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Abstract

We study two related problems concerning the number of homogeneous subsets of given size in graphs

that go back to questions of Erdős. Most notably, we improve the upper bounds on the Ramsey multiplicity

of K4 and K5 and settle the minimum number of independent sets of size 4 in graphs with clique number

at most 4. Motivated by the elusiveness of the symmetric Ramsey multiplicity problem, we also introduce

an off-diagonal variant and obtain tight results when counting monochromatic K4 or K5 in only one of the

colors and triangles in the other. The extremal constructions for each problem turn out to be blow-ups

of a graph of constant size and were found through search heuristics. They are complemented by lower

bounds established using flag algebras, resulting in a fully computer-assisted approach. For some of our

theorems we can also derive that the extremal construction is stable in a very strong sense. More broadly,

these problems lead us to the study of the region of possible pairs of clique and independent set densities

that can be realized as the limit of some sequence of graphs.

1 Introduction

In Extremal Combinatorics, the application of computer assistance in formulating proofs is exemplified

by flag algebras [67], which allow one to establish bounds through a double-counting argument by solv-

ing Semidefinite Programming (SDP) problems. These bounds are sometimes complemented by explicit

constructions derived from human combinatorial insights. However, as for example noted in [65], there is

a growing interest in computer-based approaches that can complement flag algebras and surpass human

intuition. In this work we investigate how the objective of finding constructive bounds can be formulated

as a discrete optimization problem and explore the suitability of metaheuristics, such as Simulated Anneal-

ing [49] and Tabu Search [33]–[35], as well as more recent Reinforcement Learning methods [6],[91], for these

problems. To illustrate the potential of this approach, we make significant progress on well-known problems

in Extremal Graph Theory that go back to questions of Erdős. Our investigations also lead us to introduce

new directions where many questions remain open.

2020 Mathematics subject classification: 05D10, 90C27; Keywords: Ramsey multiplicity, search heuristics, flag algebra;
Communicated by Daniel Král
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1.1 The Ramsey multiplicity problem

A subset of vertices in a graph is called homogeneous if it is either a clique, so all pairs of vertices form an

edge, or it is an independent set, i.e., no pairs of vertices form an edge. The existence and enumeration

of homogeneous subsets is a fundamental, widely-studied topic in combinatorics. Ramsey’s Theorem states

that every n-vertex graph contains a homogeneous t-subset, provided that n is large enough compared to t.

In 1959, Goodman determined the smallest possible number of homogeneous 3-subsets an n-vertex graph

can have for every n and also raised the analogous problem for t-subsets when t ≥ 4. A couple of years

later, Erdős [19] observed that the number of homogeneous t-subsets can be as small as 21−(t2) ·
(
n
t

)
, since

this is their expected number in the uniform random graph G(n, 1/2), and hence there must also exist a

graph on n vertices with at most that many homogeneous t-subsets. Erdős in fact conjectured that this

should be the asymptotic minimum for every t ≥ 4. This likely was motivated by the symmetry of the

extremal function combined with the role of G(n, 1/2) in providing large graphs without homogeneous t-

subsets, and was further supported by the fact that Goodman’s lower bound happens to agree with 2−2 ·
(
n
3

)
asymptotically. Subsequently, several positive results were proved establishing the conjecture for graphs

with weaker and weaker pseudorandom conditions [20], [28], [82], yet the general conjecture proved to be

difficult to crack already for t = 4, a bit of a surprise considering the beauty and relative simplicity of

the double-counting arguments for t = 3. Thomason [83] soundly rejected the conjecture in 1989 for every

t ≥ 4, with counterexamples given by sequences of blow-ups of well-designed constant-size graphs. The finite

structure ruling these constructions dismissed any heuristic speculation connecting the problem to uniform

randomness.

The hunt for the true value of the minimum density of homogeneous t-subsets is still ongoing for every

t ≥ 4. The determination of this minimum is known as the Ramsey multiplicity problem for cliques and it

has received a fair amount of attention [14], [17], [19]–[21], [27], [29], [32], [39], [45], [61], [76], [81], [83], [84], [92].

Subsequently the problem was also extended and investigated for arbitrary graphs, hypergraphs, and other

discrete structures.

Our first results make progress on the Ramsey multiplicity problem. We denote the number of cliques

on t vertices in a graph G by kt(G) and let kt(n) = min{kt(G) + kt(G) : |G| = n} be the minimum number

of homogeneous t-subsets in an n-vertex graph. The limit

ct = lim
n→∞

kt(n)/

(
n

t

)
exists for every fixed t, as the sequence of minimum proportions kt(n)/

(
n
t

)
of homogeneous t-subsets is

non-decreasing in n.

Trivially c2 = 1 and Goodman’s result implies c3 = 1
4 . For t = 4 Thomason [83] showed c4 < 0.030304 <

0.03125 = 2−5, hence disproving Erdős’ conjecture. Later Franek and Rödl [29] gave another more straight-

forward counterexample, with a somewhat larger homogeneous t-subset density. In 1997, Thomason [84]

improved the upper bound by 1.3 · 10−5 to c4 < 0.030291. Almost thirty years later, Even-Zohar and

Linial [21] pushed it further down by another 0.6 · 10−5 to c4 < 0.030285. Here we establish the following

more substantial improvement.1

1We do sense some absurdity in casting an improvement of 14 ·10−5 as ‘substantial’, yet, considering the pace of the progress
of the upper bound since Thomason’s breakthrough and the gap between upper and lower bounds, we cautiously hope not to
be completely out of line.
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Theorem 1.1. We have

c4 ≤ 4551721 · 2−24 · 3−2 < 0.030145

The best known lower bound stands at 0.0296 < c4, and was proved by Grzesik, Lee, Lidický and

Volec [39] using flag algebras, so Theorem 1.1 reduces the gap between upper and lower bounds by more

than 20%. Perhaps more relevant than the actual values are the methods used to find them. The best of

Thomason’s initial constructions [83] were based on the blow-up of a ‘core’ graph on 272 vertices, which were

constructed using quadratic forms in an appropriate finite geometric setting. The core graphs of Franek

and Rödl [29] were defined on 1024 vertices, over the subsets of a 10-element set using intersection sizes.

The improvement of Thomason [84] built on insights from the work of Jagger, Št́ov́ıček, and Thomason [45]

about the construction in [83], and employed an extensive brute force computer search over XOR products

of small graphs to find its core graph on 288 vertices. The improved bound by Even-Zohar and Linial [21]

was obtained by identifying a different, iterative blow-up hidden in the construction of Thomason. We

will discuss the particularities of the upper bounds and the underlying constructions in more detail in

Section 3.3.1.

The core graphs of all these constructions happen to be Cayley graphs, yet they were not really sought for

as such. For our improvement, we directly construct Cayley graphs via various computer search heuristics

which target to find their generating set. A key advantage of this approach is that the size of the search

space is only roughly the square root of the size of the produced outcome. Hence our heuristics can efficiently

explore and produce relatively large core graphs from the great wealth of good ones among all Cayley graphs

over a given group (and not only consider a small portion of them, as before). With our approach, we can

find core graph constructions on as few as 192 vertices that improve upon the previous best bound and that

can be found with very moderate computational effort. The upper bound for c4 in Theorem 1.1 is obtained

from the sequence of blow-ups of a Cayley graph on 768 vertices, though we also found a construction on

384 vertices that likewise beats 0.03015, hence performing just marginally worse than the construction on

768 vertices.

Much of the effort made by several researchers to optimize Thomason’s approach for t = 4 materialized

in improvements for t ≥ 5. The best known upper bound for t = 5 is c5 < 0.001720, due to Thomason [84],

improving on his bound in [83]. For t ∈ {6, 7, 8} the best known bounds are given by Deza, Franek, and

Liu [17] using the intersection graph idea of [29].

Our method can also be employed to improve the best known upper bound in the K5-multiplicity

problem. We also complement this with a lower bound using flag algebras.

Theorem 1.2. We have

0.001524 < c5 ≤ 2320651 · 2−24 · 3−4 < 0.001708.

Our improved upper bound is based on the sequence of blow-ups of a Cayley graph on 192 vertices, just

like Thomason’s. We will go more into about our bounds and how they were found in Section 3.
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1.2 Independent set density for graphs with bounded clique number

A related question, likewise raised by Erdős [19], concerns the minimum number k′s,t(n) = min{ks(G) : |G| =
n, kt(G) = 0} of independent sets of size s in a graph of order n with clique number bounded by t− 1. The

associated limit, whose existence again follows by monotonicity [62], is defined as

gs,t = lim
n→∞

k′s,t(n)/

(
n

s

)
.

