,(t−1)!+1. Yet, for t ≥ 4 it is not even known whether NG(q, t) contains Kt,t. The determination of the
largest integer s(t), such that NG(q, t) contains Kt,s(t) for all large enough prime powers q is an important
open question with far-reaching consequences and the best known bounds, t − 1 ≤ s(t) ≤ (t − 1)!, are
very far apart. In this paper we settle the first open case and establish s(4) = 6. Along the way we
also count subgraphs of NG(q, t) isomorphic to H, for any fixed 3-degenerate graph H, and find that
projective norm graphs are quasirandom with respect to these parameters. These results go beyond
the consequences of the Expander Mixing Lemma and also imply extensions of the work of Alon and
Shikhelman on generalized Turán numbers.
Finally, we also give an elementary proof of the K4,s-freeness of NG(q, t) for s = 6(

∑t−4
i=0 q

i) + 1. This
was known before for t = 4 only, via a less direct algebro-geometric argument.
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1 Introduction

Among both the earliest and most thoroughly studied problems in extremal graph theory are Turán-type
problems. Given a graph H and positive integer n, the Turán number of H, denoted by ex(n,H), is
the maximum number of edges a simple graph on n vertices may have without containing a subgraph
isomorphic to H. The very first result about Turán numbers is Mantel’s theorem [48] from 1907, stating

that ex(n,K3) = bn
2

4 c. In 1941 Turán [71] determined ex(n,Kt) exactly for every t ≥ 3 and identified the
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unique extremal examples. For arbitrary H, a corollary of the Erdős-Stone Theorem [30], formulated by
Erdős and Simonovits [29], gives

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2),

where χ(H) is the chromatic number of H. If H is not bipartite, this theorem determines ex(n,H) asymp-
totically.

For bipartite graphs H the Erdős-Stone-Simonovits theorem merely states that ex(n,H) is of lower than
quadratic order. A general classification of the order of magnitude of bipartite Turán numbers is widely
open, even in the simplest-looking cases of even cycles and complete bipartite graphs. Among even cycles
the order of magnitude of the Turán number is known only for C4, C6 and C10 [17, 28]. For the Turán
number of complete bipartite graphs a general upper bound,

ex(n,Kt,s) ≤
1

2
t
√
s− 1 · n2− 1

t +
t− 1

2
· n,

was proven by Kővári, T. Sós and Turán [41] using an elementary double counting argument. In general it
is commonly conjectured (see e.g. [19, 23]) that the order of magnitude in the KST theorem is the right one.

Conjecture 1. For every t, s ∈ N, t ≤ s,

ex(n,Kt,s) = Θ
(
n2−

1
t

)
.

To prove a matching lower bound, one needs to exhibit a Kt,s-free graph that is dense enough. A general

lower bound of Ω(n2−
s+t−2
st−1 ) can be obtained using the probabilistic method, but this is of smaller order for

all values of the parameters. Constructions with number of edges matching the order of the upper bound
were first found for K2,2-free graphs (Klein, lásd [28]) and later for K3,3-free graphs (Brown [21]). Füredi
determined the correct leading coefficient for K2,s-free graphs [32] and for K3,3-free graphs [33].

Kollár, Rónyai and Szabó [38] proved Conjecture 1 for every t ≥ 4 and s > t! by constructing for every
t ∈ N+ a family of graphs, called norm graphs, that are Kt,t!+1-free and their density matches the order of
magnitude of the KST upper bound. Later Alon, Rónyai and Szabó [5] modified this construction to verify
the conjecture for s > (t − 1)!. One way or another all these Kt,s-free constructions of optimal density are
based on the simple geometric intuition that t “average”, “generic” hypersurfaces in the t-dimensional space
are “expected” to have a 0-dimensional intersection. In manifestations of this idea the neighborhoods of
vertices are such hypersurfaces and the common neighborhood of t vertices more or less corresponds to the
degree of their intersection. Recently Blagojević, Bukh and Karasev [18] and later Bukh [22] implemented
the idea in a random setting, where the neighborhoods are determined by random polynomials. This gave
an alternative proof of the tightness of Conjecture 1 for s = f(t), with f(t) much larger than (t− 1)!.

Despite significant effort by numerous researchers in the last sixty years, the fundamental question about
the Turán number of Kt,t is wide open, even in the case of t = 4. For ex(n,K4,4) or even for ex(n,K4,6), it

is not even known whether they are of larger order than n
5
3 = Θ(ex(n,K3,3)).

1.1 The projective norm graphs

Let q = pk be a prime power, t ≥ 2 be an integer and let Nt = Nt,q : Fqt → Fq denote the Fq-norm on Fqt ,
i.e. Nt(A) = A · Aq · Aq2 · · ·Aqt−1

for A ∈ Fqt . Alon et al. [5] defined the projective norm graph NG(q, t)
as the graph with vertex set Fqt−1 × F∗q and vertices (A, a) and (B, b) being adjacent if Nt−1(A + B) = ab.
The graph NG(q, t) has qt−1 · (q− 1) =: n vertices. To count the edges, one can consider an arbitrary vertex
(A, a) ∈ Fqt−1 ×F∗q and determine its degree. For this note that for any choice of X ∈ Fqt−1\{−A} there is a

unique x, namely x = 1
a ·Nt−1(A+X), for which (X,x) is a neighbour, unless it is the same vertex as (A, a).

This happens exactly if Nt−1(2A) = a2. Vertices satisfying the latter equality will be called loop vertices.
The degree of a non-loop vertex then is qt−1 − 1, while it is one less for a loop vertex. The number of loop
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vertices is qt−1 − 1 if Char(Fq) 6= 2 and zero if Char(Fq) = 2. Now, the number of edges can be precisely
calculated:

e(NG(q, t)) =

{
1
2

(
qt−1 − 1

)
qt−1(q − 1) if q is a power of 2

1
2

(
qt−1 − 1

)
(qt−1(q − 1)− 1) otherwise.

In other words, the number of edges in both cases is1 ≈ 1
2q

2t−1 ≈ 1
2n

2− 1
t . Relying largely on a general

algebro-geometric lemma from [38], it was shown in [5] that NG(q, t) is Kt,(t−1)!+1-free. Since NG(q, t) also
has the desired density, it verifies Conjecture 1 for s > (t− 1)!.

Since their first appearance, (projective) norm graphs were studied extensively [7, 11, 12, 36, 39, 55, 60].
Their various properties were utilized in many otherareas, both within and outside combinatorics. These
include, among others, (hypergraph) Ramsey theory [6, 40, 45, 50, 53, 54, 74, 75], (hypergraph) Turán
theory [3, 7, 56, 57, 60, 61], other problems in extremal combinatorics, [2, 13, 47, 62, 66, 67], number theory
[58, 64, 72, 73], geometry [31, 59] and computer science [1, 9, 10, 27].

A drawback of the proof of theKt,(t−1)!+1-freeness of NG(q, t) in [5] is that it does not give any information
about complete bipartite subgraphs with other parameters. In particular, for t ≥ 4 it could even be the
case that there is an infinite sequence of prime powers q such that NG(q, t) does not contain Kt,t and hence
resolves the question of the order of magnitude of ex(n,Kt,s) for every t and s. Considering the fundamental
nature of Conjecture 1, it was already suggested in [38] that the determination of the largest integer s(t),
such that NG(q, t) contains Kt,s(t) for every large enough prime power q is a question of great interest,
with potentially far reaching consequences. The main result of [5] implies s(t) ≤ (t − 1)! and by simple
combinatorial reasons (the KST upper bound), NG(q, t) does contain Kt,t−1, so s(t) ≥ t − 1. For t = 2
and t = 3 the upper and lower bound agree, so s(2) = 1, s(3) = 2. The bounds for t ≥ 4 however are
very far apart: t − 1 ≤ s(t) ≤ (t − 1)!. If s(t) were found to be less than (t − 1)! then the projective norm
graphs verified Conjecture 1 for more values of the parameters than what is known currently. In particular,
as already mentioned before, for the Turán number of K4,6 no better lower bound than ex(n,K3,3) = Θ(n

5
3 )

is known.
There was/is a reasonable amount of hope that the method of [5] was not optimal for NG(q, t), and that

the projective norm graphs might also not contain Kt,s for some s ≤ (t − 1)!. This optimism is mainly
inspired by the generality of the key lemma of [38] used in the proof. That lemma provides very general
conditions, under which the system of equations

t∏
j=1

(xj − ai,j) = bi, i ∈ [t]

over any field F has at most t! solutions (x1, . . . , xt) ∈ Ft. Namely, it was enough to assume for the constants
ai,j , bi ∈ F, that ai1,j 6= ai2,j whenever i1 6= i2. For the application one has to use the lemma for the field

Fqt−1 and only in the special case when ai,j = aq
j−1

i,1 for every i, j ∈ [t]. Moreover, one is interested in

bounding the number of only those solutions for which xj = xq
j−1

1 for every j ∈ [t]. That is, the key lemma
is used for a very special choice of constants and very special type of solutions.

In this direction Grosu [36] showed that there is a sequence of primes, of density 1
9 , such that for any

prime p in this sequence NG(p, 4) does contain a K4,6. This result nevertheless does not even exclude
the possibility that s(4) = 3. About complete bipartite graphs with a larger smaller partite set Ball and
Pepe [11, 12] proved that the Kt,(t−1)!+1-free projective norm graphs do not contain a Kt+1,(t−1)!−1 either.
This in particular improved the earlier probabilistic lower bound on ex(n,K5,5).

2 Our results.

In this paper we show that for arbitrary prime power q ≥ 5, the projective norm graph NG(q, 4) contains
many copies of K4,6, hence s(4) = 6. Our method is different from Grosu’s. On the way, we determine

1In this paper the asymptotic notation involving the projective norm graph is always understood with q tending to ∞ and
t being a constant.
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asymptotically the number of copies of any fixed 3-degenerate graph in NG(q, 4). This has implications
to the quantitative quasirandom properties of projective norm graphs and extends results of Alon and
Shikhelman [7] on generalized Turán numbers. In the process we also uncover a close connection between
norm equation systems and the classic Singer difference sets. Furthermore, we also give a new, commutative
algebra-free proof of the K4,7-freeness of NG(q, 4). This argument extends to estimating the size of the
common neighborhoods of four element vertex sets in NG(q, t), for arbitrary t ≥ 4. For t ≥ 5 this is not
known to follow from the proof in [5, 38]. We are hopeful that direct arguments like this might shed more
light on the structure of projective norm graphs in general.

Next we state our results in detail.

2.1 Norm equation systems

Understanding containment of complete bipartite subgraphs in the projective normgraph boils down to being
able to determine the size of the intersection of translates of fibres of the norm function. It is well-known
and not difficult to see that the fibres of non-zero elements of Fq partition the non-zero elements of Fqt into
equal parts. Since translation does not change their size, we have that for every A ∈ Fqt and a ∈ F∗q , the

equation Nt(X +A) = a has exactly qt−1
q−1 solutions X ∈ Fqt .

It is less clear how many common solutions two or more such norm equations have. For a set U ={
(A1, a1), . . . , (A`, a`)

}
⊆ Fqt ×F∗q of coefficients we are interested in the number of solutions X ∈ Fqt of the

system of ` norm equations
Nt(Ai +X) = ai, i ∈ [`]. (1)

The set of solutions will be denoted by St(U). In [37] it was shown that when the number ` of equations is
equal to the degree t of the field extension, and the Ai are all distinct, then the number of solutions cannot
be more than t!. Note that if Ai = Aj for some i 6= j then either there is no solution (if ai 6= aj) or two
equations coincide (if ai = aj). We call a set U =

{
(A1, a1), . . . , (A`, a`)

}
⊆ Fqt × F∗q of coefficients generic

if the first coordinates are all distinct.
In our first theorem we determine the size of the intersection of translates of two fibers. For t = 2 our

result is precise, while for t ≥ 3 it is mostly asymptotic. We are also able to characterize the degenerate
cases, when the intersection of the two fibers is not around the “average” (1 + o(1))qt−2. Curiously this can
only happen when the degree of the field extension is at most three.

To state our results we introduce some more notation. We denote by Trt = Trt,q the Fq-trace function on

Fqt , i.e. for X ∈ Fqt we have Trt(X) := X +Xq + · · ·+Xqt−1

, and for odd q we let ηFq denote the quadratic
character of Fq. Finally, for an integer q, let res3(q) ∈ {−1, 0, 1} denotes the residue of q modulo 3.

Theorem 1. Let q = pk be a prime power, t ≥ 2 be an integer, and U =
{

(A1, a1), (A2, a2)
}
⊆ Fqt × F∗q be

a generic set of coefficients. Further put

c1 = c1
(
(A1, a1), (A2, a2)

)
=

a1
N(A2 −A1)

∈ F∗q and c2 = c2
(
(A1, a1), (A2, a2)

)
=

a2
N(A2 −A1)

∈ F∗q .

(a) If t = 2 then

∣∣S2 (U)
∣∣ =


1− ηFq

(
(1 + c1 − c2)2 − 4c1

)
if q odd,

1 if p = 2 and c1 + c2 = 1,

1− (−1)
Trk,2

(
c1

(1+c1+c2)2

)
if p = 2 and c1 + c2 6= 1.

(b) If t ≥ 3 then ∣∣St (U)
∣∣ =

{
2q + 1− res3(q) if t = 3, and (c1, c2) = (1,−1)
qt−2 +O(qt−2.5) otherwise,

Our second main theorem deals with the intersection of translates of three fibres.

4



Theorem 2. Let q = pk be a prime power and t ≥ 3 be an integer.

(a) For every generic set U =
{

(A1, a1), (A2, a2), (A3, a3)
}
⊆ Fqt × F∗q of coefficients, we have∣∣St (U)

∣∣ ≤ 6
(
qt−3 + qt−4 + · · ·+ q + 1

)
.

(b) If q ≥ 5 and t = 3 then there exists a generic set U =
{

(0, 1), (1,−1), (A,−1)
}
⊆ Fq3 × F∗q , such that

A 6= 1, N3(A) = 1, and ∣∣S3 (U)
∣∣ = 6.

The upper bound of (a) for t = 3 was proved in [37] using a different argument. Part (b) shows that this
upper bound is tight.

2.2 Difference sets

The proof of part (b) of Theorem 2 crucially depends on a characterization of the solutions of (1) in the
canonical exceptional case from Theorem 1(b). On the one hand, we show that S3

(
(0, 1), (1,−1)

)
is the

union of the roots of two simple polynomials of degree q + 1, each of which factors in Fq3 . On the other
hand, the root set of both polynomials turns out to be a difference set within the multiplicative cyclic group
N = {X ∈ Fq3 : N3(X) = 1} of order q2 + q + 1.

Given a multiplicative group G, a subset D ⊆ G is called a planar difference set if every non-identity
element A ∈ G has a unique representation as a product of an element from D and an element from D−1,
where D−1 := {d−1 : d ∈ D} denotes the set of inverses of the elements of D. We refer to this representation
as the mixed representation of A with respect to D. If the group G admits a planar difference set of size m,
then, by simple counting, its order has to be of the form `2 + ` + 1 with ` = m + 1. Planar difference sets
in Abelian groups are only known to exist if the group is cyclic and ` is a prime power. As it will cause no
confusion, in what follows we will omit the word ‘planar’. For a gentle introduction and a good survey on
difference sets the reader may consult e.g. [51].

Theorem 3. Let q ≥ 2 be a prime power. Then we have

S3

({
(0, 1), (1,−1)

})
= H1 ∪H2,

where

H1 =
{
X ∈ Fq : Xq+1 +X + 1 = 0

}
and H2 =

{
X ∈ Fq : Xq+1 +Xq + 1 = 0

}
,

where Fq denotes the algebraic closure of Fq. The sets H1,H2 form difference sets in the multiplicative group
N ⊆ Fq3 , and H2 = H−11 . Furthermore for any element A ∈ N \ {1}, its unique mixed representation
A = A1 ·A2 is given by the following explicit formulas:

A1 =
Aq+1 − 1

1−Aq
∈ H1 and A2 =

A−Aq+1

Aq+1 − 1
∈ H2. (2)

The difference sets H1 and H2 turn out to be of the classic Singer type2. Their simple description from
the theorem, as roots of two sparse polynomials, seems novel, at least we did not find it in the literature. In
any case, the difference set property and the explicit expression of mixed representations will be crucial in
the proof of our main result.

2We discuss Singer difference sets in a more general setting in Section 5.3 of the Appendix.
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2.3 Common neighborhoods

Our results about norm equation systems transfer in a relatively standard way to common neighborhoods of
small vertex sets in the projective norm graphs. For a set T =

{
(Vi, vi) ∈ Fqt−1 × F∗q : i ∈ [`]

}
of ` vertices

of NG(q, t), we define the common neighbourhood of T as the set

Γ(T ) =
{

(Y, y) ∈ V
(

NG(q, t)
)

: Nt−1(Y + Vi) = yvi, i ∈ [`]
}
⊆ Fqt−1 × F∗q .

Note that in our definition we do allow a vertex to be in its own neighborhood. The size of Γ(T ) is the
common degree of T and is denoted by deg(T ). With this notation the main result of Alon, Rónyai and
Szabó [5] can be phrased as deg(T ) ≤ (t− 1)! for every subset T ⊆ V

(
NG(q, t)

)
of size t.

A moment of thought reveals that two vertices of the projective norm graph with the same first coordinate
do not have a common neighbour in NG(q, t). In particular, the common neighborhood of a non-generic set
of vertices is empty. The following proposition formulates how exactly the common neighbors of a generic
set of ` vertices are related to solutions of a system of `− 1 norm equations of type (1).

Proposition 1. Let T =
{

(Vi, vi) : i ∈ [`]
}
⊆ V

(
NG(q, t)

)
be an arbitrary generic set. Then the set

A(T ) :=
{

(Ai(T ), ai(T )) : i ∈ [`− 1]
}

, defined through

Ai(T ) :=
1

Vi − V`
∈ F∗qt−1 and ai(T ) :=

vi
v` ·Nt−1(Vi − V`)

∈ F∗q ,

is also generic, and the function Φ that maps (Y, y) to 1
Y+V`

, is a bijection from Γ(T ) to St−1
(
A(T )

)
\ {0}.3

In particular, we have

deg(T ) =
∣∣∣St−1(A(T )

)∣∣∣− ξ(T ),

where

ξ(T ) =

{
1 if v1 = · · · = v`
0 otherwise.

For a pair T =
{

(V1, v1), (V2, v2)
}

of vertices, Proposition 1 implies that the common degree of T is either
qt−1−1
q−1 (if v1 6= v2) or one less (if v1 = v2).

The results of Theorem 1 and Theorem 2(a) translate via Proposition 1 to results on the common degrees
of triples and quadruples of vertices of NG(q, t), respectively.

In the particular case t = 3 = ` the proof of Füredi [33] strengthening the Kővári-Sós-Turán upper bound,
coupled with the fact that NG(q, 3) is K3,3-free, implies that roughly half of the triples in NG(q, 3) must
have two common neighbors and roughly half of them have none. Theorem 1(a) and Proposition 1 together
characterize triples of each type; we skip the explicit statement.

Next we spell out the direct consequences of Theorem 1(b) and Theorem 2(a), which will also be necessary
for our subsequent applications on quasirandomness and generalized Turán numbers.

Corollary 1. Let q = pk be a prime power, t ≥ ` be integers, and T =
{

(Vi, vi) : i ∈ [`]
}

be a generic
`-subset of vertices in NG(q, t).

(a) If ` ∈ {2, 3} and t > `, then deg(T ) = qt−` + O
(
qt−`−

1
2

)
, unless ` = 3, t = 4, v1

v3
N
(
V2−V3

V1−V2

)
= 1 and

v2

v3
N
(
V1−V3

V1−V2

)
= −1, in which case deg(T ) = 2q +O(1).

(b) If ` = 4, then deg(T ) ≤ 6
(
qt−4 + qt−3 + · · ·+ q + 1

)
.

Part (b) is an extension of the result of [5] on the K4,7-freeness of NG(q, 4), and its proof uses more
elementary tools than the one based on [38].

Finally, from Theorem 2(b) and Proposition 1 we infer that the K4,7-free projective norm graph NG(q, 4)
contains (many) K4,6 for every prime power larger than 4.

3For the sake of the precise definition of the set A(T ) and the function Φ, we fix an arbitrary ordering of the elements of
Fqt−1 and we take V` to be, say, the minimal among {Vi, i ∈ [`]}.
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Corollary 2. For every prime power q = pk ≥ 5 there are at least Ω
(
q10
)

copies of K4,6 in the (simple)
projective norm graph NG(q, 4). In particular, s(4) = 6.

Complementing Corollary 2 we remark that it is immediate that NG(2, 4) does not contain K4,6, and in
NG(3, 4) and NG(4, 4) we verified by computer search that there is no K4,6 either.

2.4 Quasirandomness

A (sequence of) graph(s) G on n vertices with average degree d = d(n) is called quasirandom if it possesses

some property that the Erdős-Rényi binomial random graph G
(
n, d(n)n

)
also has with probability tending

to 1 as n tends to infinity. For dense graphs G, i.e. when d
n is constant, many of these natural properties are

known to be equivalent. (see the seminal papers of Thomason [69, 70], and Chung, Graham, and Wilson [25]).
These include properties

Q1 for any two large enough subsets A,B of vertices, the number of edges going between them is≈ d
n

∣∣A∣∣∣∣B∣∣;
Q2 for most pairs of vertices their common degree is ≈ d2

n ;

Q3 for any fixed graph H, the number of labeled copies of H is ≈ nv(H)
(
d
n

)e(H)

;

Q4 λ(G), the second largest among the absolute values of eigenvalues of G, is of smaller order than the
degree d (which is the largest eigenvalue).

For sparse graphs, i.e., when d = o(n), the relationship between these properties was investigated in several
papers [24, 26, 37]. Properties Q1 and Q2, for example, always follow from Q4 by the Expander Mixing
Lemma [8], with a smaller second eigenvalue implying stronger quasirandomness. Some of the implications
however, in contrast to the dense case, are far from being true. It is an interesting general problem to
quantify the extent to which one of these properties implies another.

The projective norm graphs, in particular, serve as examples for some of the equivalences being false.
Alon and Rödl [6] and Szabó [68] showed that the eigenvalues of NG(q, t) are exactly ±1 times the absolute
values of the different Gaussian sums over the field Fqt−1 , and hence, the second largest absolute value of an

eigenvalue is λ = λ
(

NG(q, t)
)

= q
t−1

2 . That is, not only λ is of smaller order than the degree d ≈ qt−1, so
Q4 holds, but λ is roughly the square root of the degree. As it is well-known (and not hard to see, e.g., [42])
that for every d-regular graph on n vertices λ = Ω

(√
d
)

(provided the density d
n is bounded away from 1),

the projective norm graphs are as quasirandom as it gets, at least in terms of their second eigenvalue. Still,
Q3 can fail for an arbitrary large inverse polynomial density n−α, α > 0. For example, NG(q, 4) does not

contain any K4,7, but the random graph G
(
n, n−

1
4

)
contains many, namely Θ

(
n4
)

copies.
Even though Q3 might fail for certain graphs, it is an interesting problem to quantify to what extent

the “perfect quasirandomness” of NG(q, t) in terms of property Q4 carries over to property Q3. To this
end we will call a graph G H-quasirandom if property Q3 holds for H, that is, if the number XH(G) of

labeled copies of H in G is Θ

(
nv(H)

(
d
n

)e(H)
)

. If XH(G) =
(
1 + o(1)

)
nv(H)

(
d
n

)e(H)

, then we say that G is

asymptotically H-quasirandom. With this notion any regular graph is asymptotically K2-quasirandom and
the projective norm graph NG(q, t) is not Kt,(t−1)!+1-quasirandom.

Alon and Pudlák [4] (see also [42]) have shown, using the Expander Mixing Lemma, that any d-regular

graph G on n vertices with second eigenvalue λ (such graphs are also called (n, d, λ)-graphs) and λ� d∆

n∆−1

contains
(
1+o(1)

)
nv(H)

(
d
n

)e(H)

labeled copies of anyH with maximum degree at most ∆. In our terminology

they have shown that an (n, d, λ)-graph with small enough λ is asymptotically H-quasirandom.
For the projective norm graph this means that if ∆(H) < t+1

2 , then NG(q, t) is H-quasirandom. For
∆ = 2 this statement starts to work when t is at least 4 and for ∆ = 3 it starts to work when t is at least
6. Using Corollary 1 we can go beyond what is possible in terms of subgraph containment from the general
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eigenvalue bound of the Expander Mixing Lemma, and can deal with the much wider class of degenerate
graphs instead of just bounded maximum degree. Recall that a graph G is r-degenerate if every nonempty
subgraph of G has a vertex of degree at most r, or equivalently, there is an ordering of the vertices of G such
that every vertex has at most r neighbours preceding it.

Theorem 4. Let q = pk be a prime power and H a simple graph. Then, for the number of vertex labeled
copies of H in NG(q, t), we have

XH

(
NG(q, t)

)
= Θ

(
qtv(H)−e(H)

)
, (3)

as q tends to infinity, provided H is 3-degenerate and t ≥ 4. That is, NG(q, t) is H-quasirandom. Moreover,
if H is 3-degenerate and t ≥ 5 or H is 2-degenerate and t ≥ 3, then∣∣∣XH

(
NG(q, t)

)
− qt·v(H)−e(H)

∣∣∣ ≤ O (qtv(H)−e(H)− 1
2

)
. (4)

In particular, NG(q, t) is asymptotically H-quasirandom in these cases.

Remarks. As NG(q, 3) does not contain K3,3 and NG(q, 2) does not contain K2,2, the bound on t for
(3) is best possible for both 3- and 2-degenerate graphs. We conjecture though that the stronger statement
(4) should also be true for 3-degenerate graphs and t = 4. Also, the theorem remains valid even if H = Hq

and v = v(Hq) grows moderately, namely if v(Hq) = o(
√
q) as q tends to infinity, with an error term

o
(
qtv(H)−e(H)

)
in (4).

2.5 Generalized Turán numbers

For simple graphs T and H (with no isolated vertices) and a positive integer n, the generalized Turán
problem asks for the maximum possible number ex(n, T,H) of unlabeled copies of T in an H-free graph
on n vertices. Note that by setting T = K2 we recover the original Turán problem for H. Alon and
Shikhelman [7] investigated the problem in the case when H is a complete bipartite graph Kt,s with t ≤ s,
and T is a complete graph K` or a complete bipartite graph Ka,b. They have shown that Kt,s-freeness in

an n vertex graph implies that the number of copies of T is at most O
(
nv(T )− e(T )

t

)
, whenever T is a clique

Km with m ≤ t + 1 or a complete bipartite graph Ka,b with a ≤ b < s and a ≤ t. This, together with the
Alon-Pudlák counting of subgraphs in the projective norm graph implied that for every s > (t − 1)!, the
generalized Turán number

ex(n, T,Kt,s) = Θ
(
nv(T )− e(T )

t

)
, (5)

whenever T is a clique Km with m ≤ t+2
2 or a complete bipartite graph Ka,b with a ≤ b ≤ t

2 . For T = K3,
Kostochka, Mubayi and Verstraëte [39] and Alon and Shikhelman [7] counted triangles in the projective
norm graphs more directly, which extended (5) from t ≥ 4 to all t ≥ 2.

The lower bounds of Theorem 4 extend the eigenvalue lower bound of Alon and Pudlák on generalized
Turán numbers for arbitrary 3-degenerate graphs.

Corollary 3. For every 3-degenerate simple graph T and any t ≥ 4 and s > (t− 1)! we have

ex(n, T,Kt,s) ≥ (1 + o(1))
1

|Aut(T )|
nv(T )− e(T )

t .

Combining this result with the upper bound of Alon and Shikhelman [7], we extend the validity of (5)
for T = K4 (from t ≥ 6 to t ≥ 4) and complete bipartite graphs K3,b (from t ≥ 6 and b ≤ t/2 to the best
possible t ≥ 4 and b < s).

Corollary 4. For every t ≥ 4 and s > (t− 1)! we have

ex(n, T,Kt,s) = Θ
(
nv(T )− e(T )

t

)
,

whenever T is a clique K4 or a complete bipartite graph Ka,b with a ≤ b < s and a ≤ 3.
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3 Proofs

3.1 Proof of Theorem 1

To prove Theorem 1 we first transform our system of interest to a simpler form.

Lemma 1.
∣∣∣St(U)∣∣∣ =

∣∣∣St(U ′)∣∣∣, where U ′ =
{

(0, c1), (1, c2)
}

with c1, c2 as in Theorem 1.

Proof. For every Y ∈ Fqt define Ψ(Y ) =
Y +A1

A2 −A1
. Then it is a straightforward calculation to show that

Y ∈ St
(
(A1, a1), (A2, a2)

)
if and only if Ψ(Y ) ∈ St

(
(0, c1), (1, c2)

)
, and so the Lemma follows.

To simplify notation, from now on we will write St(c1, c2) instead of St
(
U ′
)

= St

({
(0, c1), (1, c2)

})
. For

(c1, c2) ∈ (F∗q)2 and t ≥ 2 let

ft,c1,c2(X) = Nt−1(X + 1) ·Nt−1(X) + c1 ·Nt−1(X + 1)− c2 ·Nt−1(X) ∈ Fq[X].

As we will demonstrate shortly, this polynomial is strongly related to our system of norm equations. Let us
denote by Rt(c1, c2) the set of roots of ft,c1,c2 in the algebraic closure Fq of Fq, and by R∗t (c1, c2) ⊆ Rt(c1, c2)
the set of multiple roots among them. In the following lemma we connect St(c1, c2) to the roots in Rt(c1, c2).
It turns out that every root of ft,c1,c2 is contained in the union of the fields Fqt and Fqt−1 . Furthermore all
multiple roots are contained in the intersection Fqt ∩ Fqt−1 = Fq and have multiplicity two.

Lemma 2. For (c1, c2) ∈ (F∗q)2 and t ≥ 2 we have

(i) St(c1, c2) ⊆ Rt(c1, c2);

(ii) St(c1, c2) ∩ Fq = R∗t (c1, c2);

(iii)
∣∣St(c1, c2)

∣∣+
∣∣Rt(c1, c2) ∩ Fqt−1

∣∣ = 2
(
qt−2 + qt−3 + · · ·+ 1

)
.

(iv) For t ≥ 3 ∣∣St(c1, c2)
∣∣ = 2

(
qt−2 + qt−3 + · · ·+ 1

)
−

∑
b∈F∗

q\{−c1}

∣∣∣∣St−1(b, bc2
b+ c1

)∣∣∣∣ .
Proof. First we prove part (i). Let X ∈ St(c1, c2), that is

c1 = Nt(X) and c2 = Nt(X + 1).

Multiplying the equations by Nt−1(X+1) and Nt−1(X), respectively, and subtracting them from one another
we obtain

c1 Nt−1(X + 1)− c2 Nt−1(X) = Nt(X) Nt−1(X + 1)−Nt(X + 1) Nt−1(X).

By substituting Nt(X) = Nt−1(X)Xqt−1

and Nt(X + 1) = Nt−1(X + 1)(X + 1)q
t−1

we get

c1 Nt−1(X + 1)− c2 Nt−1(X) = Nt−1(X) Nt−1(X + 1)Xqt−1

−Nt−1(X + 1) Nt−1(X)(X + 1)q
t−1

= Nt−1(X + 1) Nt−1(X)
(
Xqt−1

− (X + 1)q
t−1
)

= Nt−1(X + 1) Nt−1(X)(−1).

This proves that X is a root of ft,c1,c2 , i.e. X ∈ Rt(c1, c2).
For part (ii) let us first consider an arbitrary X ∈ St(c1, c2) ∩ Fq. By part (i) we know that X is a root

of ft,c1,c2 . To show that it is a multiple root, we check that X is also root of the formal derivative f ′t,c1,c2 .