Note that obviously gt,t ≥ ct for any t ≥ 2. We trivially have gs,2 = 1 and the fact that g2,t = 1/(t − 1)

is established by Turán’s theorem [85]. Erdős [19] asked if the upper bound given by the Turán graphs

Tt−1(n) as n → ∞ is also tight in general, that is if gs,t = (t − 1)1−s. This holds for s = t = 3, as an

easy consequence of the previously mentioned result of Goodman [36] and the value of k′3,3(n) was settled

precisely by Lorden [55]. Nikiforov [62] however showed that the Turán graph upper bound can be sharp

only for a finite number of pairs s, t ≥ 3. Das et al. [15] and Pikhurko and Vaughan [66] established tight

values when one of the parameters is three and the other at most seven. In particular this confirmed Erdős’

intuition for g3,t when 4 ≤ t ≤ 7 and disproved it for gs,3 when 4 ≤ s ≤ 7. They also determine the unique

extremal constructions in these cases. Moreover, Pikhurko and Vaughan [66] found a construction based on

non-balanced blow-ups of a (3, 4)-Ramsey graph of order 8 bounding g4,4 away from the value given by T3(n)

that is conjectured to be tight. Here we present the first tight value for gs,t when s, t ≥ 4. Furthermore,

we show that any graph that comes close to the optimum of g4,5 must be close to a balanced blow-up of

CR(3,5), the unique (3, 5)-Ramsey graph of order 13, i.e., the Cayley graph on Z13 whose edge relations are

given by the cubic-non-residues.

Theorem 1.3. We have g4,5 = 29 · 13−3 and the problem is perfectly CR(3,5)-stable.

The upper bound is given by the sequence of balanced blow-ups of CR(3,5), the lower bound matching that

construction was established using the flag algebra approach. The notion of perfect stability was introduced

by Pikhurko, Sliačan, and Tyros [65] and strengthens the standard notion of stability. We will formally

state it in Definition 4.8 in Section 4.2. For the details of the proofs see Section 4.

The fact that Ramsey graphs are a good source of constructions for this problem was previously already

noted by Nikiforov [62] and Das et al. [15]. We found several more such graphs whose sequence of (sometimes

non-balanced) blow-ups give good upper bounds for additional values of gs,t, but were unable to establish

matching lower bounds. The most reasonable open conjecture out of all studied values seems to be that

g5,5 = 61 · 13−4, where the upper bound also comes from CR(3,5). We list all other bounds in Section 3.3.

We also remark that more general bounds for gs,t were given by Nikiforov [62] and Sawin [76], who studied

the close connection to (multicolor) Ramsey numbers.

1.3 Off-diagonal Ramsey multiplicity

There is a stark contrast between the difficulty of counting homogeneous triples and counting homogeneous

4-subsets. This is demonstrated by the relatively straightforward proof of c3 = 1/4 and the slow progress

towards determining the value of c4. To get a grip on the latter, we propose to investigate the question

when we count K4 only in the graph and triangles in the complement. This problem proves to be more

manageable, as we can not only derive an exact solution but also demonstrate the stability of a unique

construction on 27 vertices.
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Formally, for arbitrary s, t ≥ 3, we propose to study the following off-diagonal version of the Ramsey

multiplicity parameter:

cs,t = lim
n→∞

min

{
ks(G)(
n
s

) +
kt(G)(
n
t

) : |G| = n

}
. (1)

Observe that clearly ct,t = ct as well as cs,t ≤ min{gs,t, gt,s}. From a result of Reiher [69] it follows that

c2,t = g2,t for every t ≥ 3. Here we establish the first exact results when t > s ≥ 3.

Theorem 1.4. We have c3,4 = 689 · 3−8 and the problem is perfectly CS-stable, where CS is the Schläfli

graph. We also have c3,5 = 24011 · 3−12 as well as 0.007688 < c4,5 ≤ 0.007932.

Note that cs,t < gs,t for each of these values of s and t. The upper bound for c3,4 is uniquely given by

the sequence of balanced blow-ups of the Schläfli graph. The upper bound for c3,5 is more easily described

as an upper bound of c5,3, in which case it is given by the sequence of balanced blow-ups of the complement

of the Schläfli graph. The upper bound for c4,5 is given by the sequence of blow-ups of a vertex-transitive

graph on 128 vertices. Lower bounds are again established using the flag algebra approach. The proof of

stability largely follows the template laid out by Pikhurko et al. [65], but also requires additional ideas.

A central question in the symmetric Ramsey multiplicity problem is whether a tight upper bound can

be achieved through the sequence of (possibly weighted or iterated) blow-ups of a finite-sized graph. For

c3, this is true, with Goodman’s bound reached by, among others, the blow-ups of K2. However, for c4,

the question remains open. Theorem 1.4, which states the extremality and stability of blow-ups of a single

finite graph (on 27 vertices) for the c3,4 problem, may suggest the existence of such a finite graph for c4.

Our results for c4 however suggest that any such finite construction might be of considerable size.

There is no specific reason for our choice to weight the contributions from both terms equally in cs,t.

Other choices, such as the weighting given by linearly connecting the points indicated by gs,t and gt,s, would

also be reasonable. In fact, the previously introduced problems are part of a broader question aiming to

understand which pairs of clique and independent set densities can be realized as the limit of some sequence

of graphs. We introduce this problem and our results in the next section.

Outline. We first explore the broader question of realizable pairs of clique and independent set densities and

their relation to earlier introduced parameters in Section 2. Next, we describe the constructions for upper

bounds and their discovery methods in Section 3. We then outline Razborov’s flag algebra approach and its

application for stability results in Section 4. Finally, we discuss related problems and recent learning-based

optimization heuristics in Section 5.

2 The full tradeoff between cliques and independent sets

The study of cs,t and gs,t are part of a broader question in which one would like to understand the full

tradeoff between the number of cliques of size t and independent sets of size s in a graph. The goal is to

characterise the region Ωs,t ⊆ [0, 1]2 of pairs of clique and independent set densities that can occur in the

limit of a sequence of graphs. We say that a tuple (x, y) ∈ [0, 1]2 is realised by a sequence of graphs (Gn)n∈N

with limn→∞ v(Gn) =∞, where w.l.o.g. and to simplify notation we assume v(Gn) = n, if

lim
n→∞

ks(Gn)/

(
n

s

)
= x and lim

n→∞
kt(Gn)/

(
n

t

)
= y.
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We formally define Ωs,t ⊆ [0, 1]2 to be the set of all tuples that are realised by some sequence of graphs.

For s = 2 and with Kt replaced by any quantum graph, that is an arbitrary linear combination of graphs,

this set was already systematically studied by Liu, Mubayi, and Reiher [54]. Similar to them, let us define

cs,t(x) = inf{y : (x, y) ∈ Ωs,t} and Cs,t(x) = sup{y : (x, y) ∈ Ωs,t}.

We can show that Ωs,t behaves nicely for any s, t ≥ 2, that is it is completely characterised by its lower and

upper bounding curves cs,t(x) and Cs,t(x).

Proposition 2.1. Ωs,t is compact and defines a simply connected region for any s, t ≥ 2.

Proof. We start by establishing compactness of Ωs,t as in Proposition 1.3 from [53]. Let (xm, ym)m∈N

be a sequence in Ωs,t such that limm→∞(xm, ym) = (x, y) and let us show that (x, y) ∈ Ωs,t. For each

m ∈ N there exists a sequence of graphs (Gn,m)n∈N that realises (xm, ym). With xn,m = ks(Gn,m)/
(
n
s

)
and

yn,m = kt(Gn,m)/
(
n
t

)
we have a sequence (xn,m, yn,m) with limn→∞(xn,m, yn,m) = (xm, ym). Therefore, by

Lemma 2.2 from [53], there exists (nk)k∈N such that limk→∞(xnk,k, ynk,k) = (x, y) and, thus, the sequence

(Gnk,k)k∈N realises (x, y).