As X /∈ {0,−1}, the formal derivative f ′t,c1,c2 at X can be expressed as
(
qt−2 + · · ·+ q + 1

)
times(

Nt−1(X + 1) Nt−1(X)

X
+

Nt−1(X + 1) Nt−1(X)

X + 1
+
c1 Nt−1(X + 1)

X + 1
− c2 Nt−1(X)

X

)
.
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Since X ∈ St(c1, c2), we may again replace c1 and c2 by Nt(X) = Nt−1(X)Xqt−1

and Nt(X+1) = Nt−1(X+

1)(X + 1)q
t−1

, respectively. As qt−2 + · · ·+ q + 1 = 1 in Fq, this results in

f ′t,c1,c2(X) = Nt−1(X) Nt−1(X + 1)

(
1

X
+

1

X + 1
+
Xqt−1

X + 1
− (X + 1)q

t−1

X

)
.

However, as X ∈ Fq, we have Xq = X, so the last factor simplifies to

1

X
+

1

X + 1
+

X

X + 1
− X + 1

X
= 0,

proving that f ′t,c1,c2(X) = 0. Consequently X ∈ R∗t (c1, c2), hence

St(c1, c2) ∩ Fq ⊆ R∗t (c1, c2). (6)

Before proving that in (6) we have actually equality, we show part (iii).
We start by bounding the union and intersection of the sets St(c1, c2) and Rt(c1, c2)∩ Fqt−1 . By part (i)

we have
St(c1, c2) ∪

(
Rt(c1, c2) ∩ Fqt−1

)
⊆ St(c1, c2) ∪ Rt(c1, c2) = Rt(c1, c2).

Since St(c1, c2) ⊆ Fqt and Fqt ∩ Fqt−1 = Fq, by (i) and (6) we obtain

St(c1, c2) ∩ Rt(c1, c2) ∩ Fqt−1 = St(c1, c2) ∩ Fqt−1 = St(c1, c2) ∩ Fq ⊆ R∗t (c1, c2).

These two observations together imply∣∣St(c1, c2)
∣∣+
∣∣Rt(c1, c2) ∩ Fqt−1

∣∣ ≤ ∣∣Rt(c1, c2)
∣∣+
∣∣R∗t (c1, c2)

∣∣.
Now note that as

∣∣Rt(c1, c2)
∣∣ is the number of different linear factors of ft,c1,c2 in Fq and

∣∣R∗t (c1, c2)
∣∣ is the

number of different linear factors that appear at least twice, their sum is necessarily bounded from above by
the degree of ft,c1,c2 i.e. by 2

(
qt−2 + · · ·+ q + 1

)
. This shows∣∣St(c1, c2)

∣∣+
∣∣Rt(c1, c2) ∩ Fqt−1

∣∣ ≤ 2
(
qt−2 + · · ·+ 1

)
. (7)

To get the desired equality for every pair (c1, c2) ∈ (F∗q)2 we will use a Stepanovesque trick of considering
their average and using double counting to transfer the difficult task of bounding the number of solutions of
a high degree equation into the easy task of bounding the number of solutions of a linear equation. In other
words we will show that the desired equality holds for the average, i.e.,

1

(q − 1)2

∑
c1∈F∗

q

∑
c2∈F∗

q

(∣∣St(c1, c2)
∣∣+
∣∣Rt(c1, c2) ∩ Fqt−1

∣∣) = 2(qt−2 + · · ·+ 1). (8)

Note that this indeed will be enough, as we have already obtained the same upper bound for the individual
terms, so equality for the average is possible only if each individual term matches the upper bound.

To prove (8), we split the sum and evaluate each part separately. For the first part we use double-counting
to obtain∑

c1∈F∗
q

∑
c2∈F∗

q

∣∣St(c1, c2)
∣∣ =

∑
X∈Fqt

∣∣∣{(c1, c2) ∈ (F∗q)2 | St(c1, c2) 3 X
}∣∣∣ =

∑
X∈Fqt\{0,−1}

1 = qt − 2.

The next to last equality holds since the sets St(c1, c2) partition Fqt \{0,−1}. Indeed, each X ∈ Fqt \{0,−1}
is contained in exactly one of them, namely St

(
Nt(X),Nt(X + 1)

)
. Similarly,∑

c1∈F∗
q

∑
c2∈F∗

q

∣∣Rt(c1, c2) ∩ Fqt−1

∣∣ =
∑

X∈Fqt−1

∑
c1∈F∗

q

∣∣∣{c2 ∈ F∗q | X ∈ Rt(c1, c2)
}∣∣∣.
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Now for fixed X ∈ Fqt−1 and c1 ∈ F∗q the expression ft,c1,c2(X) becomes a linear polynomial in c2. It has
no root in F∗q if X ∈ {0,−1} or c1 = −Nt−1(X), otherwise there is a unique c2 for which ft,c1,c2(X) = 0,

namely c2 =
Nt−1(X+1)

(
Nt−1(X)+c1

)
Nt−1(X) . Hence∑

c1∈F∗
q

∑
c2∈F∗

q

∣∣Rt(c1, c2) ∩ Fqt−1

∣∣ =
∑

X∈Fqt−2\{0,−1}

∑
c1∈F∗

q\{−Nt−1,q(X)}

1 = (qt−1 − 2)(q − 2).

Summing up both parts, we get∑
c1∈F∗

q

∑
c2∈F∗

q

(∣∣St(c1, c2)
∣∣+
∣∣Rt(c1, c2) ∩ Fqt−1

∣∣) = qt − 2 +
(
qt−1 − 2

)
(q − 2) = 2(q − 1)2

(
qt−2 + · · ·+ 1

)
,

which proves (8).
Now we turn back to finish the proof of (ii). The equality in (iii) implies that in the proof of (7) all

displayed inequalities and containments must hold with equality, in particular, we have equality in (6) as
well.

Finally, we prove (iv). To express
∣∣St(c1, c2)

∣∣ we first count the elements of Rt(c1, c2) ∩ Fqt−1 through
classifying them by their norm and then use part (iii).∣∣Rt(c1, c2) ∩ Fqt−1

∣∣ =
∑
b∈Fq

∣∣∣{X ∈ Rt(c1, c2) ∩ Fqt−1 : Nt−1(X) = b
}∣∣∣

=
∑
b∈Fq

∣∣∣{X ∈ Fqt−1 : Nt−1(X) = b and Nt−1(X + 1)(b+ c1) = b · c2
}∣∣∣.

Note that 0 /∈ Rt(c1, c2) ∩ Fqt−1 , since c1 6= 0. Hence, for b = 0 this set is empty. Moreover, it is also empty
for b = −c1, since neither c1, nor c2 is 0. Consequently,∣∣Rt(c1, c2) ∩ Fqt−2

∣∣ =
∑

b∈F∗
q\{−c1}

∣∣∣∣{X ∈ Fqt−1 | Nt−1(X) = b and Nt−1(X + 1) =
b · c2
b+ c1

}∣∣∣∣
=

∑
b∈F∗

q\{−c1}

∣∣∣∣St−1(b, b · c2b+ c1

)∣∣∣∣
Now, the assertion of part (iv) follows by part (iii).

We are now ready to prove Theorem 1. By Lemma 1 it is enough to consider the sets St(c1, c2) for
(c1, c2) ∈ (F∗q)2. We start by examining the case t = 2. By part (iii) of Lemma 2 we have∣∣S2(c1, c2)

∣∣ = 2−
∣∣R2(c1, c2) ∩ Fq

∣∣ = 2−
∣∣∣{X ∈ Fq | f2,c1,c2(X) = 0

}∣∣∣
= 2−

∣∣∣{X ∈ Fq | (X + 1)X + c1 · (X + 1)− c2X = 0
}∣∣∣

= 2−
∣∣∣{X ∈ Fq | X2 + (1 + c1 − c2)X + c1 = 0

}∣∣∣
If q is odd, then part (i) of Proposition 7 from the Appendix gives∣∣S2(c1, c2)

∣∣ = 2−
(

1 + ηFq

(
(1 + c1 − c2)2 − 4c1

) )
= 1− ηFq

(
(1 + c1 − c2)2 − 4c1

)
,

while for q = 2k, using part (ii) of Proposition 7 from the Appendix, we get

∣∣S2(c1, c2)
∣∣ =

 1 if c1 + c2 = 1

2−
(

1 + (−1)
Trk,2

(
c1

(1+c1+c2)2

))
= 1− (−1)

Trk,2

(
c1

(1+c1+c2)2

)
if c1 + c2 6= 1

.
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This finishes the proof of part (a). In the case t = 3, by applying part (iv) of Lemma 2 and the case t = 2,
we obtain ∣∣S3(c1, c2)

∣∣ = 2(q + 1)−
∑

b∈F∗
q\{−c1}

∣∣∣∣S2

(
b,

bc2
b+ c1

)∣∣∣∣ .
Now first suppose again that q is odd. Then

∣∣S3(c1, c2)
∣∣ = 2(q + 1)−

∑
b∈F∗

q\{−c1}

(
1− ηFq

((
1 + b− bc2

b+ c1

)2

− 4b

))

= q + 4 +
∑

b∈F∗
q\{−c1}

ηFq

((
(b+ c1)(1 + b)− bc2

)2 − 4b(b+ c1)2

(b+ c1)2

)
.

Put

L(b) =
(
(b+ c1)(1 + b)− bc2

)2 − 4b(b+ c1)2

= b4 + 2(c1 − c2 − 1)b3 +
(
(1 + c1 − c2)2 − 6c1

)
b2 + 2c1(1− c1 − c2)b+ c21, (9)

and observe that the denominator inside ηFq may be omitted as it is a non-zero square and ηFq is multiplica-
tive. Accordingly,∣∣S3(c1, c2)

∣∣ = q + 4 +
∑

b∈F∗
q\{−c1}

ηFq

(
L(b)

)
= q + 4− ηFq

(
L(0)

)
− ηFq

(
L(−c1)

)
+
∑
b∈Fq

ηFq

(
L(b)

)
= q + 4− ηFq

(
c21
)
− ηFq

(
c21c

2
2

)
+
∑
b∈Fq

ηFq

(
L(b)

)
= q + 2 +

∑
b∈Fq

ηFq

(
L(b)

)
.

Our goal is to use the Weil character sum estimate (see Theorem 5 in the Appendix) for the quadratic
character ηFq . As the order of ηFq is 2, we can estimate the above sum using the first part of Theorem 5,
unless L(b) = (b2 + α1b+ α0)2 for some α1, α0 ∈ Fq, in which case the second part of the theorem applies.

By comparing the coefficients of

(b2 + α1b+ α0)2 = b4 + 2α1b
3 + (α2

1 + 2α0)b2 + 2α1α0b+ α2
0

with (9) it is easy to see that the degenerate case occurs if and only if (c1, c2) = (1,−1). Indeed, the
constant terms imply that c1 = α0 or c1 = −α0 and using the coefficients of b and b3 we have that
2c1(1 − c1 − c2) = 2α1α0 = 2(c1 − c2 − 1)α0. Substituting c1 = −α0 leads to c2 = 0, a contradiction.
Substituting c1 = α0 we obtain α0 = c1 = 1 and α1 = −c2 and substituting all this into the coefficients of
b2 we obtain c2 = −1.

If (c1, c2) = (1,−1), then L(b) = b4 + 2b3 + 3b2 + 2b + 1 = (b2 + b + 1)2 is indeed a square and we can
apply the second part of Theorem 5:∣∣S3(1,−1)

∣∣ = q + 2 +
∑
b∈Fq

ηFq

(
1 ·
(
b2 + b+ 1

)2 )
= q + 2 +

(
q −

∣∣∣{b ∈ Fq | b2 + b+ 1 = 0
}∣∣∣)ηFq

(1)

= q + 2 +
(
q −

(
1 + ηFq (−3)

) )
· 1 = 2q + 1− ηFq (−3) = 2q + 1− resq(3).

Otherwise, if (c1, c2) 6= (1,−1), then by the first part of Theorem 5 we get∣∣S3(c1, c2)− q
∣∣ =

∣∣∣2 +
∑
b∈Fq

ηFq

(
L(b)

)∣∣∣ ≤ 2 +
∣∣∣ ∑
b∈Fq

ηFq

(
L(b)

)∣∣∣ ≤ 2 + (4− 1)
√
q = O(

√
q),

implying that S3(c1, c2) = q +O(
√
q). This finishes the case when q is odd.
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Now suppose that q = 2k. Then, again by part (iv) of Lemma 2 and the case t = 2 we have

S3(c1, c2) = 2(q + 1)−
∑

b ∈ F∗
q \ {c1}

b2 + b(1 + c1 + c2) + c1 = 0

1

−
∑

b ∈ F∗
q \ {c1}

b2 + b(1 + c1 + c2) + c1 6= 0

(
1− (−1)

Trk,2

(
b(b+c1)2

(b2+b(1+c1+c2)+c1)
2

))

= q + 4 +
∑

b ∈ F∗
q \ {c1}

b2 + b(1 + c1 + c2) + c1 6= 0

(−1)
Trk,2

(
b(b+c1)2

(b2+b(1+c1+c2)+c1)
2

)
.

Put

f(b) = b(b+ c1)2 and g(b) = (b2 + b(1 + c1 + c2) + c1)2, .

and note that both have degree at most 4. Accordingly,

S3(c1, c2) = q + 4 +
∑

b ∈ F∗
q \ {c1}

g(b) 6= 0

(−1)Trk,2

(
f(b)
g(b)

)

= q + 4− (−1)Trk,2

(
f(0)
g(0)

)
− (−1)

Trk,2

(
f(c1)

g(c1)

)
+

∑
b ∈ Fq

g(b) 6= 0

(−1)Trk,2

(
f(b)
g(b)

)

= q + 2 +
∑
b ∈ Fq

g(b) 6= 0

(−1)Trk,2

(
f(b)
g(b)

)
.

To bound the sum we want to use Theorem 6 from the Appendix. It is straightforward to check (see Claim 1

in the Appendix) that the rational function f(b)
g(b) is degenerate if and only if (c1, c2) = (1, 1), in which case

we have Trk,2

(
f(b)
g(b)

)
= 0 for every b ∈ Fq, g(b) 6= 0.

Accordingly, if (c1, c2) = (1, 1), then

S3(1,−1) = q + 2 +
∑
b ∈ Fq

g(b) 6= 0

(−1)0 = 2q + 2−
∣∣∣{b ∈ Fq | b2 + b+ 1 = 0

}∣∣∣
= 2q + 2−

(
1 + (−1)Trk,2(1)

)
= 2q + 1− (−1)k = 2q + 1− res3(q).

Otherwise, if (c1, c2) 6= (1, 1), then by Theorem 6 we get

∣∣∣S3(c1, c2)− q
∣∣∣ =

∣∣∣∣∣∣∣∣∣2 +
∑
b ∈ Fq

g(b) 6= 0

(−1)Trk,2

(
f(b)
g(b)

)∣∣∣∣∣∣∣∣∣ ≤ 2 +

∣∣∣∣∣∣∣∣∣
∑
b ∈ Fq

g(b) 6= 0

(−1)Trk,2

(
f(b)
g(b)

)∣∣∣∣∣∣∣∣∣ ≤ 2 + a
√
q,

for some positive constant a ∈ R (independent of q), implying that
∣∣S3(c1, c2)

∣∣ = q +O(
√
q).
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For t = 4 we use part (iv) of Lemma 2 and the case t = 3.

S4(c1, c2) = 2
(
q2 + q + 1

)
−

∑
b∈F∗

q\{−c1}

∣∣∣∣S3

(
b,

bc2
b+ c1

)∣∣∣∣
= 2

(
q2 + q + 1

)
− S3

(
1,

c2
1 + c1

)
−

∑
b∈F∗

q\{−c1,1}

∣∣∣∣S3

(
b,

bc2
b+ c1

)∣∣∣∣
= 2

(
q2 + q + 1

)
−O(q)− (q − 3) ·

(
q +O(

√
q)
)

= q2 +O
(
q1.5
)

Note that in the above estimate it was crucial that we could use that for most values of b, the value of∣∣∣S3

(
b, bc2
b+c1

)∣∣∣ is asymptotically q.

For t ≥ 5 we can apply induction with base case t = 4. The induction step is the same as above, only
that now we do not need to distinguish between cases. Indeed, suppose that the statement holds for all
5 ≤ t′ < t and consider the general case. By part (iv) of Lemma 2 and the induction hypothesis for t′ = t−1
we obtain

St(c1, c2) = 2
(
qt−2 + · · ·+ 1

)
−

∑
b∈F∗

q\{−c1}

∣∣∣∣St−1(b, bc2
b+ c1

)∣∣∣∣
= 2

(
qt−2 + · · ·+ 1

)
− (q − 2) ·

(
qt−3 +O

(
qt−3.5

) )
= qt−2 +O

(
qt−2.5

)
.

This finishes the proof of part (b).

3.2 Proof of part (a) of Theorem 2

In this subsection we prove part (a) of Theorem 2 by giving a relatively elementary argument using resultants.
Consider the multivariate equation system

fi(Y1, . . . , Yt) =

t∏
j=1

(Yj − Ci,j)− ai = 0, i ∈ [3], (10)

where Ci,j = −Aq
j−1

i for i ∈ [3] and j =∈ [t]. By the identity

N(A+B) =

t∏
j=1

(A+B)q
j−1

=

t∏
j=1

(Aq
j−1

+Bq
j−1

)

we have that for every solution Y ∈ Fqt of our original system the vector
(
Y, Y q, . . . , Y q

t−1
)
∈ (Fqt)t is a

solution of (10). These are all distinct, hence, to prove part (a) of Theorem 2, it will be enough to show
that (10) has at most 6

(
qt−3 + · · ·+ q + 1

)
solutions.

For polynomials p(z) = pnz
n + · · · + p1z + p0 and r(z) = rmz

m + · · · + r1z + r0 of degree n and m
respectively, in the variable z over some field F, their Sylvester matrix is the (n + m) × (n + m) matrix
Syl(p, r) = {si,j}i,j∈[n+m] with entries

si,j =

 pn+i−j if 1 ≤ i ≤ m
ri−j m+ 1 ≤ i ≤ m+ n

0 otherwise
.

For an example consider Figure 1. An important property of the Sylvester matrix is that the degree of the
greatest common divisor of p and r is n+m− rank(Syl(p, r)), in particular if p and r have a common root,
then the determinant of Syl(p, r), also called the resultant of p and r, is 0. This holds true even if pn = 0 or
rm = 0, that is, when n and m are only upper bounds on the degree of p and r. (See e.g. [43].) Now if p

14





p4 p3 p2 p1 p0 0 0
0 p4 p3 p2 p1 p0 0
0 0 p4 p3 p2 p1 p0
r3 r2 r1 r0 0 0 0
0 r3 r2 r1 r0 0 0
0 0 r3 r2 r1 r0 0
0 0 0 r3 r2 r1 r0


Figure 1: The Sylvester matrix for n = 4 and m = 3

and r are multivariate polynomials in the variables Y1, . . . , Yn over some field F , then we can write them as
univariate polynomials in Yn, and consider their Sylvester matrix (now with entries from F[Y1, . . . , Yn−1]).
We will call the determinant of this matrix the Sylvester resultant of p and r with respect to Yn, and denote it
by ResYn(p, r). Note that ResYn(p, r) is a polynomial in the variables Y1, . . . , Yn−1. From the above property
of the Sylvester matrix it follows that if (C1, . . . , Cn) is a common root of p and r, then (C1, . . . , Cn−1) is a
root of ResYn

(p, r).
Let us now return to the polynomials f1, f2, f3 ∈ Fqt [Y1, . . . , Yt]. Our plan is to compute gi = resYt

(fi, f3)

for i = 1, 2 and then g = ResYt−1
(g1, g2). Then by the above argument, if (C1, . . . , Ct) ∈ (Fqt)t is a common

root of f1, f2, and f3, then (C1, . . . , Ct−2) ∈ (Fqt)t−2 is a root of g.
For the computation for i ∈ [3] we introduce

hi = hi(Y1, . . . , Yt−2) =

t−2∏
j=1

(Yj − Ci,j),

and rewrite fi as univariate linear polynomial in Yt:

fi = (hi · (Yt−1 − Ci,t−1)) · Yt − (hi · Ci,t(Yt−1 − Ci,t−1) + bi) .

Then for i = 1, 2 we have

gi =ResYt
(fi, f3) =

∣∣∣∣ hi · (Yt−1 − Ci,t−1) −{hi · Ci,t(Yt−1 − Ci,t−1) + bi}
h3 · (Yt−1 − C3,t−1) −{h3 · C3,t(Yt−1 − C3,t−1) + b3}

∣∣∣∣
=

∣∣∣∣ hi · (Yt−1 − Ci,t−1) −hi · Ci,t(Yt−1 − Ci,t−1)
h3 · (Yt−1 − C3,t−1) −h3 · C3,t(Yt−1 − C3,t−1)

∣∣∣∣+

∣∣∣∣ hi · (Yt−1 − Ci,t−1) −bi
h3 · (Yt−1 − C3,t−1) −b3

∣∣∣∣
=hi · h3 · (Yt−1 − Ci,t−1)(Yt−1 − C3,t−1)

∣∣∣∣ 1 −Ci,t
1 −C3,t

∣∣∣∣− hi · b3(Yt−1 − Ci,t−1)

+ h3 · bi(Yt−1 − C3,t−1).

That is, gi = ci,2Y
2
t−1 + ci,1Yt−1 + ci,0 is a quadratic polynomial in Yt−1 with coefficients

ci,2 = hi · h3 ·
∣∣∣∣ 1 −Ci,t

1 −C3,t

∣∣∣∣ ,
ci,1 = −hi · h3 · (Ci,t−1 + C3,t−1)

∣∣∣∣ 1 −Ci,t
1 −C3,t

∣∣∣∣− hi · b3 + h3 · bi,

ci,0 = hi · h3 · Ci,t−1C3,t−1

∣∣∣∣ 1 −Ci,t
1 −C3,t

∣∣∣∣+ hi · b3Ci,t−1 − h3 · biC3,t−1.

Hence the resultant of g1 and g2 is the four-by-four determinant

g = ResYt−1(g1, g2) =

∣∣∣∣∣∣∣∣
c1,2 c1,1 c1,0 0
0 c1,2 c1,1 c1,0
c2,2 c2,1 c2,0 0
0 c2,2 c2,1 c2,0

∣∣∣∣∣∣∣∣ .
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Note that each ci,j is a quadratic polynomial in each of the variables Y1, . . . , Yt−2. In particular the degree
of g in any of the variables is at most 8. It turns out that this bound can be reduced.

Lemma 3. For 1 ≤ a ≤ t− 2 the coefficient of Y 8
a in g is 0.

Proof. The coefficient in question is clearly the determinant we get by replacing ci,j everywhere in the
determinant formula for g with the coefficient of Y 2

a in it. As

coeff(Y 2
a , ci,2) =

hi
Ya − Ci,a

· h3
Ya − C3,a

·
∣∣∣∣ 1 −Ci,t

1 −C3,t

∣∣∣∣ ,
coeff(Y 2

a , ci,1) = − hi
Ya − Ci,a

· h3
Ya − C3,a

· (Ci,t−1 + C3,t−1)

∣∣∣∣ 1 −Ci,t
1 −C3,t

∣∣∣∣
coeff(Y 2

a , ci,0) =
hi

Ya − Ci,a
· h3
Ya − C3,a

· Ci,t−1C3,t−1

∣∣∣∣ 1 −Ci,t
1 −C3,t

∣∣∣∣ ,
we have

coeff(Y 8
a , g) =

∣∣∣∣∣∣∣∣
coeff(Y 2

a , c1,2) coeff(Y 2
a , c1,1) coeff(Y 2

a , c1,0) 0
0 coeff(Y 2

a , c1,2) coeff(Y 2
a , c1,1) coeff(Y 2

a , c1,0)
coeff(Y 2

a , c2,2) coeff(Y 2
a , c2,1) coeff(Y 2

a , c2,0) 0
0 coeff(Y 2

a , c2,2) coeff(Y 2
a , c2,1) coeff(Y 2

a , c2,0)

∣∣∣∣∣∣∣∣
=

(
h1

Ya − C1,a

)2(
h2

Ya − C2,a

)2(
h3

Ya − C3,a

)4 ∣∣∣∣ 1 −C1,t

1 −C3,t

∣∣∣∣2 ∣∣∣∣ 1 −C2,t

1 −C3,t

∣∣∣∣2 ·D,
where

D =

∣∣∣∣∣∣∣∣
1 −(C1,t−1 + C3,t−1) C1,t−1C3,t−1 0
0 1 −(C1,t−1 + C3,t−1) C1,t−1C3,t−1
1 −(C2,t−1 + C3,t−1) C2,t−1C3,t−1 0
0 1 −(C2,t−1 + C3,t−1) C2,t−1C3,t−1

∣∣∣∣∣∣∣∣ .
Note that D is just the Sylvester resultant of the two quadratic univariate polynomials (Y − C1,t−1)(Y −
C3,t−1) and (Y − C2,t−1)(Y − C3,t−1). However, these two have C3,t−1 as a common zero and hence their
Sylvester resultant is 0. This implies that the coefficient of Y 8

a in g is 0.

To reduce the effective degree of g further, observe that h3 can be factored out from both c2,2 and c1,2,
which are the non-zero entries of the first column of the determinant defining g. Hence g = h3 · g∗ for some
polynomial g∗ ∈ Fqt [Y1, . . . , Yt−2]. Since h3 is linear in each variable, the degree of g∗ in every variable is at
most six.

If (C1, . . . , Ct) is a common zero of f1, f2, and f3, then, as the bis are non-zero, we have Cj 6= Ci,j , for
i ∈ [3] and j ∈ [t]. In particular h3(C1, . . . , Ct−2) 6= 0. On the other hand, by the properties of the Sylvester
resultant, we must have g(C1, . . . , Ct−2) = 0. This implies that g∗(C1, . . . , Ct−2) = 0.

Denote by g̃ the univariate polynomial that we obtain by substituting Yi = Y q
j−1

in g∗ for j ∈ [t − 2].
By the degree bounds on g∗ we get that the degree of g̃ is at most 6

(
1 + q + q2 + · · ·+ qt−3

)
, in particular

it has at most that many roots. Now if X is a solution to the original system, then
(
X,Xq, . . . , Xqt−1

)
is a

common root of the fis, hence
(
X,Xq, . . . , Xqt−3

)
is a root of g∗ and so X is a root of g̃. Consequently the

number of solution to the original system is also bounded by 6
(
1 + q + q2 + · · ·+ qt−3

)
.

3.3 Three equations with six solutions

This subsection is devoted to proving part (b) of Theorem 2. Meanwhile, on the way we also give a proof
of Theorem 3. As in the remainder of this subsection we will solely consider the case t = 3, to simplify
notation, from now on we will simply write N for the norm function N3.
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For two equations we already proved that in some degenerate cases the system of norm equations has
twice as many solutions as in the rest of the cases. Heuristically one could think that when considering three
equations it should be easier to find a system with 6 solutions among those which contain such exceptional
subsystems. That is the reason that we look at the particular system

N(X) = 1, N(X + 1) = −1, N(X +A) = −1, (11)

where A is a non-identity element of norm 1 in Fq3 .
In what follows, we will work out the details of the heuristics described above. We start by investigating

the exceptional norm equation system

N(X) = 1, N(X + 1) = −1, (12)

and the algebraic structure of its solution set S3(1,−1). In particular, in what follows, we prove Theorem 3.
To do so, first we observe that in this case the corresponding polynomial f3,1,−1 can be written in a product
form.

f3,1,−1(X) = (X + 1)q+1Xq+1 + (X + 1)q+1 +Xq+1 = X2q+2 +X2q+1 +Xq+2 + 3Xq+1 +Xq +X + 1

= (Xq+1 +X + 1) · (Xq+1 +Xq + 1) = h1(X) · h2(X). (13)

For i = 1, 2 let Hi denote the set of roots of hi in Fq and let N denote the set of elements in Fq3 with
norm 1. It is easy to see that N is an order q2 + q + 1 subgroup of the multiplicative group F∗q3 .

For general c1, c2 the polynomial f3,c1,c2 can have roots which are not in S3(c1, c2). The first part of
Theorem 3 states that this does not happen when (c1, c2) = (1,−1). We prove this in the following lemma.

Lemma 4. For every prime power q ≥ 2 we have

S3(1,−1) =
{
X ∈ Fq3 | h1(X) · h2(X) = 0

}
= H1 ∪H2.

Proof. By (13) and by part (i) of Lemma 2 we have S3(1,−1) ⊆ R4(1,−1) =
{
X ∈ Fq3 | h1(X) ·h2(X) = 0

}
.

Now let X ∈ Fq be such that h1(X) · h2(X) = 0. Then either

h1(X) = 0 and hence Xq = − 1

X + 1
= u(X), or h2(X) = 0 and hence Xq = −X + 1

X
= v(X).

In the first case

Xq2

= u
(
u(X)

)
= − 1

− 1
X+1 + 1

= v(X)

and

Xq3

= u
(
u
(
u(X)

))
= u

(
v(X)

)
= − 1

−X+1
X + 1

= X,

while in the latter case

Xq2

= v
(
v(X)

)
= −
−X+1

X + 1

−X+1
X

= u(X)

and

Xq3

= v
(
v
(
v(X)

))
= v
(
u(X)

)
= −
− 1
X+1 + 1

− 1
X+1

= X.

In particular, in both cases we have X ∈ Fq3 and Xq ·Xq2

= u(X)v(X). Accordingly,

N(X) = X ·Xq ·Xq2

= X · u(X) · v(X) = X ·
(
− 1

X + 1

)
·
(
−X + 1

X

)
= 1.
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Similarly, for the norm of X + 1 we get

N(X + 1) = (X + 1)(Xq + 1)(Xq2

+ 1) = (X + 1)(u(X) + 1)(v(X) + 1)

= (X + 1) ·
(
−X + 1

X
+ 1

)
·
(
− 1

X + 1
+ 1

)
= −1.

This shows that X ∈ S3(1,−1) and hence
{
X ∈ Fq3 | h1(X) · h2(X) = 0

}
⊆ S3(1,−1).

Note that Lemma 4, in particular, also shows that H1,H2 ⊆ N . The second part of Theorem 3 will
directly follow from the next proposition where we prove several helpful properties of the sets Hi.

Proposition 2. (i) H2 = H−11 .

(ii) Every A ∈ N \ {1} can be represented uniquely as a product A = A1 · A2 of an element A1 of H1 and
an element A2 of H2. This representation is given by

A1 =
Aq+1 − 1

1−Aq
and A2 =

A−Aq+1

Aq+1 − 1
∈ H2. (14)

(iii) H1 ∩H2 = H1 ∩ Fq = H2 ∩ Fq =
{
Y ∈ F : Y 2 + Y + 1 = 0

}
, in particular

H1 ∩H2 =

 {1} if q ≡ 0 (mod 3)
{α, α−1}, where α3 = 1, α 6= 1 if q ≡ 1 (mod 3)

∅ if q ≡ 2 (mod 3)
.

(iv) H1 and H2 are invariant under the Frobenius map X → Xq.

Proof. The statement of (i) follows from the simple fact h2
(

1
X

)
= h1(X)

Xq+1 .
For (ii) we first show the uniqueness of the representation of the form (14). Suppose that A ∈ N \ {1}

and A = A1 ·A2 with A1 ∈ H1 and A2 = A
A1
∈ H2. Then

Aq+1
1 +A1 + 1 = 0 and

(
A

A1

)q+1

+

(
A

A1

)q
+ 1 = 0.