Now let us show that the region Ωs,t is simply connected by showing that for any (x, y1), (x, y2) ∈ Ωs,t

we must also have (x, y) ∈ Ωs,t for any y1 ≤ y ≤ y2. We generalise the argument in Proposition 2.2 from [54]

and consider sequences (Gn)n∈N and (G′n)n∈N that realise (x, y1) and (x, y2) respectively. For each n ∈ N we

iteratively construct a sequence of n-vertex graphs Gn,1, . . . , Gn,k(n) with Gn,1 = Gn and Gn,k(n) = G′n as

follows: for i ≥ 1 if Gn,i = G′n, then we set k(n) = i and stop. If ks(Gn,i)/
(
n
s

)
≥ x and E(G′n) \E(Gn,i) 6= ∅

we obtain Gn,i+1 from Gn,i by adding any edge from E(G′n) \ E(Gn,i). Similarly, if ks(Gn,i)/
(
n
s

)
< x and

E(Gn,i) \ E(G′n) 6= ∅ we obtain Gn,i+1 from Gn,i by removing any edge from E(Gn,i) \ E(G′n). Otherwise,

either E(Gn,i) \ E(G′n) = ∅ or E(G′n) \ E(Gn,i) = ∅ and we obtain Gn,i+1 from Gn,i by adding an edge

of E(G′n) \ E(Gn,i) in the former case and removing one of E(Gn,i) \ E(G′n) in the latter. We note that

adding or removing a single edge adds or removes a fraction of cliques of a given size that is o(1), so

that limn→∞ ks(Gn,i(n))/
(
n
s

)
= x and limn→∞

(
kt(Gn,i(n))− kt(Gn,i(n)+1)

)
/
(
n
t

)
= 0 for any sequence i(n)

satisfying 1 ≤ i(n) ≤ k(n) − 1. Therefore, as limn→∞ kt(Gn,1)/
(
n
t

)
= y1 and limn→∞ kt(Gn,k(n))/

(
n
t

)
= y2,

for any y with y1 ≤ y ≤ y2 there exists k′(n) such that limn→∞ kt(Gn,k′(n))/
(
n
t

)
= y.

It follows that it suffices to study cs,t(x) and Cs,t(x) in order to fully understand Ωs,t and we can in fact

replace the infimum and supremum in their definition by a minimum and maximum. Let us establish some

properties of these curves.

Proposition 2.2. The curves cs,t(x) and Cs,t(x) are decreasing, continuous, and almost everywhere differ-

entiable for any s, t ≥ 2.

Proof. We start by arguing that both cs,t(x) and Cs,t(x) are decreasing, similarly to Lemma 2.3 in [54].

Let (Gn)n∈N be a sequence of graphs of order n realizing a point (x, y) ∈ [0, 1]2 with x < 1. Consider the

sequence (G′n)n∈N obtained by fully connecting a clique of size dβ ne to Gn for some fixed β > 0 and any

n ∈ N. Let us determine the tuple (x′, y′) realized by that sequence. As no new independent sets of size

s are created in G′n we have ks(G′n) = ks(Gn). On the other hand, for each 0 ≤ ` ≤ t − 1, we get at least
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k`(G) ·
(dβne
t−`
)

new Kt in G′n and hence

kt(G
′
n) ≥

t∑
`=0

k`(Gn)

(
dβne
t− `

)
.

As every copy of Kt in G′n was already contained in Gn or contains at least one of the new vertices, we

have kt(G
′
n) ≤ kt(Gn) + dβne

(
n+dβne
t−1

)
. Combining this, dividing by

(
n+dβne

s

)
and

(
n+dβne

t

)
respectively, and

taking limits, we get

y′ =
y

(1 + β)s
and

x+ tβ (1 + β)t−1

(1 + β)t
≥ x′ ≥

βt + tβt−1 +
∑t

`=2

(
t
`

)
xβt−`

(1 + β)t
, (2)

where for the last inequality we use that lim infn→∞ k`(Gn)
(dβne
t−`
)
/
(
n
t

)
≥ x

(
t
`

)
βt−`. Using these bounds

we can easily find a β = β(ε) > 0 for any ε > 0 such that x < x′ ≤ x + ε, where x < x′ holds as

βt + tβt−1 +
∑t

`=2

(
t
`

)
xβt−` > x(1 + β)t by the binomial Theorem. Since y′ < y for β > 0, the fact that

cs,t(x) is decreasing follows. A similar argument likewise establishes that Cs,t(x) is decreasing.

Given the monotonicity of cs,t(x) and Cs,t(x) as well as their bounded domain of [0, 1], the fact that

they are almost everywhere differentiable immediately follows. Regarding continuity, we note that both

left- and right-hand limits exist due to monotonicity. Since cs,t is the decreasing lower bounding curve of a

compact domain, it must also be right-continuous and left-continuity of Cs,t(x) likewise follows. To establish

left-continuity for cs,t(x) (and right-continuity of Cs,t(x)) we let x0 ∈ (0, 1) and y0 = limx↗x0 cs,t(x). By

monotonicity cs,t(x0) ≤ y0, so let us assume that cs,t(x0) = y′ < y0. Let β > 0 be small enough such that

y0/(1 + β)s > y′. Then, in view of Equation (2), choose α > 0 small enough such that

βt + tβt−1 +
∑t

`=2

(
t
`

)
(x0 − α)βt−`

(1 + β)t
> x0 ,

which is again possible by the binomial Theorem. As cs,t(x0 − α) ≥ y0 we get with monotonicity and

Equation (2) that cs,t(x0) ≥ y0/(1+β)s > y′. This contradicts our assumption and establishes left-continuity

of cs,t(x).

Cs,t(x) is the easier of the two to establish and when min{s, t} = 2 is precisely given by the Kruskal-

Katona theorem, which states that if ks(G)/
(
n
s

)
= α then kt(G)/

(
n
t

)
≤ αt/s [48], [50] so that for s = 2 if

k2(G)/
(
n
2

)
= x and hence k2(G)/

(
n
2

)
= 1−x, then kt(G)/

(
n
t

)
≤ (1−x)t/2. It was more generally determined

for arbitrary s, t ≥ 2 by Huang et al. [44], who showed that the maximum is always achieved either by a

clique with additional isolated vertices or by the complement of this graph. More precisely,

Cs,t(x) = max{(1− x1/s)t + t x1/s (1− x1/s)t−1, (1− z)t}, (3)

where z is the unique root of zs + szs−1(1− z) = x in [0, 1]. Note that this is differentiable except for at the

point where the curves given by the two constructions meet.

On the other hand, much less is known about cs,t(x). Clearly cs,t(0) = gs,t and cs,t(x) = 0 if and

only if x ≥ gt,s, that is (0, gs,t) and (gt,s, 0) are the points where the curve cs,t(x) intersects the axes when

0 ≤ x ≤ gt,s. Moreover, cs,t = minx cs,t(x) + x and therefore cs,t(x) ≥ cs,t − x. Given Proposition 2.1 and
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y

x

(0, 1)

(1, 0)

(
r−1, r

t−1

rt−1

)

(
1

t−1
, 0

)

Figure 1: The whole region Ω2,t. The lower bound
c2,t(x) as determined by Razborov [68], Nikiforov [63],
and Reiher [69] and the upper bound C2,t(x) = (1 −
x)t/2 follows from Equation (3). The red dots are given
by a balanced complete r-partite graph for r = t−1, . . .
and the connections come from an interpolation between
them.

y

x

(
0, 1

4

)

(0, 1)

∼ (0.278, 0.278)

(1, 0)

(
1
4
, 0

)

Figure 2: The whole region Ω3,3 as described by Huang
et al. [43]. The lower bound is c3,3(x) = 1/4 for
x ∈ [0, 1/4] as in Lemma 2.3. The upper bound C3,3(x)
is given by the two functions from Equation (3) inter-
secting at the red dot, where it is not differentiable.

Proposition 2.2, we can also equivalently define it without needing to introduce Ωs,t as

cs,t(x) = lim
n→∞

min

{
ks(G)(
n
s

) : |G| = n,
kt(G)(
n
t

) ≤ x} .
For s = 2 one is interested in the minimum possible density of cliques of size t in a graph of given edge density

and in this case c2,t(x) was completely determined; Razborov [68] gave an answer for t = 3, Nikiforov [63]

for t = 4, and Reiher [69] for arbitrary t. See Figure 1 for an illustration of c2,t(x) and C2,t(x). We note

that Liu, Pikhurko, and Staden [52] establish stability and exactness of c2,3(x) for x ∈ [1/2, 1] improving on

previous results of Pikhurko and Razborov [64] and Lovász and Simonovits [56], where the latter also covers

c2,t(x) at and slightly below the Turán constructions. A simple deterministic construction also shows that

the lower bound by Goodman for s = t = 3 is tight in this more general case, establishing that c3,3(x) is in

fact linear and can be obtained by interpolating between extremal constructions similar as for c2,t(x).