By expressing Aq1 from the two equations we obtain

A1 + 1

A1
=
Aq+1

A1
+Aq.

Solving for A1 gives that the only possibility is

A1 =
Aq+1 − 1

1−Aq
.

This gives uniqueness and the stated formula (14) for A2 = A
A1

as well. It remains to verify that Ai ∈ Hi.
We consider first A1. Using N(A) = Aq

2+q+1 = 1 we get

h1(A1) =
Aq+1 − 1

1−Aq
·
(
Aq+1 − 1

1−Aq

)q
+
Aq+1 − 1

1−Aq
+ 1 =

Aq+1 − 1

1−Aq
· A

q2+q − 1

1−Aq2 +
Aq · (A− 1)

1−Aq

=

1
Aq2 − 1

1−Aq
·

1
A − 1

1−Aq2 +

1
Aq2+1

(A− 1)

1−Aq
=

1−A
Aq2+1 · (1−Aq)

+
A− 1

Aq2+1 · (1−Aq)
= 0,

and hence A ∈ H1. The verification of A2 ∈ H2 is a similar calculation that we leave to the reader.
To see the desired equalities of sets in (iii) note that for an element Y ∈ Fq3 we have h1(Y ) = h2(Y ) if

and only Y = Y q, which happens if and only if Y ∈ Fq. Then for 3|q we have X2 +X + 1 = (X − 1)2, while
otherwise the non-trivial third-roots of unity are in Fq if and only if 3|q − 1.

The statement of (iv) is a direct consequence of the fact that the Frobenius map is an automorphism of
the field Fq3that fixes Fq.
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Note that as in an order q2+q+1 multiplicative group any difference set must have size q+1, Theorem 3,
in particular, also implies that |H1| = |H1| = q + 1, which in turn is equivalent to the polynomials h1, h2
splitting into linear factors over Fq3 .

Next we connect our main interest, the solution set of (11), to the solution set of (12), and hence to the
difference sets H1, H2.

Proposition 3. An element Y ∈ Fq3 is a solution of (11) with parameter A ∈ N \ {1} if and only if Y and
A
Y are both contained in H1 ∪H2.

Proof. By Lemma 4 we know that Y and A
Y are both contained in H1 ∪ H2 if and only if they are both

solutions of (12). We show that this is equivalent to Y being a solution of (11).
Suppose first that Y ∈ K is a solution of (11). Then a fortiori Y is a solution of (12) and Y 6= 0. Also,

N

(
A

Y

)
=

N(A)

N(Y )
=

1

1
= 1 and N

(
A

Y
+ 1

)
= N

(
A+ Y

Y

)
=

N(A+ Y )

N(Y )
=
−1

1
= −1,

hence A
Y is also a solution of (12).

Conversely, assume that Y and A
Y are both solutions of (12). Then, in particular, Y satisfies the first

two equations from (11), as for the third one we have

N(Y +A) = N

(
Y

(
1 +

A

Y

))
= N(Y ) N

(
A

Y
+ 1

)
= 1 · −1 = −1,

and hence Y is a solution of (11).

By the previous proposition, when trying to solve (11) we will be looking for product representations
Y · AY of the element A involving factors from H1 ∪H2. To prove part (b) of Theorem 2 we will need to find
an element A ∈ N \ {1} that has three such product representations A = B1C1 = B2C2 = B3C3, such that
the six elements B1, C1, B2, C2, B3, C3 ∈ H1 ∪H2 are all distinct. For this we will crucially use that H1 and
H2 = H−11 are difference sets in N and inverses of each other.

Recall that if D is any difference set in some multiplicative group G then every element A ∈ G \ {1}
has a unique representation, called mixed representation, as a product B · C = A such that one of B and
C is from D and the other is from D−1. In the next propositions we summarize our knowledge about other
product representations. To this end we will call a product B · C = A a D-representation of the element
A ∈ G if both B and C are from D.

Proposition 4. Let D be an arbitrary difference set in some multiplicative group G. Then every A ∈ G has
at most one D-representation.

Proof. Let us assume that D1D2 = D3D4 for some D1, D2, D3, D4 ∈ D. Then D1D
−1
3 = D4D

−1
2 , and this,

by the difference set property, is either 1 or we have D1 = D4 and D2 = D3: in any case {D1, D2} =
{D3, D4}.

The explicit descriptions of our specific difference sets allow us to characterize when an Hi-representation
with distinct factors exists.

Proposition 5. Let q ≥ 3 be an odd prime power.

(i) A ∈ N has an H1-representation with different factors if and only if
(
A+ 1−Aq+1

)2 − 4A is a non-
zero square in Fq3 . In particular, A ∈ H1 has an H1-representation with different factors if and only
if A2 +A+ 1 is a non-zero square in Fq3 .

(ii) A ∈ N has an H2-representation with different factors if and only if (Aq+1 + Aq − 1)2 − 4Aq+1 is a
non-zero square in Fq3 . In particular, A ∈ H2 has an H2-representation with different factors if and
only if A2 +A+ 1 is a non-zero square in Fq3 .
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Proof. As the proof of the two parts is analogous, below we only present the one of (i).
Suppose first that A ∈ N has an H1-representation. This means that there is an element Y ∈ Fq3 such

that Y and A
Y are both roots of h1, i.e.

h1(Y ) = Y q+1 + Y + 1 = 0 and h1

(
A

Y

)
=

(
A

Y

)q
· A
Y

+
A

Y
+ 1 = 0.

After expressing Y q from both equations, letting them being equal and clearing denominators we obtain
Y 2 +

(
A+ 1−Aq+1

)
· Y +A = 0. Clearly, the role of Y and A

Y can be switched, which means that both Y

and A
Y are roots of the quadratic equation

X2 +
(
A+ 1−Aq+1

)
·X +A = 0. (15)

This is possible only if the discriminant

D =
(
A+ 1−Aq+1

)2 − 4A

is a nonzero square in Fq3 .

For the other direction suppose that D =
(
A+ 1−Aq+1

)2 − 4A is a nonzero square in Fq3 , i.e. there
is some element G ∈ F∗q3 such that D = G2. Then we know that the quadratic equation in (15) has two

different roots, namely X± = Aq+1−A−1±G
2 . Clearly, X+ ·X− = A, so to finish the proof it is enough to show

that X± ∈ H1, i.e. h1(X±) = 0.

Using N(A) = Aq
2+q+1 = 1 we have

Dq =
((
A+ 1−Aq+1

)2 − 4A
)q

=
(
Aq + 1−Aq

2+q
)2
− 4Aq =

=

(
Aq + 1− 1

A

)2

− 4Aq =
1

A2

((
Aq+1 +A− 1

)2 − 4Aq+2
)

=

=
1

A2

((
A+ 1−Aq+1

)2 − 4A
)

=
1

A2
D.

Then (
Gq

G

)2

=
(G2)q

G2
=
Dq

D
=

1
A2D

D
=

1

A2

and hence Gq

G = ± 1
A . However

N

(
Gq

G

)
=
Gq

G
·
(
Gq

G

)q
·
(
Gq

G

)q2

=
Gq

G
· G

q2

Gq
· G
Gq2 = 1

which, excludes Gq

G = − 1
A . Therefore Gq = 1

AG. As a consequence we get

(X±)q = φ

(
Aq+1 −A− 1±G

2

)
=
Aq

2+q −Aq − 1±Gq

2
=

=
1
A −A

q − 1± 1
AG

2
=

1

A
X± +

1−Aq+1

A
.

Now we are ready to substitute X± into h1.

h1(X±) = X± · (X±)q +X± + 1 = X± ·
(

1

A
X± +

1−Aq+1

A

)
+X± + 1 =

=
1

A

(
X2
± +

(
A+ 1−Aq+1

)
·X± +A

)
= 0,

where at the last equality we just used that X± are the roots of (15).
To finish the proof just note that when A ∈ H1 then (A+ 1− Aq+1)2 − 4A simplifies to 4(A2 + A+ 1),

which, is a non-zero square in Fq3 if and only A2 +A+ 1 is such.
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For the elements of Hi the existence of a H3−i-representation follows directly.

Proposition 6. If A ∈ Hi then its unique H3−i-representation is given by 1
Aq · 1

Aq2 = A.

Proof. On the one hand, as A ∈ Hi ⊆ N , we have that A = N(A)

Aq2+q
= 1

Aq · 1
Aq2 . On the other hand, by

Proposition 2, part (i) we have 1
A ∈ H3−i, and so by Proposition 2, part (iv) we have 1

Aq =
(
1
A

)q ∈ H3−i

and 1
ψ(A) =

(
1
Aq

)q ∈ H3−i. The uniqueness follows from Proposition 4.

To continue, we will need to split the proof into three different cases based on the remainder of p (mod 3).

3.3.1 Case I: p ≡ 2 (mod 3)

In this subsection we settle the case when p ≡ 2 (mod 3), in particular the case of even characteristic.

First we show the existence of six solutions when q is congruent to 2 modulo 3 (as opposed to p). Recall
that to do so we aim to find an element A ∈ N \ {1}, which, next to its unique mixed representation
A = A1 · A2 with A1 ∈ H1 and A2 ∈ H2 (which exists by Proposition 2), also has an Hi-representation
A = Bi · Ci for both i = 1 and 2, such that Bi 6= Ci, and these six elements are all different. Note that
the latter follows immediately from the fact that, when q ≡ 2 (mod 3) the sets H1 and H2 are disjoint by
Proposition 2, part (iii).

In order to find the appropriate element A for which the Hi-representations exist, for a set H ⊆ N we
define

H∗ := {B · C : B,C ∈ H, B 6= C}

to be the set of its pairwise products from distinct factors, and show that H∗1 ∩H∗2 is not empty. An element
from this intersection is clearly suitable.

First note that by Proposition 5, part (ii) the pairwise products of the elements of Hi are all distinct,

hence the cardinality of H∗i is
(|Hi|

2

)
= q2+q

2 . Both H∗1 and H∗2 are subsets of the (q2 +q)-element set N \{1}.
For this note that Hi is contained in N , which is closed under multiplication, and that 1 6∈ H∗i since Hi is
disjoint from its inverse H3−i by our assumption on q and Proposition 2, part (iii). Hence the only way H∗1
and H∗2 could be disjoint is if their union is N \ {1}. In this case however it would also hold that

σ(N \ {1}) = σ(H∗1) + σ(H∗2), (16)

where σ(S) denotes the sum of the elements of a subset S ⊆ Fq3 . On the one hand the set N is the collection

of all q2 + q + 1 roots in Fq3 of the polynomial Xq2+q+1 − 1 and so σ(N ) is (−1) times the coefficient of

Xq2+q in this polynomial, which is 0. From this we obtain that σ(N \ {1}) = −1. On the other hand Hi is
the set of all q + 1 roots in Fq3 of the polynomial hi(X), hence σ(H∗i ) is the coefficient of Xq−1 in hi(X),
which is 0 for q > 2. We arrived to a contradiction, as the left hand side of (16) is (-1), while the right hand
side is 0. This settles the case when q ≡ 2 (mod 3).

For the more general case, next note that Fq6 is a cubic extension of Fq2 and the norm of an element
B ∈ Fq3 ⊆ Fq6 is the same, irrespective in which of the two fields we compute it: NFq3/Fq

(B) = NFq6/Fq2
(B).

This means that if for an element A ∈ Fq3 with NFq3/Fq
(A) = 1 the system (11) with the norm function

NFq3/Fq
has six distinct solutions X1, . . . , X6 ∈ Fq3 , then the very same six elements are also solutions of the

the system (11) with the norm function NFq6/Fq2
.

Now let p ≡ 2 (mod 3) be a prime and let q = pk = p`2
m

be an arbitrary power where ` is odd. Then
from above we get the required six distinct solutions when m = 0 and p` > 2. By repeated application of
the previous observation, the statement also follows for any positive integer m and p` > 2. These include all
the powers when p > 2.

When p = 2 then only those powers are included where ` ≥ 3. So we are left with prime powers of the
form 22

m

. To settle these last cases one first resolves the problem when the prime power is 22
2

= 16 and
then uses the above squaring trick to deduce the case of arbitrary 22

m

= 162
m−2

.
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For q = 16 we have found the appropriate A ∈ F163 of norm 1, for which the system (11) has six distinct
solution with the aid of a computer. To describe this example, let U be the primitive element of F∗163 whose
minimal polynomial over F2 is X12 +X7 +X6 +X5 +X3 +X + 1, and consider the system

N(X) = 1, N(X + 1) = 1, N(X + U405) = 1.

By Magma Calculator [20] it is easily verified that A = U405 is in N \ {1}, and that the system has indeed
six solutions, namely U1725, U2775, U3435 ∈ H1 and U1065, U2130, U2370 ∈ H2 with

A = U1065 · U3435 = U1725 · U2775 = U2130 · U2370.

3.3.2 Case II: p = 3

In this subsection we settle the case when p = 3. Our strategy is the same as in the previous subsection, but
now we do this in two steps. First we find an element that has both H1- and H2-representation, but in one
of them the factors are not distinct.

Lemma 5. For i = 1 or 2 there is an element C ∈ Hi \ {1}, such that C2 has an H3−i-representation
C2 = B · E with distinct factors B 6= E.

Proof. We want to find a C ∈ Hi \{1} for i = 1 or 2, such that C2 has an H3−i-representation with different
elements B and E. This happens exactly if one of the formulas in Proposition 5 is a nonzero square in
Fq3 when we substitute A = C2. It turns out that after simplifying the substituted formula of (i) using
h2(C) = Cq+1 + Cq + 1 = 0 and clearing its square denominator we obtain the very same expression D(C)
as after simplifying the substituted formula of (ii) using h1(C) = Cq+1 + C + 1 = 0 and clearing its square
denominator:

D = D(C) =
(
C2(C + 1)2 + (C + 1)2 − C2

)2 − 4(C + 1)4C2 =

=
(
C2 + 3C + 1

)
·
(
C2 + C + 1

)
·
(
C2 + C − 1

)
·
(
C2 − C − 1

)
.

We aim to find an element C ∈ H1 ∪ H2 \ {1} for which D is a square in Fq3 , or equivalently, N(D) is a
square in Fq.

As it turns out the factors of N(D) can be conveniently expressed using the trace Tr3,q(C) = C + Cq +

Cq
2

=: τ of C:

N(C2 + 3C + 1) = −τ2 − 3τ − 1,

N(C2 + C + 1) = τ2 + 3τ + 9,

N(C2 + C − 1) = τ2 + 3τ + 1,

N(C2 − C − 1) = −τ2 − 3τ − 1,

and so
N(D) = (−τ2 − 3τ − 1)2(τ2 + 3τ + 9)(τ2 + 3τ + 1).

In characteristic 3 this expression is a square if and only if τ2 + 1 is a square. Using Theorem 5.18 from [46]
we get that ∑

Y ∈Fq

ηFq
(Y 2 + 1) = −ηFq

(1) = −1,

Therefore, as Y 2 + 1 = 0 has at most two solutions, for at least
q − 3

2
elements y ∈ Fq the expression Y 2 + 1

is a square.
This ensures the existence of many good “traces”, which we can use to construct many good C, as we

now show that the trace function is a 3-to-1 function on H1 ∪ H2 \ {1}. That is, if Tr(C1) = Tr(C2) for
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C1, C2 ∈ H1 ∪ H2 \ {1} then C1 and C2 are conjugates of each other. For this we note that the minimal
polynomial of an element C of H1 ∪H2 \ {1} can be expressed just by the trace τ of C:

mτ (X) = (X − C)(X − Cq)(X − Cq
2

) = X3 − τX2 − (τ + 3)X − 1.

Hence if C1 and C2 have the same trace, then they have the same minimal polynomial.

Consequently there are exactly |H1∪H2\{1}|
3 = 2q

3 elements in F∗q that are traces of some element in
H1 ∪H2 \ {1}.