Lemma 2.3. We have c3,3(x) = 1/4− x for all x ∈ [0, 1/4].

Proof. A possible construction of a sequence of n-vertex graphs goes as follows. For some η ∈ [0, 1/2] we

take two cliques of size dηne and two independent sets of size b(1/2 − η)nc. Each clique is fully connected

to a different one of the independent sets and also the independent sets are fully connected. The density

of triangles in this graph approaches 2η3 + 6η2(1/2 − η) and the density of independent sets of size three

approaches 2(1/2− η)3 + 6(1/2− η)2η. Each of these quantities covers [0, 1/4] for η ∈ [0, 1/2] and together

they sum up to 1/4.

Together with C3,3(x) as given by [44], this determines Ω3,3 as illustrated in Figure 2. This region

was in fact already earlier established by Huang et al. [43], who relied on a probabilistic construction for

every point in the region, rather than interpolating between the two bounding curves as in the proof of
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Proposition 2.1. Beyond that very little is known about the shape of cs,t(x), providing some additional

motivation for studying the parameters cs,t and gs,t stated in the introduction.

Recall that cs,t(x) ≥ cs,t − x, so Theorem 1.1, Theorem 1.2, and Theorem 1.4 imply linear lower bounds

of cs,t(x) for some specific values of s and t. Let us take a closer look at the smallest open case, that is

s = 3 and t = 4. Calculating the K3 and K4 density of the sequence of blow-ups2 of the Schläfli graph, we

get that c3,4(41 · 3−6) = 320 · 3−8, establishing one precise value of the curve besides the ones on the axes.

Additionally, we can show that c3,4(x) is not differentiable at this point by establishing a second tight lower

bound using a differently weighted version of c3,4, see Section 4.3 for more details.

Noting that by Das et al. [15] and Pikhurko and Vaughan [66] the value of g3,4 = c3,4(0) = c4,3(1/9) is

determined by the sequence of blow-ups of K3 and the value of g4,3 = c3,4(3/25) = c4,3(0) by that of a C5

with loops at all vertices, it also seems reasonable to ask if the Schläfli graph could mark a first ‘extremal

point’ of the curve c3,4(x) that does not lie on either axis, the same way that Kt does for c2,t(x), or if

alternatively the blow-up sequence of another vertex-transitive graph on fewer than 27 vertices marks such

a point.3

y

x

(
0, 3

25

)
- looped C5

(
3

200
, 6347
64000

)
- 40 vertices(

1
36
, 577
6912

)
- 24 vertices(

41
729

, 320
6561

)
- Schläfli graph(

563
8192

, 2469
65536

)
- 128 vertices(

437
6272

, 33
896

)
- 112 vertices(
1
9
, 0

)
- K3

Figure 3: The known bounds on the region Ω3,4. The blue line is
the linear lower bound y = c3,4 − x, the blue dotted line is an addi-
tional linear lower bound for c3,4(x), the red dots represent optimal
constructions, and the grey dots represent additional constructions.
The upper bound C3,4(x) = (1− x1/3)4 + 4x(1− x1/3)3 follows from
Equation (3).

Surprisingly, some experimentation reveals that

neither option seems to hold true: there is no se-

quence of blow-ups of a vertex-transitive graph on

up to 47 vertices that determines a point in convex

position with the points given by the Schläfli graph

and K3, where one might expect points of disconti-

nuity to be more easily described. There are how-

ever various blow-up sequences of vertex transitive

graphs on at least 112 vertices that are in convex

position with those points. On the other hand, be-

tween the points given by the Schläfli graph and the

looped C5, where we would expect constructions to

become increasingly complex, we first find a vertex-

transitive graph on only 24 vertices determining a

point in convex position with the two other points.

Lest one assume that this might indicate a pattern,

there also exists a vertex-transitive graph on 40 ver-

tices that determines a point in convex position with

this point and the one given by the looped C5. Our

results are illustrated in Figure 3. We note that stability also holds for g3,4 and g4,3 [15],[66] and Theorem 1.4

establishes the same for the Schläfli graph.

2A formal definition of a blow-up will be given in the next section in Definition 3.1.
3We are intentionally vague here with our notion of extremal points. We likely expect a, possibly infinite but countable,

set of points x in [0, 1] where c3,4(x) is not differentiable and that behavior corresponds to a change in the underlying graph
construction.
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3 Constructive upper bounds

All upper bounds on ct, cs,t, gs,t, and cs,t(x) described in the introduction and previous section rely on

explicit constructions. When only the asymptotic value is of interest, this usually implies considering the

blow-up of a fixed finite graph to obtain a sequence of graphs with increasing order that have some desired

property.

Definition 3.1. For a graph C on vertex set {1, . . . , n} and integers m1, . . . ,mn ∈ N0, the blow-up

C[m1, . . . ,mn] is the graph with vertex set
⋃n
i=1{(i, v) : 1 ≤ v ≤ mi} in which two distinct vertices (i1, v1)

and (i2, v2) are connected if and only if i1 and i2 are connected in C. When |mi −mj | ≤ 1 for 1 ≤ i, j ≤ n
we say that the blow-up is balanced. When mi = m for 1 ≤ i ≤ n, then we call C[m] = C[m1, . . . ,mn] the

m-fold blow-up of C and refer to (C[m])m∈N as the blow-up sequence of C.

This means that a vertex of C is replaced by an independent set of size m in C[m] if that vertex does not

have a loop, or by a clique of size m otherwise. Note that our definition ensures that the blow-up is always

a simple graph even when C contains loops. It follows that the complement of the blow-up of a graph C

is equal to the blow-up of the complement of C with loops added at every vertex. We denote this type of

complement as the looped complement of a graph.4

The blow-up of a graph has certain properties that are favorable to this type of problem. In particular,

if the graph has no loops then its clique number is equal to that of C, that is ω(C[m]) = ω(C) for any

m ∈ N. More broadly, we have the following result due to Thomason [83].

Lemma 3.2. For any simple graph C of order n and for m ∈ N going to infinity, we have

kt(C[m]) =
t! kt(C)

nt

(
mn

t

)
(1 + o(1))

as well as

kt(C[m]) =

∑t
j=1 j!S(t, j) kj(C)

nt

(
mn

t

)
(1 + o(1))

where S(t, j) =
∑j

i=0(−1)i
(
j
i

)
(j − i)t/j! is the Stirling number of the second kind.

This is a direct consequence of the fact that the fraction of not necessarily injective homomorphic

copies of cliques of size t in a graph stays the same under blow-up. The number of homomorphic copies

asymptotically matches the number of injective copies, accounting for the 1+o(1) term. This statement also

readily generalizes to arbitrary graphs and not just cliques as well as to non-balanced blow-ups. From a more

practical perspective, Lemma 3.2 gives an efficient way to compute an upper bound on cs,t from any graph

C, as well as an upper bound on gs,t from any graph C with ω(C) ≤ t − 1, through the blow-up sequence

(C[m])m∈N. We will describe several different approaches that we employed in order to find constructions

whose blow-up sequence give good upper bounds for the problems presented in the introduction.

4It is actually significantly easier to think about these problems in terms of monochromatic homomorphic copies of fully-
looped cliques in a two-coloring of a fully-looped (and possibly vertex-weighted) complete graph, but to stay consistent with
previous literature we are counting subgraphs of a simple graph and its complement.
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3.1 The discrete optimization problems

Lemma 3.2 motivates considering the discrete optimization problem

arg min
s∈{0,1}N

c(s), (4)

where we are minimizing a cost c : {0, 1}N → R over a discrete search space consisting of binary vectors

{0, 1}N for some N ∈ N. In particular, we considered encoding both simple graphs as well as Cayley graphs

through binary vectors, though many other combinatorial structures can expressed this way, see for example

the recent work of Wagner [90].

The graph search space. When constructing arbitrary graphs on n vertices, a state s ∈ {0, 1}N repre-

sents the edges of that graph, so that we have N =
(
n
2

)
. We associate with each edge an entry si in s that

indicates whether the edge is in the graph or not. Denoting the constructed graph by C = C(s), the cost

function is simply given by

c(s) = lim
m→∞

ks(C[m]) + λ kt(C[m]) , (5)

where λ = 1 in the case of cs,t, except when searching for particular improvements on the bounds on cs,t(x),

and λ � 1 in the case of gs,t to act as a Lagrangian multiplier to ensure that the constraint kt(C[m]) = 0

is fulfilled. This cost function is easily calculated through Lemma 3.2.