In conclusion, if q > 9 then there are at least
(
2q
3 + q−3

2

)
− q = q−9

6 > 0 elements t ∈ Fq which are traces
of an element C from H1 ∪ H2 \ {1}, and for which t2 + 1, and hence also D = D(C), is a square. This
completes the proof for q > 9.

Otherwise, by our assumption on q, we are left with the case q = 9. Then we can directly find a τ ∈ F9

such that it is the trace of an element C ∈ H1∪H2 \{1} and τ2 +1 is a nonzero square in F9. In fact τ = −1
will do. First note that τ2 + 1 = 1 + 1 = 2 is in F3 and hence is a square in its quadratic extension F9. Now,
to finish the argument it is enough to show that m−1(X) = X3 + X2 + X − 1 is the minimal polynomial
of some C ∈ H1 ∪ H2 \ {1} over F9, because then we automatically have Tr(C) = τ = −1. It is immediate
that m−1(X) is irreducible over F3, hence it can not have a root in F9, and therefore it is irreducible over
F9. Next consider the polynomial h1(X) for q = 3. Then (when computed over F3) we have

h1(X) = X4 +X + 1 = (X − 1)(X3 +X2 +X − 1) = (X − 1)m−1(X),

which in view of Lemma 4 means that the roots of m−1(X) solve the system (12) with norm function NF33/F3
.

But then, as we have seen earlier, the roots of m−1(X) also solve the system (12) with norm function NF93/F9
,

and hence, again by Lemma 4 and the fact m−1(1) 6= 0, we have that any root of m−1 is in H1 ∪ H2 \ {1},
as desired.

Let us now fix elements C ∈ Hi \ {1} and B,E ∈ H3−i guaranteed by Lemma 5. We show that the
element A := C

E is the kind we are looking for. First observe that by Proposition 2, part (i)

A = C · 1

E
= B · 1

C

provide a Hi- and H3−i-representation of A, respectively. Note furthermore that as (Hi \ {1}) ∩ H3−i = ∅,
we have C 6= E and hence A 6= 1. Consequently, by Proposition 2, part (ii) there exists a unique mixed
representation A = A1 ·A2 with Ai ∈ Hi.

Next we show that these six elements from the representations are all distinct. By Proposition 3 these
elements then provide six distinct solutions of (11).

Lemma 6. The elements Ai, C,
1
E ∈ Hi and A3−i,

1
C , B ∈ H3−i are all distinct.

Proof. For the distinctness first we establish that none of the six elements is 1. This is certainly true for
C and 1

C by the choice of C in Lemma 5. Now assume that B or E is 1, say B = 1 (the argument in
the case E = 1 is analogous). On the one hand, as E ∈ H3−i, by Proposition 6 E has a unique Hi-
representation: E = 1

Eq · 1
Eq2 . On the other hand E = B ·E = C · C is also a Hi-representation of E, so by

the uniqueness we must have Eq = 1
C = Eq

2

= φ(Eq), and thus Eq ∈ Fq and Eq = 1
C ∈ H3−i. That means

φ(E) = Eq ∈ Fq ∩H3−i = H1 ∩H2 = {1} by Proposition 2, part (iii), which is only possible if E = 1. This
contradicts C 6= 1 and implies B,E 6= 1. Finally assume that A1 or A2 is equal to 1, say A1 = 1. Then
A1 ·A2 = A = B · 1

C are two H2-representations of A. By uniqueness either B or C should be 1, which is a
contradiction by the above.

Since none of the six elements is 1 and by part (iii) of Proposition 2 H1 ∩H2 = {1}, we established that

{Ai, C,
1

E
} ∩ {A3−i, B,

1

C
} = ∅.
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We are left to show that
∣∣{Ai, C, 1

E }
∣∣ = 3 and

∣∣{A3−i, B,
1
C

∣∣ = 3. Since they are proved analogously we
present just the first one.

If Ai = C, then A3−i = 1
E , which is a contradiction as A3−i ∈ H3−i and 1

E ∈ Hi and none of them is
1. If Ai = 1

E , then A3−i = C, which is a contradiction similarly as A3−i ∈ H3−i and C ∈ Hi and none
of them is 1. Finally, suppose that C = 1

E . Then we have B = C2 · 1
E = C3, which is a contradiction as

B ∈ H3−i \ {1} and C3 ∈ Hi \ {1} because the polynomial hi is defined over F3, hence if hi(C) = 0, then
hi(C

3) = 0 as well.

3.3.3 Case III: q ≡ 1 (mod 3) odd

The last case we consider is when q ≡ 1 (mod 3). Note that this, in particular, covers the cases when p ≡ 1
(mod 3). We remark that the proof below can be adapted whenever p ≥ 5, but for simplicity we only present
it for the particular case q ≡ 1 (mod 3).

As in the previous subsection we aim again to find an A which has three distinct representations, but
instead of looking for it in N \{1} we will restrict ourselves toH1∪H2. With such a choice of A, Proposition 2
still guarantees a mixed representation A = A1 ·A2 with Ai ∈ Hi, but now, if say A ∈ Hi then Proposition 6
also guarantees an H3−i representation A = 1

Aq · 1
Aq2 . Therefore, what is left is to find an Hi-representation

A = B · C with different factors B,C ∈ Hi. According to Proposition 5 such a representation exist exactly
if A2 + A + 1 is a non-zero square in Fq3 . To look for such an element, it will be convenient to embed the
set H1 ∪H2 into a more structured ambiance.

For this, let us fix a non-trivial third root of unity α ∈ Fq (which exists when 3 | q − 1) and consider the
linear fractional transformation γ : Fq3 \ {α} → Fq3 , defined by

γ(Z) =
Z − α−1

Z − α
.

Further let us denote by G multiplicative groups of 3(q − 1)-st roots of unity in Fq3 , i.e.

G =
{
Y ∈ F∗q3 | Y 3(q−1) = 1

}
.

Note that as q ≡ 1 (mod 3), G is well defined and has size 3(q − 1).

Lemma 7. If q ≡ 1 (mod 3) then the map Z 7→ γ(Z) is a bijection from the symmetric difference H14H2 =
(H1 \ H2) ∪ (H2 \ H1) to G \ F∗q .

Proof. Let Z ∈ H14H2. As α, α−1 ∈ H1 ∩ H2 the value γ(Z) well defined and nonzero. We aim to show
that γ(Z) ∈ G \ F∗q , which happens exactly if γ(Z)q−1 6= 1 but γ(Z)3(q−1) = 1. Without loss of generality
we may assume that Z ∈ H1 \ H2, the other case can be handled analogously.

γ(Z)q =
(Z − α−1)q

(Z − α)q
=
Zq − α−q

Zq − αq
=
Zq − α−1

Zq − α

As Z ∈ H1, we have Zq = −Z+1
Z , and hence, using 1 + α+ α−1 = 0 and α2 = α−1 we obtain

γ(Z)q =
−Z+1

Z − α−1

−Z+1
Z − α

=
Zα−1 + Z + 1

Zα+ Z + 1
=

Zα− 1

Zα−1 − 1
=
Z − α−1

Z − α
· α−1 = γ(Z) · α−1.

Therefore, γ(Z)q−1 = α−1 6= 1, but γ(Z)3(q−1) = (α−1)3 = 1, as desired.
γ is clearly injective because it is a nontrivial fractional linear map, and hence to verify that γ is indeed a

bijection between the two sets it is enough to show that they are of the same size. On the one hand, as F∗q is
fully contained in G, the set G \F∗q has size 3(q− 1)− (q− 1) = 2(q− 1). On the other hand, as |Hi| = q+ 1
and H1 ∩H2 = {α, α−1}, the set H14H2 has the same size.

Recall that we want to find an element A ∈ H1 ∪ H2 for which A2 + A + 1 is a non-zero square in Fq3 .
This will be done using the following lemma.
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Lemma 8. If q ≡ 1 (mod 3), then for every A ∈ H14H2, we have

ηFq3 (A2 +A+ 1) = ηFq3 (γ(A)),

that is, A2 +A+ 1 is a square in Fq3 if and only if γ(A) is such.

Proof. Let r ∈ Fq and s ∈ Fq be a square root of A2+A+1 and γ(A), respectively. Then ηFq3 (A2+A+1) = 1

if and only if rq
3−1 = 1 (i.e., r ∈ Fq3) and ηFq3 (γ(A)) = 1 if and only if sq

3−1 = 1 (i.e., s ∈ Fq3).

As α and α−1 are the roots of the polynomial X2 +X + 1, we have

r2 = A2 +A+ 1 = (A− α−1) · (A− α) = γ(A) · (A− α)2 = s2 · (A− α)2.

Then, since q3 − 1 is even and A− α ∈ Fq3 , we have

rq
3−1 = (s · (A− α))q

3−1 = sq
3−1 · (A− α)q

3−1 = sq
3−1,

and so they equal 1 at the same time, as required.

Now, to select the element we are looking for, fix a generator g of the cyclic group G and let A ∈ H14H2

for which γ(A) = g2. Note that then the previous lemma ensures that A2+A+1 is a square and in particular
we have A /∈ Fq. This way we obtained the three different representations discussed before. The only thing
we are left with is to show that the six elements A1, A2,

1
Aq ,

1
Aq2 , B,C are all different. We already know

that B 6= C and, as A /∈ Fq, we also have 1
Aq 6= 1

Aq2 . Now suppose we have A1 = A2. This would imply that
A1 = A2 ∈ H1∩H2 ⊆ Fq, and hence A belongs to Fq, a contradiction. Next suppose that the mixed and the
H3−i representations would coincide. This would be only possible if 1

Aq or 1
Aq2 would belong to H1∩H2 ⊆ Fq

which in turn would imply A ∈ Fq, again a contradiction. The same argument also shows that the H1 and
H2-representations must be different. At last suppose that the mixed and the Hi representations coincide,
say we have A1 = B and A2 = C. Then one these elements would belong to H1 ∩ H2 and hence would be
a non-trivial third root of unity, and therefore A would be of the form αY or α−1Y for some Y ∈ H1 ∪H2.
The contradiction in this case wil follow from the lemma below.

Lemma 9. If q ≡ 1 (mod 3) and A ∈ H14H2 then αA,α−1A /∈ H1 ∪H2.

Proof. Assume to the contrary that cA ∈ H1 ∪ H2 for c = α or α−1. As A /∈ Fq we must then also have
cA /∈ Fq, so by Lemma 7 both γ(A) and γ(cA) belong to G \ F∗q . By definition

γ(αA) =
αA− α−1

αA− α
=
A− α−2

A− 1
=
A− α
A− 1

and

γ(α−1A) =
α−1A− α−1

α−1A− α
=

A− 1

A− α2
=

A− 1

A− α−1
,

which in particular implies that γ(A) · γ(αA) · γ(α−1A) = 1. Since two of the three factors are in G, so must
be the third.

By the definition of G, the three elements γ(A)3, γ(αA)3 and γ(α−1A)3 all have to be roots of the
polynomial Xq−1− 1 = 0 and hence belong to Fq. A straightforward but tedious computation shows that A
can be expressed as

A =
αγ(A)3γ(αA)3 + α2γ(αA)3 + 1

1− α2γ(A)3γ(αA)3 − αγ(αA)3
.

Since all the ingredients were shown to be in Fq, so has to be A, a contradiction.
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3.4 Proof of Corollary 1 and 2

We start by proving the key ingredient, Proposition 1, which connects common degrees of vertex sets to
solution sets of norm equations.

Proof of Proposition 1. By definition, the common neighbourhood of T is the solution set of the system

Nt−1(Vi +X) = vix, i ∈ [`]. (17)

By dividing the first ` − 1 equations with the last one and applying the straightforward change of variable
Y = 1

X+V`
we arrive at the norm equation system

Nt−1(Ai + Y ) = ai, i ∈ [`− 1] (18)

where for i ∈ [` − 1] the parameters Ai = Ai(T ) and ai = ai(T ) are as described in the statement. This
transformation also shows that if (Y, y) is a solution to (17), then Φ

(
(Y, y)

)
= 1

Y+V`
is a solution of (18).

Note that Φ
(
(Y, y)

)
is always well-defined, as N(Y + Y`) = v` · y 6= 0, and hence Y + V` 6= 0. By definition

Φ
(
(Y, y)

)
6= 0 and so we get Φ(N (T )) ⊆ St−1

(
A(T )

)
\ {0}.

As N (N (T )) ⊇ T 6= ∅, the neighborhood N (T ) is generic, so Φ is injective on N (T ).

For the surjectivity of Φ let Z ∈ St−1
(
A(T )

)
\{0} and consider the vertex

(
1

Z
− V`,

1

v` ·N(Z)

)
∈ Φ−1(Z).

Next we show that this vertex belongs to N (T ). Indeed, for i ∈ [`− 1] we have

N

(
Vi +

(
1

Z
− V`

))
= N

(
1

Ai
+

1

Z

)
= N

(
Z +Ai
AiZ

)
=

ai
N(Ai)N(Z)

=
1

v` ·N(Z)
· vi,

and for i = ` we have

N

(
V` +

(
1

Z
− V`

))
= N

(
1

Z

)
=

1

v` ·N(Z)
· v`.

To finish the proof just note that 0 ∈ St−1
(
A(T )

)
if and only if N(Ai) = ai = vi

v`
·N(Ai) for every i ∈ [`− 1],

which in turn is equivalent to v1 = v2 = · · · = v`, i.e. to ξ(T ) = 1.

Now Corollary 1 is a direct consequence of Theorem 1 and Proposition 1. To prove Corollary 2 we need
a few more details.

First we connect solutions of general norm equation systems with three equations to four adjacencies in
the projective norm-graph.

Lemma 10. Let P =
{

(A1, a1), (A2, a2), (A3, a3)
}
⊆ F∗q3 × F∗q and Y ∈ S3(P ) \ {0}. Then for any (V, v) ∈

Fq3 × F∗q in the projective norm graph NG(q, 4) the vertex
(

1
Y − V,

1
vN(Y )

)
is adjacent to all the vertices(

1

A1
+ V,

a1v

N(A1)

)
,

(
1

A2
+ V,

a2v

N(A2)

)
,

(
1

A3
+ V,

a3v

N(A3)

)
, (V, v).

Proof. We check all the adjacencies from the statement. For the first three vertices, using N(Y + Ai) = ai,
we have

N

(
1

Ai
+ V +

1

Y
− V

)
= N

(
Y +Ai
AiY

)
=

N(Y +Ai)

N(AiY )
=

ai
N(Ai) N(Y )

=
aiv

N(Ai)
· 1

v ·N(Y )
.

For the last vertex we have

N

(
V +

1

Y
− V

)
= N

(
1

Y

)
= v · 1

v ·N(Y )
,

as requested.
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By Theorem 2 there exists an element A ∈ N \{1} such that for the triple U =
{

(0, 1), (1,−1), (A,−1)
}
⊆

F∗q3 ×F∗q we have
∣∣S3(U)

∣∣ = 6. If we choose any element C ∈ Fq3 \
(
{0,−1,−A}∪S3(U)

)
and D ∈ F∗q3 , then

the transformed system with parameters

UC,D =

{(
C

D
,

1

N(D)

)
,

(
C + 1

D
,− 1

N(D)

)
,

(
C +A

D
,− 1

N(D)

)}
will still have 6 solutions. Moreover, by the choice of C we made sure that all three of the first coordinates and
all the 6 solutions are nonzero. Therefore, we can apply Lemma 10 to obtain that for any (V, v) ∈ Fq3 × F∗q
the set

TC,D,V,v =

{(
D

C
+ V,

v

N(C)

)
,

(
D

C + 1
+ V,− v

N(C + 1)

)
,

(
D

C +A
+ V,− v

N(C +A)

)
, (V, v)

}
of vertices has 6 common neighbours in NG(q, 4), namely

N (TC,D,V,v) =

{(
1

Y
− V, 1

vN(Y )

)
: Y ∈ S3(UC,D)

}
.