The Cayley graph search space. The effectiveness of any search method will primarily be governed by

the number N of variables used to construct the graph. However, at least for the motivating K4-Ramsey

multiplicity problem, we found that the quality of a construction was strongly dependent on its number of

vertices n. Since in the general graph space N =
(
n
2

)
is quadratic in n, searching for constructions becomes

intractable when the number of vertices reaches the fourties. In order to access graphs beyond that, we

explored the family of Cayley graphs, for which more efficient description is available.

Given a group G and a set S ⊆ G\{1} satisfying S = S−1, the corresponding Cayley graph C = C(G, S)

has vertex set G and two vertices g1, g2 are connected by an edge if g1s = g2 for some s ∈ S. A state

s ∈ {0, 1}N represents the generating set
⋃

sA=1A where each subset A = {g, g−1} for g ∈ G corresponds to

an entry sA in s. Denoting the Cayley graph constructed this way by C = C(s), the relevant cost function

is again given by Equation (5).

The number N of variables needed to encode a Cayley graph is between |G|/2 and |G| − 1. This is

only linear in the number of vertices, which allows us to search for graphs an order of magnitude larger.

Additionally, Cayley graphs form a substantial subset of vertex-transitive graphs [40], [41], making them a

highly relevant source of constructions. Both circumstantial evidence and the following lemma, stating that

in an optimal construction, the number of K4 and K4 at each vertex is asymptotically the same, support

this relevance. Given a graph G and set of vertices S ⊆ V (G), let kt(G,S) denote the number of cliques of

size t in G containing all vertices of S. The proof is based on that of [3], Proposition 8.

Lemma 3.3. For any t ≥ 3 and sequence of graphs (Gn)n∈N of order n satisfying limn→∞ kt(Gn)+kt(Gn) =

ct, we have

max
u,v∈V (Gn)

∣∣kt(Gn, {u}) + kt(Gn, {u})− kt(Gn, {v})− kt(Gn, {v})
∣∣/(n− 1

t− 1

)
= o (1) .
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Proof. Let us write

κ(G,S) =
(
kt(G,S) + kt(G,S)

)
/

(
n− |S|
t− |S|

)
as well as κ(G) = κ(G, ∅). Assume there exist vertices un, vn ∈ V (Gn) and ε > 0 satisfying κ(Gn, un) −
κ(Gn, vn) ≥ ε for all n ∈ N. Consider the sequence of graphs G′n obtained by deleting un from Gn and

duplicating vn as v′n along with its relations, where we choose to include vnv
′
n in E(G′n). We have

κ(G′n)− κ(Gn) ≤ κ(Gn, {vn})− κ(G, {un}) + o(1) ≤ −ε+ o(1),

where the o(1) term comes from all cliques containing both vn and un or v′n. This contradicts the assumption

that limn→∞ kt(G) + kt(G) = ct.

3.2 Heuristic search methods.

Since the early 80s, many heuristic methods have been suggested for solving NP-hard optimization prob-

lems, particularly for combinatorial problems with discrete search spaces. We focus on two well-established

methods that gained traction in the search for Ramsey numbers [22], [23], [59] and provide an accessible

introduction to both, complementing a recent growing interest in computational means in Extremal Com-

binatorics [51], [71], [90], [91]. Although heuristics inherently lacking global optimality guarantees, matching

flag algebra lower bounds and stability results can, in this particular case, establish the optimality and

uniqueness of heuristic solutions. For more information on the subject of heuristic search methods, we refer

the interested reader to the handbook of Gendreau and Potvin [31]. We also discuss the efficacy of a more

recent Machine Learning-based approach compared to these methods in Section 5.3.

Simulated Annealing. Simulated Annealing (SA) is a probabilistic technique that can be interpreted

as a modified local search. It accepts worse states according to a probabilistic acceptance criterion, which

is modified over time to reject worse states and avoid getting trapped in local minima. SA was originally

proposed by Kirkpatrick, Gelatt and Vecchi [49], and its impact has been significant; in 2014, the original

paper was listed as one of the 100 most cited scientific papers of all time [86]. Algorithm 1 describes the

algorithm in pseudocode.

Algorithm 1: Simulated Annealing

Data: initial state s0 ∈ {0, 1}N , cost function c : {0, 1}N → R, neighborhood function
N : {0, 1}N → P({0, 1}N ), number of iterations I ∈ N, temperatures (ti)1≤i≤I

Result: best state found s? ← arg mins∈{s0,s1,...,sI} c(s) ∈ {0, 1}N

for i← 1 to I do
sc ← uniform random sample from N (si−1)
if min

(
exp((c(si−1)− c(sc))/ti), 1) ≥ rand(0, 1) then

si ← sc
else

si ← si−1

end

end

To more precisely describe the algorithm, let N : {0, 1}N → P({0, 1}N ) denote some notion of neighbor-

hoods of the states. We restricted ourselves to considering states as neighboring if their Hamming distance
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is 1. The algorithm starts with a random state s0 and executes a fixed number of iterations I, where in

each iteration 1 ≤ i ≤ I we pick a candidate state sc uniformly at random from N (si−1) and accept it

based on the probabilistic Metropolis’ criterion [60]. See also Dueck and Scheuer [18] for a variant that

avoids the probabilistic nature of SA. The temperature sequence (ti)1≤i≤I typically converges to 0, and SA

functions more like a local search as it does. There are many details when implementing SA, and the pre-

sentation here should not be considered authoritative. Due to the relatively cheap computation of c(s′) for

any s′ ∈ N (s), we implemented a variant of SA that avoids rejecting states by directly sampling candidates

from an appropriate distribution dictated by Metropolis’ criterion, as previously suggested by Greene and

Supowit [38].

Tabu Search. Tabu Search, an even simpler search heuristic than SA, was suggested by Glover [33]–[35].

Like SA, it can be viewed as a modified local search aimed at avoiding local optima and cycles. We start

with a randomly initialized state s0 and require a notion of neighborhood N : {0, 1}N → P({0, 1}N ). We

execute I iterations, where in each iteration 1 ≤ i ≤ I, we pick the neighboring state s ∈ N (si−1) with the

lowest associated cost and that has not been visited recently, regardless of whether it improves upon c(si−1).

Algorithm 2 contains the pseudo-code for Tabu Search.

Algorithm 2: Tabu Search

Data: initial state s0 ∈ {0, 1}N , cost function c : {0, 1}N → R, neighborhood function
N : {0, 1}N → P({0, 1}N ), history length ` ∈ N, number of iterations I ∈ N,

Result: best state found s? ← arg mins∈{s0,s1,...,sI} c(s) ∈ {0, 1}N

for i← 1 to I do
si ← arg mins∈N (si−1)\{si−`,...,si−1} c(s)

end

There are many degrees of freedom when implementing this algorithm. One modification we made was

to the history implementation: instead of storing a history of the last ` states and excluding those from

the update, we store a list of the last ` modified bits and exclude any state that differs from the current

one in one of those bits. This slightly increases the number of excluded states but drastically reduces the

computational and implementation effort required to determine which states to exclude.

It is crucial to have an efficient implementation of the cost function c for both methods, particularly since

they are often run in parallel for various initial states. In our application, we precomputed the relevant indices

for all cliques, considering multiplicity, and stored the results in a matrix format. This approach allowed us

to evaluate c using only elementary matrix operations on a GPU, substantially improving efficiency when

assessing multiple states in parallel.

3.3 Constructions

We implemented all search methods in Python and Pytorch and logged the results using Weights &

Biases [7]. We relied on the GAP [30] component in SageMath and in particular the Small Groups library

for Cayley graph constructions. We will represent graphs using their graph6 representation, a 6-bit encod-

ing of the upper triangle of the graph adjacency matrix. This representation can be most easily decoded

using SageMath and a formal description is available at cs.anu.edu.au/~bdm/data/formats.txt. Graph

http://cs.anu.edu.au/~bdm/data/formats.txt
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descriptions too large to be included in this paper are available at doi.org/10.5281/zenodo.6364588. We

also provide a survey of the derivation of previous constructions and describe the process we used to obtain

our bounds for additional context.

3.3.1 Ramsey multiplicity – Theorem 1.1 and Theorem 1.2

Previous constructions. The original counterexample by Thomason [83] to Erdős’ conjecture for t ≥ 4

was given by the blow-up sequence of graphs formed by vectors in orthogonal geometries. This construction

gives c4 < 0.03050 and c5 < 0.001769 and Thomason improved the bound for t = 4 to c4 < 0.03030 through

a computer based local search around its two-fold blow-up. Franek and Rödl [29] presented a class of more

simply describable Cayley graphs containing a construction on 210 = 1024 vertices, also found through a

computer search, whose blow-up sequence likewise disproves Erdős’ conjecture for t = 4 by giving an upper

bound of c4 < 0.03052. This was generalised by Franek [27] and Deza, Franek, and Liu [17], giving the

currently best known bounds for c6, c7, and c8.

Thomason [84] slightly improved upon his constructions for t ∈ {4, 5} by noticing that the XOR graph

product ⊗5 has some favorable properties for this problem, which were previously already observed by

Chung and Graham [13]. In particular, by simply computing a particular vector of graph densities for two

given graphs G1, G2, one can determine the corresponding vector of G1 ⊗ G2 as the element-wise product

of those two vectors from which one can then easily determine the relevant upper bound on cs,t through a

vector product with some appropriate weight vector. Computationally, this gives one the opportunity to

pre-calculate these density vectors for small or medium sized graphs and then cheaply compute the upper

bounds given by even very large graph products. The best upper bound found this way for c4 is given

by the blow-up sequence of K4 ⊗M4 ⊗ G18, where M4 denotes a perfect matching of order 4 and G18 the

complement of K⊗2
3 ⊗K2, giving roughly c4 < 0.03029, and the best upper bound for c5 < 0.001720 is given

by the blow-up sequence of K3 ⊗M⊗3
4 . Thomason also observed that his original constructions from [83]

can be described as K4 ⊗M⊗(t−1)
4 for t ≥ 5 and as a subgraph of this for t = 4. Note that the XOR graph

product in some sense works as a generalisation of the blow-up, since G[m] = G⊗Km for a loopless graph

G.

The improvement of Even-Zohar and Linial [21] was based on the observation that G18 can also be seen

as a blow-up of K2 with a copy of K3 ⊗K3 inserted at every vertex, rather than an independent set. This

motivates the composition G �H of two graphs G and H, where a copy of G is placed at every vertex of

H6, e.g. G18 = (K3 ⊗K3) �K2. Their construction is K4 ⊗M4 ⊗ (K3 ⊗K3)�n for n tending to infinity,

where G�n is the n-fold composition of G with itself. This is the only example of a construction that is

not a standard blow-up and it remains unclear what the role of K4 ⊗M4 is. While a similar decomposition

followed by replacing some part with an n-fold composition could possibly enhance other bounds, it is

computationally challenging to identify a suitable decomposition with XOR products for larger graphs, if

5Given two graphs G1 = (V1, E1) and G2 = (V2, E2), their XOR graph product G1 ⊗ G2 has vertex set V1 × V2 and two
vertices (v1, v2), (v′1, v

′
2) ∈ V1 × V2 are connect if and only if either v1v

′
1 ∈ E1 and v2v

′
2 /∈ E2 or v1v

′
1 /∈ E1 and v2v

′
2 ∈ E2. Here

we consider loops in the graph, that is in particular vv /∈ Ei for v ∈ Vi unless Gi has a loop at v for i ∈ {1, 2}. Thomason calls
this graph product the tensor product and Wolf [92] states that it is also known as the Cartesian product. It seems however
that the tensor product is more commonly used for the case v1v

′
1 ∈ E1 and v2v

′
2 ∈ E2 and the Cartesian product for the case

either v1v
′
1 ∈ E1 and v2 = v′2 or v1 = v′1 and v2v

′
2 ∈ E2, so to avoid confusion we use the unambiguous terminology of Alon and

Lubetzky [2]. We will also write G⊗k for the k-fold XOR graph product of a graph G.
6Formally, given two graphs G1 = (V1, E1) and G2 = (V2, E2), their composition G1 � G2 has vertex set V1 × V2 and two

vertices (v1, v2), (v′1, v
′
2) ∈ V1 × V2 are connect if and only if either v1v

′
1 ∈ E1 or v1 = v′1 and v2v

′
2 ∈ E2.

https://doi.org/10.5281/zenodo.6364588
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such a decomposition even exists.

We finally note that we pushed both the approaches of Franek and Rödl in [29], Thomason in [84], and

Even-Zohar and Linial [21] to what we found feasible using our capabilities and computational resources.

We found no or only the most marginal of improvements, implying that these approaches have probably

exhausted their full potential.

Constructions in Theorem 1.1 and Theorem 1.2. We ran heuristic searches to construct graphs on

up to 40 vertices that minimize the cost function given by Equation (5). The smallest graph we found whose

blow-up sequence establishes a value below 1/32 was of order 33, giving a value of 0.03118. The smallest

previously known such graph was described by Thomason [83] and was of order 36. We also found a graph

on 32 vertices whose weighted blow-up gives a value slightly below 1/32. We found no further constructions

on less than 40 vertices giving any significantly better values.

Given that the blow-up sequences of small graphs seem to yield little of interest, we considered Cayley

graphs next. We have already noted that the best construction given by a blow-up sequence (c4 < 0.03029)

is based on a Cayley graph in Z×2
3 × Z×5

2 (order 288) and a Tabu Search in that particular group yielded

no improvement. However, already in Z3 × Z×6
2 (order 192) we were able to find a graph whose blow-up

sequence even improves upon the previous best value found by Even-Zohar and Linial (c4 < 0.3028), giving

an upper bound of c4 < 0.03027. Going to Z3 × Z×8
2 (order 384) allows us to already achieve a bound if

c4 < 0.03015 and going up to Z3 × Z×8
2 (order 768) produced the graph whose blow-up sequence gives the

upper bound c4 ≤ 4551721 · 2−24 · 3−2 < 0.03015 stated in Theorem 1.1.

We note that there seems to be no particular significance to the fact that we derived these constructions

in groups defined only through direct products. In fact, running the Tabu Search on all groups of order at

most 192 revealed (1) that in general decent constructions seem to be found in groups of order 3 ·2n and (2)

many groups of that order perform significantly better than the group Z3 × Z×n2 . For example, for groups

of order 192 the best value we found was around 0.03021. Unfortunately we were unable to determine any

patterns indicating which groups might be preferable when going to groups of order 384 or 768. The sheer

number of these groups and the amount of cliques to consider unfortunately makes it impossible to run a

Tabu Search on anything more than a small selection of them.

Regarding the value for c5, the previous best construction can be described as the blow-up sequence of

a Cayley graph in Z3 × Z×6
2 (order 192). A search run on Cayley graphs in this group yielded the slight

improvement presented in Theorem 1.2. Due to the fact that we need to consider cliques of size 5, we were

unable to go up Cayley graphs of order 384 or 768 as we did for c4.

3.3.2 Bounded clique number – Theorem 1.3

Previous constructions. Complete graphs are obvious candidates to consider as constructions in this

context, as the Turán graph Tt−1(n) can be described as Kt−1[n/(t−1)] whenever t−1 divides n, that is the

blow-up sequences of Kt−1 give tight upper bounds for g2,t for arbitrary t ≥ 2. The same holds for g3,3 as

the blow-up sequence of K2 gives an upper bound of 1/4 and g3,3 ≥ c3 = 1/4 by [36]. Das et al. [15] showed

that the upper bound given by the blow-up sequence of K3 for g3,4 is tight and the results of Pikhurko and

Vaughan [66] imply that the same is true for Kt−1 and g3,t for t ∈ {5, 6, 7}.
However, Nikiforov [62] showed this can only cover finitely many cases of gs,t when s, t ≥ 3 and for the

Ramsey multiplicity problem, the blow-up sequences of complete graphs are in general far from even the
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performance of random graphs. Das et al. [15] showed that for g4,3 the tight upper bound is given by the

blow-up sequence of C5 and Pikhurko and Vaughan [66] proved the same for g5,3 and that the the blow-up

sequence of the Clebsch graph on 16 vertices establishes tight upper upper bounds for g6,3 and g7,3. Note

that both C5 and the Clebsch graph are vertex-transitive and in fact can be realized as Cayley graphs, which

of course is also true of complete graphs.

Pikhurko and Vaughan [66] also found a construction for g4,4 that relies on the weighted blow-up sequence

of a non-vertex-transitive graph of order 8 where the weights of the blow-up align with the two vertex orbits

of size 4 of the graph. This graph is in fact one of three (3, 4)-Ramsey graphs of order 9 and has the

graph6 representation GK^d}w. The upper bound of (14 ·21/3−11)/27 ≈ 0.034578 given by this construction

seemingly aligns with the lower bound indicated by the flag algebra approach, but they were unable to turn

this into a rigorous proof.