Note that for any (ordered) quadruple Q of points of NG(q, 4) there is at most one selection of C,D, V
and v such that Q = TC,D,V,v. Furthermore, in order for these 24 adjacencies to indeed give rise to a K4,6

in NG(q, 4), we need to make sure that none of them represents a loop. If q is even, then NG(q, 4) has no
loop edges, so all the participating 4 + 6 vertices are by default different, and they form a K4,6. Now assume
q is odd and assume C,D, v to be fixed. We call an element V ∈ Fq3 bad if for this element some of first
in TC,D,V,v coincides with some other first coordinate in N (TC,D,V,v). Note that if we forbid bad elements
for our choice of V then already the first coordinates forbid a loop to appear. However, for every vertex
from TC,D,V,v and any other vertex from TC,D,V,v there exists exactly one element V which makes their first
coordinates coincide, and therefore, together there are at most 24 bad elements.

In conclusion we get at least (q3 − 9)(q3 − 1)(q3 − 24)(q − 1) = (1 + o(1))q10 quadruples4 which host a
K4,6. Some of these still might coincide, but at most with multiplicity 4! = 24, so altogether we still get
Ω(q10) different copies of K4,6.

3.5 Proof of Theorem 4 and Corollary 3 and 4

We start by introducing some further notation. Denote by ∆d(q, t) and δd(q, t), respectively, the largest and
smallest possible common degree of a generic d-tuple of vertices in the projective norm graph NG(q, t). For
d = 0, we set ∆0(q, t) = δ0(q, t) = |V (NG(q, t)|.

Now let H be a simple `-degenerate graph and suppose that t ≥ 3. To simplify notation put v = v(H)
and m = e(H). Further let v1, . . . , vv be an ordering of the vertices of H witnessing its `-degeneracy, i.e.
every vertex vi has at most ` neighbours in {v1, . . . , vi−1}. For 1 ≤ i ≤ v put Ni = N (vi) ∩ {v1, . . . , vi−1}
and di = |Ni|, in particular N1 = ∅ and d1 = 0. With this notation for our ordering we have di ≤ ` for
1 ≤ i ≤ v.

To count the number of labeled copies of H in NG(q, t) we will embed the vertices of H into NG(q, t)
one-by-one according the above order. Suppose we have already embedded v1, . . . , vi−1. To embed vi, we
have to choose a vertex from the common neighbourhood Ti of the image of Ni under this embedding. As
Ti is of size di, it has at most ∆di(q, t) common neighbours in NG(q, t), so we have at most ∆di(q, t) choices
for vi. Accordingly

XH(NG(q, t)) ≤
v∏
i=1

∆di(q, t).

To obtain a similar lower bound we can repeat the same argument with the extra condition that during the
embedding we want every possible set of already embedded vertices of size at most ` to be generic. We will

4Note that we assume q ≥ 5, so all factors are positive.
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achieve this simply by mapping the vertices of H each time to a vertex of NG(q, t) with a first coordinate
different from all the previous ones.

So suppose that we have already embedded v1, . . . , vi−1 with the desired property. To embed vi, we have
to choose a vertex from the common neighbourhood Ti of the image of Ni under this embedding whose first
coordinate is different from those of the images of v1, . . . , vi−1. The image of Ni is now a generic set of size
di, it has at least δdi(q, t) common neighbours. To maintain our extra condition, when choosing the image
of vi we have to exclude the common neighbours with first coordinate equal to the first coordinates of the
previously selected ones. If di = 0 then this means that we have to exclude (i − 1)(q − 1) vertices, but
there still will be at least δ0(q, t) − (i − 1)(q − 1) ≥ δ0(q, t) − vq candidates for the image of vi. If di > 0,
then, as deg(Ti) ≥ di > 0, it must be generic set, and hence cannot contain two vertices with the same first
coordinate. Therefore, for every previously selected vertex we have to exclude at most one vertex from Ti,
and so there still will be at least δdi(q, t)− (i− 1) ≥ δdi(q, t)− v candidates for the image of vi. Accordingly
we obtain that

XH(NG(q, t)) ≥
v∏
i=1

(δdi(q, t)− vχi) ,

where χi = q if di = 0 and χi = 1 otherwise.
Now to finish the proof of Theorem 4 we will consider two cases.
First suppose ` = 3 and t ≥ 5 or ` = 2 and t ≥ 3. In both cases by Corollary 1 we know that there exists

a positive constant C such that for all d ≤ ` we have

|∆d(q, t)− qt−d|, |δd(q, t)− qt−d| ≤ Cqt−d−
1
2 . (19)

Recall that by the construction of the order di ≤ ` for i ∈ [v], hence using (19) we get

XH(NG(q, t)) ≤
v∏
i=1

∆di(q, t) ≤
v∏
i=1

(
qt−di + Cqt−di−

1
2

)
=

(
v∏
i=1

qt−di

)(
1 +

C
√
q

)v
= qt·v−(d1+...dv)

(
1 +

C
√
q

)v
= qt·v−m

(
1 +

C
√
q

)v
≤ qt·v−m

(
1 + C ′

v
√
q

)
for some appropriate positive constant C ′, whenever v = o(

√
q). Similarly, again using (19), we get

XH(NG(q, t)) ≥
v∏
i=1

(δdi(q, t)− vχi) ≥
v∏
i=1

(
qt−di − Cqt−di− 1

2 − vχi
)

≥
v∏
i=1

(
qt−di − C ′′qt−di− 1

2

)
for some appropriate positive constant C ′′ ≥ C. Note that for all sets of parameters in the case di = 0 we
have t− 1

2 ≥
3
2 and in the case di > 0 we have t− di − 1

2 ≥
1
2 , hence, whenever v = o(

√
q) ,then for given C

such a C ′′ really exists. Then, similarly as before, we get

XH(NG(q, t)) ≥

(
v∏
i=1

qt−di

)(
1− C ′′
√
q

)v
= qt·v−m

(
1− C ′′
√
q

)v
≥ qt·v−m

(
1− vC

′′
√
q

)
.

The two bounds together give that XH(NG(q, t)) is asymptotically qt·v−m as desired.
Finally suppose ` = 3 and t = 4. In this case, according to Corollary 1, ∆3(q, 4) and δ3(q, 4) differ

asymptotically by a factor of 2, so the same proof only yields

qt·v−m
(
1− o(1)

)
≤ XH(NG(q, 4)) ≤ 2c(H)qt·v−m

(
1 + o(1)

)
,

where c(H) is the minimum number of indicies with di = 3 in any witnessing ordering of the vertices of H.
Accordingly, this shows that XH(NG(q, 4)) = Θ(qt·v−m) for any H with v = o(

√
q) and c(H) bounded.

This, on the one hand, completes the proof of Theorem 4. On the other hand, as the lower bounds in the
two cases are identical, they also conclude Corollary 3. Finally, Corollary 4 can be obtained by combining
the lower bound from Corollary 3 with the general upper bound of Alon and Shikhelman from [7].
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4 Concluding remarks

Several interesting questions remain open.

1. Common neighbourhoods. Corollary 1 fully describes the common neighbourhoods of sets of vertices
of size at most 3. In most cases the number of common neighbours is asymptotically as expected in a
uniform random graph with the same edge density. We conjecture that the analogous “`-wise independence”
phenomenon occurs for larger sets of vertices as well.

Conjecture 2. For arbitrary integers 4 ≤ ` < t all but o(n`) sets of ` vertices in NG(q, t) have (1+o(1))qt−`

common neighbours.

2. Complete bipartite graphs in projective norm graphs. In Corollary 2 we could only find special
kinds of copies of K4,6, whose number is only roughly q10. We think however, that the number of copies of
K4,6 in NG(q, 4) should be the same order as their typical number in the random graph of the same edge
density.

Conjecture 3. The number of copies of K4,6 in NG(q, 4) is Θ(q16).

The determination of s(t) is still widely open for t ≥ 5, when we do not even know whether there is a
Kt,t in NG(q, t) for every large enough q. While it is probably more realistic to expect that there are copies
of Kt,(t−1)! for every t ≥ 5 and large enough q (besides numerology, i.e. that s(t) = (t− 1)! for t = 2, 3 and
4, there are also algebro-geometric heuristics pointing towards this), we harbour a slim hope that t = 4 was
still a special case. At least the graph NG(q, 4) seems quite special, with a unique structure and symmetries,
and maybe that alone is responsible for the presence of K4,6 subgraphs.

3. Quasirandomness. In Theorem 4 we proved that if t ≥ 4 then NG(q, t) is H-quasirandom whenever H
is a fixed simple 3-degenerate graph. A positive answer to Conjecture 2 would directly imply a generalization
of this result to `-degenerate graphs. It would be also interesting to study what can we say beyond the scope
of Conjecture 2, about the containment of fixed small graphs in general. Especially interesting would be the
cases of cliques. The so-called clique-graphs of the projective norm graphs were explicitly used by Alon and
Pudlák [4] for their constructions for the asymmetric Ramsey problem. They lower bound the clique number
ω(NG(q, t)) by the Expander Mixing Lemma, which is probably far from being tight. In this paper we go
beyond that and show not only the existence of K4, but also the K4-quasirandomness of NG(q, t) for t ≥ 4.
We are, however, still very far from the understanding of the behaviour of the clique number. Besides its
exact determination there are several other intriguing directions. We think that once a “nice” fixed graph
H is contained in the projective norm graph for every large enough q, then there are the “right” number of
copies of it.

Conjecture 4.
(i) For every 2 ≤ t ≤ s ≤ s(t) the projective norm graph NG(q, t) is Kt,s-quasirandom.
(ii) If s ≤ ω(NG(q, t)) for every large enough q, then NG(q, t) is Ks-quasirandom.

Finally, there is very little known about whether there are any characteristic-specific subgraphs. We
do not know whether there is any fixed graph H which is contained in projective norm graphs for some
characteristic p1, but it is not contained in them for some other characteristic p2.

4. Infinite projective norm graphs. The first constructions of dense Kt,t-free graphs were motivated
by simple facts from real Euclidean geometry: two lines of the plane intersect in at most one point; three
unit spheres in 3-space intersect in at most two points. Consequently the point/line incidence graph of the
Euclidean plane is K2,2-free, and the unit-distance graph of the Euclidean 3-space is K3,3-free. Furthermore
these infinite Kt,t-free graphs are “dense” in terms of the dimension of the neighborhoods. So when defined
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over appropriate finite fields, in a way that the algebra in the proof of their Kt,t-freeness carries over, their
number of edges verifies the tightness of the KST-bound for t = 2 and t = 3.

The (projective) norm graphs were not constructed this way, yet one can define them over an arbitrary
field F and arbitrary Galois extension K of degree t − 1, see Section 5.3 in the Appendix. If t = 4 then we
know that NG(F,K) does not contain K4,7 for any field F. After seeing that NG(q, 4) does contain (many)
K4,6 for any q > 4, it seems plausible to conjecture that the same is true for infinite fields.

5. The tightness of the KST-bound. The tightness of the order of magnitude of the KST-bound is a
central question of the area. Conjecture 1 suggests that whatever density is not ruled out by simple double
counting, should essentially be possible to realize with a construction. Here we speculate that this might not
be the case and offer a counter-conjecture.

In any graph with cn7/4 edges, the number of common neighbors of an average 4-tuple is (at least) a
constant c′ depending on c. If this graph with cn7/4 edges is random then this constant average is spread
out over

(
n
4

)
distributions that are each approximately Poisson with mean c′. Consequently for any s, a

positive constant proportion of 4-tuples have at least s neighbors. In contrast, in any K4,s-free construction
with cn7/4 edges (matching the KST-bound), no 4-tuple can have more than s − 1 neighbors. So in such
constructions each of the Poisson-tails has to be absorbed by the 4-tuples with at most s − 1 common
neighbors. Should such graphs exist for some s, they must be extremely rare, their mere existence has to be
a coincidence and should require quite a bit of structure.

In all known constructions (including ARS [5], Brown [21], Bukh [22], Klein [28] and KRS [38]) this
is realized using the algebro/geometric notion of dimension and its strong correlation with the cardinality
of the corresponding variety: an “everyday” d-dimensional variety over Fq has roughly Θ(qd) points. To
achieve that the common neighborhood of four vertices is less than a constant s, one appeals to the geometric
intuition that in the four-dimensional space the intersection of four hypersurfaces, that are in general enough
position, is 0-dimensional, and hence it is the union of constantly many points. A graph can be defined on a
four-dimensional space of roughly q4 =: n vertices, and the neighborhood of each vertex can be chosen to be
some hypersurface, which then have roughly the desired size q3 = n3/4. For a K4,s-free graph the intersection
of any four of the neighborhood-hypersurfaces should have size < s. Now if the neighborhood-hypersurfaces
are carefully chosen, so that any four of them are in general enough position, then their intersection is
0-dimensional and hence has size Θ(q0), a constant.

How to choose the hypersurfaces and what is this constant? Even though choosing randomly is a generally
good strategy (witnessed by the random algebraic construction of Bukh [22]), finding good explicit choices, as
it is often the case, is not so straightforward. By the KST-bound the constant bounding the neighborhoods of
t-tuples in any graph with cn2−1/t edges is at least t−1, and the projective norm graph chooses neighborhoods
where they are bounded by not more than (t−1)!. The current analysis of the random choice gives an upper
bound of tO(t).

Now how small could this constant be? We believe that the presence of some notion of “dimension”
in this problem is a necessity and this constant is just going to be in the nature of the geometry of the
hypersurface-neighborhoods we have chosen. As such, it will not just be limited by the simple combinatorial
restrictions of the KST-bound but also by those of geometry/algebra. And then its extrema should be
delivered by a regular, rigid structure with distinctive properties. For t = 4 we have seen ample evidence
that the projective norm graph NG(q, 4) fits this bill, and tend to accept it as the limit of what algebra can
offer in this realm. Since we know now that K4,6 does occur in NG(q, 4), we conjecture the following.

Conjecture 5. ex(n,K4,6) = o(n7/4).

We note that should this conjecture be true, it of course implies that the KST-bound is not tight for the
symmetric case K4,4 either. That further implies that ex(n,Kt,t) = o(n2−1/t) for every t ≥ 5; this is the
consequence of (an adaptation of) a theorem of Erdős and Simonovits [29].

While we do believe Conjecture 5, at the same time we also think that it is more likely that we see
it disproved than proved. For a proof one might need to develop a two step approach. Given a K4,4-free
graph with cn7/4 edges, build up a significant-enough proportion of a pseudo-algebraic/geometric framework
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using the neighborhoods as hypersurfaces, with surfaces having appropriate intersection sizes and structure.
Then, provided the pseudo-algebra/geometry gives a structure rigid enough, establish the existence of a
K4,4. Preliminary results in this direction were proven by Blagojevic, Bukh, and Karasev [18] and in this
paper.
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5 Appendix

5.1 Characters

Next we recall some basic facts about characters of finite fields. For proofs and further results the interested
reader may consult e.g. [46, Chapter 5].

For a finite Abelian group G a group homomorphism χ from G to the multiplicative group C∗ of complex
numbers is called a character of G. The smallest integer m ∈ N such that χm ≡ 1 is called the order of χ.

A particular multiplicative character in a finite cyclic group G is its quadratic character ηG. It is defined
as

ηG(a) =

{
1 if ∃b ∈ G : b2 = a
−1 otherwise

.

ηG is indeed a character of G and is of order 1 or 2, depending on whether |G| is odd or even.
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5.1.1 Multiplicative characters

Let q be a prime power. A character χ of the multiplicative group F∗q is called a multiplicative character of
Fq. Most of the times it is convenient to extend χ to the whole of Fq by setting χ(0) = 0, and, by slightly
abusing notation, we identify χ with this extension. A particular example of a multiplicative character is
the quadratic character of Fq.

Theorem 5 (multiplicative Weil-type bound). [46, Thm 5.41] Let q be a prime power, χ a multiplicative
character of Fq of order m ≥ 1 and let f ∈ Fq[X] be a monic polynomial of positive degree that is not an
mth power of a polynomial. Let d be the number of distinct roots of f in its splitting field over Fq. Then for
every a ∈ Fq we have ∣∣∣∣∣∣

∑
c∈Fq

χ(af(c))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

If f = gm for some and g ∈ Fq[X], then∑
c∈Fq

χ(af(c)) = (q − r)χ(a),

where r is the number of distinct roots of g over Fq.