Constructions in Theorem 1.3. The construction used to establish g4,5 is given by the blow-up sequence

of the unique vertex-transitive graph of order 13, degree 8, clique number 4 and independence number 2,

referred to as CR(3,5) in the introduction. This is the only (3, 5)-Ramsey graph of order 13 and has the

graph6 representation

LJ]lmZRnn]]\v[

This construction can be easily found using a search heuristic in the graph space or through an exhaustive

search of all Cayley graphs of Z13.

Additional constructions and bounds. Noting that upper bounds to both g4,4 and g5,4 are established

through Ramsey graphs, we searched McKay’s collection7 of such graphs for additional constructions whose

weighted blow-up sequence gives good upper bounds for gs,t. In particular, we considered the (3, 6)-, maximal

(3, 7)-, 4-, (4, 5)-, (4, 6)- and 5-Ramsey graphs on respectively 17, 22, 17, 24, 35, and 42 vertices. Of these

there are respectively 7, 22, 1, 352 366, 37, and 328 graphs. We were able to derive the following bounds:

0.008175 < g5,4 ≤ 0.008584,

0.002020 < g5,5 ≤ 0.002136,

0.006406 < g4,6 ≤ 0.006773,

0.003275 < g4,7 ≤ 0.003637,

0.0006319 < g5,6 ≤ 0.0008433 and

0.0001978 < g5,7 ≤ 0.0003500.

All lower bounds were established using the flag algebra approach, see Section 4. The construction used to

establish the upper bound for g5,4 is given by the weighted blow-up sequence of a (5, 4)-Ramsey graph of

order 13 with 5 vertex orbits which has the graph6 representation

L@OZ@\Vmmu}hzL

and was found as a subgraph of one of the (5, 4)-Ramsey graphs of order 24 with 24 vertex orbits.

7Brendan McKay has created a collection of combinatorially interesting constructions, among them several complete and
partial lists of Ramsey graphs, which is available at users.cecs.anu.edu.au/~bdm/data.

https://users.cecs.anu.edu.au/~bdm/data
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The construction used to establish the upper bound for g5,5 is the same used to establish g4,5, that is

it is given by the blow-up sequence of the unique (3, 5)-Ramsey graph of order 13 which has the graph6

representation

LJ]lmZRnn]]\v[

The construction used to establish the upper bounds for g4,6 and g5,6 is given by the weighted blow-up

sequence of a (3, 6)-Ramsey graphs of order 17 which has 9 vertex orbits and the graph6 representation

P~TktL|vdu{{^]vl[z|v]B~{

The construction used to establish the upper bounds for g4,7 and g5,7 is given by the weighted blow-up

sequence of a (3, 7)-Ramsey graphs of order 22 which has 11 vertex orbits and the graph6 representation

U‘K~vj\zff\Zt]rlzv^Zm}z^v]r~^r}~m}~kn^vG

We also checked a library of small vertex-transitive graphs [40] but found no additional constructions im-

proving upon the upper bounds. For g5,4 and g5,5 we additionally ran search heuristics both in the graph

and Cayley graph space and also found no improvements.

3.3.3 Off-diagonal Ramsey multiplicity – Theorem 1.4

The construction used to establish the upper bound for c3,4 is given by the blow-up sequence of the Schläfli

graph, a vertex-transitive graph of order 27, with the graph6 representation

ZBXzz|z^Z|tFixjTtp|mFk\uqm|gz}]FbHvHqjh]WzFy[RmtSUztaLvyF‘vw

The construction used to establish c3,5 is better described as a construction for c5,3 in which case it is

given by the blow-up sequence of the complement of the Schläfli graph, that is the graph with the graph6

representation

Z??G‘@?@wrDSLGQoigbKO]CA?^{VDsjIqehgmK[EM[OzIqCyegO|FO_^{?_?

Both of these constructions can be found through search heuristics of graphs of order 27. The construction

used to establish the upper bound for c4,5 is given by the blow-up sequence of vertex-transitive graph on

128 vertices. It was found using a search of Cayley graphs of order at most 128.

Additional constructions in Figure 3. The graph on 40 vertices is vertex-transitive, has degree 17,

clique number 3 and independence number 12. The graph on 24 vertices is vertex-transitive, has degree 11,

clique number 3 and independence number 6 and has the graph6 representation

W@TBOkkJBBAoSCW?Qv{V}jRrhfC{UEfaRPtAw\_ckqGt‘oL

The graph on 128 vertices is vertex-transitive, has degree 78, clique number 5 and independence number

16. Lastly, the graph on 112 vertices is vertex-transitive, has degree 68, clique number 5 and independence

number 14. The two smaller graphs were found using a vertex-transitive graph library [40], [41] and the two

larger using a search of Cayley graphs of order at most 128 where the λ parameter was adjusted accordingly

in Equation (5).
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4 Lower bounds and stability through flag algebras

Razborov [67] proposed using finite model theory to describe the algebraic structure underlying many

techniques in Extremal Combinatorics. This approach allows one to derive lower bounds for problems like

those studied in this paper through a semi-definite program (SDP). This method has been widely used over

the past decade and there exist not only several very good introductions to the topic [24], [66], [79] but also

a tool in the form of flagmatic [87].

If the lower bound obtained with this approach matches a constructive upper bound it is sometimes

possible to additionally infer the uniqueness of the construction from the flag algebra based proof. We

improve the toolset developed in [65], [66] used to derive such stability results in order to show that several

of the constructive bounds found using search heuristics in fact represent global optima. We start with a

summary of the theory behind the approach based on [65], [66], then turn to the stability aspect, and finally

go into some detail about the practical aspects of how our proofs can be verified.

4.1 The theory behind the flag algebra approach

Suppose we have a (possibly empty) family X of forbidden graphs. Let Gn = Gn(X ) denote set of all graphs

up to isomorphism of some given order n not containing any graph in X as an induced subgraph and write

G = G(X ) =
⋃
n∈N Gn(X ). For two graphs G and H we let dH(G) denote the induced subgraph density of

H in G, that is the probability that |V (H)| vertices chosen uniformly at random in G induce a copy of H.

Consider a graph parameter λ : G → R for which there exists some n0 ∈ N such that λ satisfies the averaging

equality

λ(G) =
∑
H∈Gn

dH(G)λ(H) (6)

for any n ≥ n0 and G ∈ G of order at least n. We note that the results in this paper are limited to families

of forbidden graphs X = ∅ and X = {Kt} as well as the graph parameter λ(G) = dKs(G) + dKt(G), which

clearly satisfies Equation (6) with n0 = max{s, t}.
For any infinite subset H ⊆ G, we write

λ(n,H) = min
G∈H∩Gn

λ(G) and λ(H) = lim inf
n→∞

λ(n,H)

where for notational convenience λ(n,H) = ∞ when H ∩ Gn = ∅. We are of course primarily interested in

studying λ(G), though we keep the notation general, as we will need it when establishing stability. Note

that a trivial lower bound that follows from Equation (6) is λ(G) ≥ λ(m,G) for any arbitrary m ≥ n0.

Example. In the case of the asymptotic version of Goodman’s result, the trivial lower bound only gives

us c3 ≥ 0 when m ∈ {3, 4, 5} since R(3, 3) = 6 and, respectively, 1/10, 4/35, 1/7, 1/7, and 1/6 for

m ∈ {6, 7, 8, 9, 10}, a far cry from the true value of 1/4.

The goal of the flag algebra approach is to establish the existence of coefficents aH ∈ R for some fixed

m ∈ N satisfying the inequality ∑
H∈Gm

dH(G) aH + o(1) ≥ 0 (7)
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for any G of order at least m, as this implies the, hopefully improved, lower bound of

λ(G) ≥ min
H∈Gm

{λ(H)− aH}. (8)

In order to establish the type of coefficients commonly achieved through the solution of an SDP, we will

need some additional notation. Note that the term strong (graph) homomorphism between two (potentially

looped) graphs G1 and G2 refers to any map ψ : V (G1)→ V (G2) satisfying {v1, v2} ∈ E(G1) if and only if

{ψ(v1), ψ(v2)} ∈ E(G2).