5.1.2 Additive characters

Let q = pk be a prime power. A character ψ of the additive group of Fq is called an additive character of
Fq. A particular example of an additive character is ψ(x) = (−1)Trk,p(x).

A rational function r(X) over Fq is said to be degenerate if it is of the form (h(X))
p − h(X) for some

rational function h(X) over F q.

Theorem 6 (additive Weil-type bound). [52, Thm 2] Let q be a prime power, ψ a non-trivial additive

character of Fq and r(X) = f(x)
g(x) a non-degenerate rational function over Fq. Then there exists a positive

constant a ∈ R, depending only on the degree of f and g, such that∣∣∣∣∣∣
∑

X∈Fq\S

ψ (r(X))

∣∣∣∣∣∣ ≤ a√q,
where S ⊆ Fq is the set of poles of r.

5.1.3 Quadratic equations over finite fields

Among others, characters can be used to express the number of roots of a quadratic polynomial over a finite
field, as summarized in the following proposition.

Proposition 7. Let q = pk a prime power and b, c ∈ Fq. Then the number of distinct roots in Fq of the
quadratic polynomial X2 + bX + c ∈ Fq[X] is

(i) 1 + ηFq
(b2 − 4c) when p is odd,

(ii) and

{
1 if b = 0

1 + (−1)Trk,2( c
b2 ) if b 6= 0

, when p = 2.
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5.2 Proof of Theorem 1

Claim 1. Let q = 2k and for (c1, c2) ∈
(
F∗q
)2

let f(b) = fc1,c2(b) = b(b + c1)2 and g(b) = gc1,c2(b) =

(b2 + b(1 + c1 + c2) + c1)2. Then the rational function f
g is of the form

(
h1

h2

)2
+ h1

h2
for some h1, h2 ∈ Fq[b]

if and only if (c1, c2) = (1, 1) and in this case we have Trk,2

(
f(b)
g(b)

)
= 0 for every b ∈ Fq, g(b) 6= 0.

Proof. First note that f(b)
g(b) cannot be simplified further. Indeed as c1 6= 0 we have that g(b) is not divisible

by b, on the other hand as b2 + b(1 + c1 + c2) + c1 = (b + c1)(b + 1 + c2) + c1c2 and c1c2 6= 0, g(b) is not
divisible by b+ c1 either.

Now suppose that f
g is degenerate, i.e. there are h1, h2 ∈ F q[b] such that

f

g
=

(
h1
h2

)2

+
h1
h2

=
h21 + h1 · h2

h22
.

Here we can suppose without loss of generality that the right hand side is also reduced, which happens exactly
if h1

h2
is such. However in this case we must have h2 = b2 + b(1 + c1 + c2) + c1 and deg(h1) ≤ 2. Therefore

let h1(b) = αb2 + βb+ γ for some α, β, γ ∈ Fq. Substituting this above and comparing the coefficients of the
different powers of b we arrive at the following system of equations.

b4 : 0 = α2 + α (20)

b3 : 1 = β + α(1 + c1 + c2) (21)

b2 : 0 = β2 + γ + αc1 + β(1 + c1 + c2) (22)

b : c21 = βc1 + γ(1 + c1 + c2) (23)

1 : 0 = γ2 + γc1 (24)

Case 1: 1 + c1 + c2 = 0
Then by (21) we have β = 1 and hence by (23) we deduce that c21 = c1. As c1 6= 0 this means that c1 = 1,

in which case the starting assumption implies c2 = 0 which is impossible.
Case 2: 1 + c1 + c2 6= 0

By (20) we have α = 0 or α = 1, and by (24) we have γ = 0 or γ = c1
Case 2a: α = 0, γ = 0
By substituting into (21) we obtain β = 1. Then, by substituting further into (22) we arrive at c21 = c1.

As c1 6= 0, this in turn implies c1 = 1. Finally, by substituting into (22) we obtain 0 = c1 + c2 and hence
c2 = 1.

Case 2b: α = 0, γ = c1
As in the previous case, (21) again results β = 1. Then, by substituting into (22) we arrive at c2 = 0,

which is impossible.
Case 2c: α = 1, γ = 0
By substituting into (23) we obtain 0 = c1(c1 + β). As c1 6= 0, this in turn implies β = c1. Then, by

substituting further into (21) we arrive at c2 = 0, which is impossible.
Case 2d: α = 1, γ = c1
By substituting into (21) we obtain β = c1 + c2. Then, by substituting further into (22) we arrive at

c1 = c2. Finally, by substituting into (23) we obtain c21 = c1. As c1 6= 0, this in turn implies c1 = c2 = 1.
Note that for (c1, c2) = (1, 1) the function f

g is degenerate, as witnessed by h1(b) = b and h2(b) =

b2 + b+ 1.

5.3 Infinite projective norm graphs and difference sets

Projective norm graphs were originally defined only over finite fields, but they extend naturally to a more
general setting. For this let F be an arbitrary field and t ≥ 2 an integer. Further let Kt be a cyclic
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Galois extension of F of degree t and let us denote by N = NK/F and Tr = TrK/F the norm and the trace

of this extension, respectively. That is, for A ∈ K we have N(A) = A · φ(A) · φ(2)(A) · · ·φ(t−1)(A) and
Tr(A) = A + φ(A) + φ(2)(A) + · · · + φ(t−1)(A), where φ is an automorphism generating the Galois group
of K/F and φ(j) denotes the j-fold iteration of φ. Then the projective norm-graph NG(F,K) has vertex set
K×F∗, and two vertices (A, a) and (B, b) are adjacent if and only if N(A+B) = ab. NG(F,K) is the general
variant of the Kt+1,t!+1-free projective norm graph NG(q, t+ 1). Because of the generality of the key lemma
in [5], the very same proof, without any modifications, also gives that NG(F,K) is Kt+1,t!+1-free.

When studying NG(q, 4), in our proofs we made great use of the difference sets that arose naturally in
connection with the norm equation systems we studied. Many of our results about these difference sets carry
over to the general setting of cyclic Galois extensions we just encountered, in which case our main focus of
interest will be on the subset

St = {Y | Y ∈ K∗, TrK/F(Y ) = 0}

of the multiplicative group K∗ /F∗ , where Y denotes the image of Y ∈ K∗ under the natural map K∗ →
K∗ /F∗ .

Earlier we have already introduced (planar) difference sets. In general an (n,m, λ) difference set is a set
D of m elements in a multiplicative group G of order n, such that any element A ∈ G has exactly λ mixed
product representations with respect to D. In the planar setting it was Singer [65] who constructed such
structures first, using the finite projective plane PG(q, 2). Singer’s result naturally generalizes to the case

with parameters of the form (n,m, λ) = ( q
t−1
q−1 ,

qt−1−1
q−1 , q

t−2−1
q−1 ) for any prime power q and t ≥ 3, which are

called Singer parameters. We can recover this general construction by considering the set St with F = Fq
and K = Fqt [63].

For multiplicative groups G1, G2 two difference sets D1 ⊂ G1 and D2 ⊂ G2 are called equivalent if there
exists a group isomorphism ϕ : G1 → G2 and an element Γ ∈ G2 such that ϕ(D1) = Γ · D2. For example,
in Abelian groups any difference set D is equivalent to its inverse D−1 via the isomorphism X → 1

X . In
the planar case t = 3 it is conjectured that any (q2 + q + 1, q + 1, 1) difference set is equivalent to Singer’s
construction. As we will see shortly, out construction from Theorem 3 is also equivalent to it. However, for
many values t > 3 difference sets having Singer parameters yet being inequivalent to Singer’s construction
are known to exist (see e.g. [35]).

The difference set structure of St in case of finite fields can be extended for arbitrary F, using the natural
(t − 1)-dimensional projective space structure on K∗ /F∗ (which is induced by the t-dimensional F-vector
space structure of K). It turns out that for any non-identity element A, the set of St-elements from the
mixed representations of A with respect to St forms a subspace of projective dimension t− 3.

Proposition 8. Let L be a subspace of K∗ /F∗ of projective dimension t − 2. Then for every element
A ∈ K∗ /F∗ \

{
1
}

the set

RL
(
A
)

= {B ∈ L | ∃ C ∈ L such that A = BC
−1} = {B ∈ L | B/A ∈ L}

forms a subspace of projective dimension t− 3.

Proof. Let L be a (t−1)-dimensional subspace of K over F such that L = L \ {0} /F∗ . Then for any element
A ∈ K∗ /F∗ \

{
1
}

we have

RL
(
A
)

= RL (A) \ {0} /F∗ ,

where A ∈ K∗ \ F∗ is such that A = A · F∗ and

RL (A) = {B ∈ L | ∃ C ∈ L such that A = BC−1}.

Observe that RL (A) = L ∩AL, where AL = {AL | L ∈ L}.
Since A 6∈ F∗, the (t − 1)-dimensional subspaces L and AL are different, hence their intersection has

dimension t− 2. Therefore the projective dimension of RL
(
A
)

is indeed t− 3.
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Corollary 5. Let q be a prime power and L be a subspace of F∗qt
/
F∗q of projective dimension t− 2. Then

L is a ( q
t−1
q−1 ,

qt−1−1
q−1 , q

t−2−1
q−1 ) difference set in the multiplicative group F∗qt

/
F∗q . In particular, so is St.

Proof. The set RL
(
A
)

is in a one-to-one correspondence with the collection of mixed L-respresentations of

A. Since a projective space of dimension t− i over Fq has size qt−i+1−1
q−1 , the parameters of the difference set

follow.
Finally note that as TrK/F : K→ F is a non-trivial F-linear function, Ker(TrK/F) is a (t− 1)-dimensional

subspace of K. Hence the set St = Ker(TrK/F) \ {0} /F∗ is a subspace of K∗ /F∗ of projective dimension
t− 2, and as such is a difference set with Singer parameters.

In Theorem 3 we described a planar difference set as the root set of a simple polynomial and gave explicit
formulas of the product representation of each element. Here we extend this result to the general setting.
For this let N denote the group of elements of norm 1 in K. Furthermore, we shall consider the function

dt(X) = 1 +X +Xφ(X) +Xφ(X)φ(2)(X) + · · ·+Xφ(X) · · ·φ(t−2)(X).

We remark that the function dt(X) appears in a paper of Foster [34] in a completely different context, in
the formulation of the, so called, ‘Murphy condition’.

In the next theorem we show that the set

Dt = {A ∈ K : dt(A) = 0}

of roots of dt(Y ) in K is contained in the multiplicative group N and has the same difference set property
as St, namely that the mixed representation of any element A ∈ N \ {1} with respect to Dt form (in some
sense) a projective space of dimension t − 3 over F. In addition we will also be able to describe concisely
these product representations.

Theorem 7. There is a group isomorphism Φ : K∗ /F∗ → N such that Φ(St) = Dt. In particular, through
Φ, the set Dt inherits the difference set property of St just like the projective space structure. Moreover,
given an element A ∈ N \ {1} the different mixed representations of A with respect to Dt are exactly the

products B ·
(
B
A

)−1
, where B is a root in K of the function

ft,A(X) = dt(X)− 1

φ(t−1)(A)
· dt
(
X

A

)
.

Proof. Consider the K∗ → K∗ map Φ defined by X → φ(X)
X . On the one hand, one readily sees that the

map Φ maps K∗ into N . On the other hand, by Hilbert’s Theorem 90 [44] we know that for every A ∈ N
there is an element Y ∈ K∗ such that A = Φ(Y ), which in turn shows that Φ is surjective. Therefore, as
Ker(Φ) = F∗, the quotient map Φ : K∗ /F∗ → N provides an isomorphism between the respective groups.

Next we show that the image of St under the map Φ is Dt. For this let Y ∈ K∗. Then, on the one hand,
we have

dt(Φ(Y )) = dt

(
φ(Y )

Y

)
= 1 +

t−2∑
j=0

j∏
i=0

φ(i+1)(Y )

φ(i)(Y )
= 1 +

t−2∑
j=0

φ(j+1)(Y )

Y
=

1

Y
TrK/F(Y ).

Therefore, if Y ∈ St, then Φ
(
Y
)
∈ Dt. Finally, let A ∈ Dt, i.e. A is a root of dt. Then NK/F(A) =

1 + A · φ(dt(A)) − dt(A) = 1, and hence, again by Hilbert’s Theorem 90, there is an element Y ∈ K∗ such
that A = Φ(Y ) and so A = Φ

(
Y
)
. By the above calculations TrK/F(Y ) = Y · dt(Φ(Y )) = Y · dt(A) = 0,

meaning that Y ∈ St. This concludes the proof of Φ(St) = Dt.
Now let us turn to the second part of the theorem. Given an element A ∈ N \ {1} first take a mixed

representation A = B · C−1 with B,C ∈ Dt. Then, in particular, we have C = B
A ∈ Dt and hence
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dt(B) = dt
(
B
A

)
= 0. Therefore, we have that B is also a root of the function

ft,A(X) = dt(X)− 1

φ(t−1)(A)
· dt
(
X

A

)
.

For the other direction suppose that B is a root of ft,A. Note that then necessarily B 6= 0, as otherwise we
would have 0 = ft,A(0) = 1− 1

φ(t−1)(A)
, which is a contradiction as for A ∈ N \{1} we have 1− 1

φ(t−1)(A)
6= 0.

To finish the proof we need to show that B, BA ∈ Dt, as then the product B ·
(
B
A

)−1
is a valid product

representation of A with respect to Dt. Using that NK/F(A) = 1 and φ(t) ≡ id, we have

0 = φ(0) = φ(ft,A(B)) = φ(dt(B))− 1

φ(t)(A)
· φ
(
dt

(
B

A

))
=

1

B
·
(
dt(B) + NK/F(B)− 1

)
− 1

A
· 1
B
A

·
(
dt

(
B

A

)
+ NK/F

(
B

A

)
− 1

)
=

1

B

(
dt(B)− dt

(
B

A

))
=⇒ dt(B) = dt

(
B

A

)
,

and hence 0 = ft,A(B) = dt(B)
(

1− 1
φ(t−1)(A)

)
. However, as remarked earlier, for A ∈ N \ {1} we have

1− 1
φ(t−1)(A)

6= 0, so this at once implies that dt(B) = dt
(
B
A

)
= 0, and hence B, BA ∈ Dt, as required.

Next we spell out the special case of Theorem 7 when F = Fq, K = Fqt and φ is the Frobenius auto-
morphism X → Xq. This is a generalization of Theorem 3 and gives a description of the classic Singer
difference set inside N as the set of roots of a simple polynomial and describes the mixed representations of
any element also using the roots of a polynomial.

Corollary 6. Let q = pk be a prime power, t ≥ 3 an integer, and let us define over Fq the polynomial

dt(Y ) = 1 + Y + Y 1+q + Y 1+q+q2

+ · · ·+ Y 1+q+···+qt−2

of degree qt−1−1
q−1 . Then the set

Dt = {A ∈ Fqt | dt(A) = 0}

of roots of dt(Y ) forms a ( q
t−1
q−1 ,

qt−1−1
q−1 , q

t−2−1
q−1 )-difference set in the cyclic group N of norm 1 elements of

Fqt , which is equivalent to the Singer difference set St. Moreover, given an element A ∈ N \ {1}, the qt−2−1
q−1

different mixed Dt-representations of A are exactly the products B ·
(
B
A

)−1
, where B is a root in Fqt of the

degree qt−2−1
q−1 polynomial

ft,A(X) = dt(X)−A1+q+···+qt−2

· dt
(
X

A

)

In connection with Corollary 6 first note that, in particular, it implies that the polynomials dt(X) and
ft,A(X) always split over Fqt . Also, in the special case t = 3, we recover the difference setH1 from Theorem 3.
In this case the polynomial ft,A is linear and its unique root is exactly the element A1 from Theorem 3.
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