Definition 4.1. A type τ = (T, ϕ) consists of a graph T ∈ G of order v that is fully and distinctly labelled

through ϕ : [v] ↪→ V (T ). Note that we can have v = 0, in which case τ is the empty type ∅. A τ -flag

(F,ψ) consists of a graph F ∈ G of order at least v that is a partially labelled through the injective map

ψ : [v] ↪→ V (F ) that also satisfies that ψ ◦ ϕ−1 : V (T ) ↪→ V (F ) defines an injective strong homomorphism

of T into F .

We will denote the set of all τ -flags of order l ≥ v by F lτ . Let F, F ′ ∈ F lτ be two τ -flags of same order

and H ∈ G an arbitrary graph of order at least 2l − v. Let θ : [v] ↪→ V (H) be an arbitrary injective map

implying a partial labelling of H (but not necessarily turning (H, θ) into a τ -flag) and write dθF (H) for

the probability that l − v vertices selected uniformly at random in V (H) \ θ([v]) together with the vertices

labelled by θ induce a flag isomorphic to F . Obviously this value is 0 whenever (H, θ) is not a τ -flag. We will

write dF (H) = Eθ dθF (H) for the flag density, where we are taking the uniform distribution over all possible

injective maps θ. We will likewise write dθF,F ′(H) for the probability that a subset S1 of V (H)\ θ([v]) of size

l− v chosen uniformly at random together with the vertices labelled through θ is isomorphic to F and that

another subset S2 of V (H)\
(
θ([v])∪S1

)
of size l− v chosen uniformly at random together with the vertices

labelled through θ is isomorphic to F ′. We will write dF,F ′(H) = Eθ dθF,F ′(H) for the flag pair density.

Example. There is exactly one type τ of order 1, i.e., that based on a graph with a single labelled vertex.

There are also exactly two τ -flags of order 2, that consisting of an edge with a labelled vertex and that

consisting of two isolated vertices with one labelled, and six τ -flags of order 3.

We note that Equation (6) holds for the flag pair density when m ≥ 2l − v, that is

dF,F ′(G) =
∑
H∈Gm

dH(G) dF,F ′(H) (9)

for arbitrary G ∈ G. We also note that dθF (G) dθF ′(G) = dθF,F ′(G) +O(1/n) and hence

EθdθF (G) dθF ′(G) = dF,F ′(G) +O(1/n). (10)

Using this notation, we can now state the heart of the SDP-based flag algebra approach.

Proposition 4.2. For any integer m ∈ N, types τi of order 0 ≤ vi ≤ m− 2 satisfying vi ≡ m mod 2, and

positive semi-definite matrices Q(i) of size |F liτi | × |F
li
τi | with li = (m+ vi)/2 for 1 ≤ i ≤ r, where we will use

flags F ∈ F liτi as indices for Q(i), we have

λ(G) ≥ min
H∈Gm

λ(H)−
r∑
i=1

∑
F,F ′∈F liτi

Q(i)
F,F ′ dF,F ′(H)

 . (11)
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Proof. Let us establish that

∑
H∈Gm

dH(G)

 r∑
i=1

∑
F,F ′∈F liτi

Q(i)
F,F ′ dF,F ′(H)

 ≥ O(1/n) (12)

for any graph G of order n. By rearranging and then applying both Equation (9) and Equation (10), we

have

∑
H∈Gm

dH(G)

 ∑
F,F ′∈F liτi

Q(i)
F,F ′ dF,F ′(H)

 = Eθ
∑

F,F ′∈F liτi

Q(i)
F,F ′ d

θ
F (G) dθF ′(G) +O(1/n).

for all 1 ≤ i ≤ r. Equation (12) therefore follows from the fact that the Q(i) are positive semi-definite and

by summing over 1 ≤ i ≤ r. By Equation (12) the terms

r∑
i=1

∑
F,F ′∈F liτi

Q(i)
F,F ′ dF,F ′(H)

can serve as aH in Equation (7), establishing the claim of through Equation (8).

This proposition motivates the following SDP formulation: given two symmetric matrices A and B of

equal size, we will use the inner product 〈A,B〉 = tr(ATB). Write D(i)(H) for the symmetric matrix of size

|F liτi |×|F
li
τi | for 1 ≤ i ≤ r whose entries are given by dF,F ′(H) when using flags F ∈ F liτi as indices. Write DH

for the symmetric block diagonal matrix with the integer 1 as its first and D(i)(H) as the following blocks

for 1 ≤ i ≤ r. Finally, let C denote the matrix of equal size to DH with all-zero entries except for the first,

which is 1. We are now interested in solving

max
X�0

〈C,X〉

subject to 〈DH , X〉 ≤ λ(H) for all H ∈ Gm.

Finding a positive semi-definite matrices X that solves this SDP is equivalent to finding Q(i) that maximize

the right hand side of Equation (11). Of course, most actual solvers will take advantage of the block-diagonal

structure that we may assume for X given the problem formulation, rather than optimizing over the whole

space of positive semi-definite matrices.

Example. For our toy example of c3 let us choose r = 1 and suppress the index i. We let τ be the only type

on one vertex and set l = 2 and m = 3. Then F2
τ consists of the two graphs on two vertices, j edges and

one labelled vertex, where 0 ≤ j ≤ 1. Likewise, H3 consists of the four graphs Hj on 3 vertices with exactly

j edges, where 0 ≤ j ≤ 3. We only require one positive-semidefinite matrix of size 2× 2 here and write it as

Q =

(
a c

c b

)
.

Note that Q is positive-semidefinite if and only if a ≥ 0 and ab − c2 ≥ 0. By Proposition 4.2 we need to
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maximize the minimum of the four expressions

(i) 1− a,

(ii) 0− (a+ 2c)/3,

(iii) 0− (b+ 2c)/3 and

(iv) 1− b.

It is easy to see that this minimum is attained when a = b = 3/4 and c = −3/4, in which case all four

expressions attain the value of 1/4.

4.2 Establishing stability and exactness

After finding matching upper and lower bounds, it is natural to ask whether the construction is unique and

stability holds, i.e., if anything that comes close to the optimal value must be close to the extremal construc-

tion. Statements like this can usually be derived by extracting additional information from a flag algebra

based proof and appealing to the Induced Removal Lemma of Alon et al. [1]. Pikhurko et al. [65] formal-

ized this process, establishing sufficient criteria for various stability forms. We will present this succinctly

while highlighting two improvements: introducing and strengthening the notion of reconstructors to derive

stability from smaller Flag-Algebra-based proofs, and formalizing an argument for establishing the optimal

weighting of a blow-up. Let us start by establishing some additional notions relating to Proposition 4.2.

Definition 4.3. We call (m, (τi)i∈[r], (Q(i))i∈[r]) a certificate of the bound given by Proposition 4.2. As-

suming a certificate establishes equality in Equation (11), that is it is a certificate of λ(G), we call a graph

H ∈ Gm sharp in it if λ(H)−
∑r

i=1〈Q(i), D(i)(H)〉 = λ(G).

A graph that is not sharp asymptotically does not appear as a subgraph in any extremal sequence, see

for example Lemma 4.1 in [66] for a proof of this statement.

Lemma 4.4. Let (m, (τi), (Q(i))) be a certificate of λ(G). If H ∈ Gm is not sharp, then for any sequence

(Gn)n∈N of graphs in H of increasing order that satisfies limn→∞ λ(Gn) = λ(G) we have d(H,Gn) = o(1).

Sharp graphs therefore usually give a good indication of which graphs can occur as subgraphs in an

extremal sequence and have in the past been used to find novel constructions.

Example. Briefly returning to our toy example of c3, we had a certificate with m = 3 in which all graphs were

sharp, indicating that there might be (and in fact are) extremal sequnces for c3 containing any subgraph of

order 3 with positive density.

If a certificate (m, (τi), (Q(i))) is sufficiently large in relation to our believed extremal construction C, say

m ≥ |V (C)|+ 1, and stability is believed to hold, then establishing it is often a reasonably straight-forward

matter of verifying that the only sharp graphs are those that occur with positive density in the blow-up

sequence of C and then invoking the Induced Removal Lemma. This is often far beyond the realm of being

computationally feasible, so we need a way to establish the structure of a construction C using only graphs

of order m, where m is preferably as small as possible. This was already done implicitly in [66] and the

same ideas can also be found in [65], where some sufficient requirements are part of the general criteria

stated there. We find it helpful though to state the exact requirements separately from the statements used
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to establish the stability result, as this is the place were the most can be achieved using ad-hoc arguments

invoking the structure of C. This motivates the following definition.

Definition 4.5. A graph T is an `-reconstructor of a given graph C if there exists a strong homomorphism

from G to C for any graph G satisfying the following:

(i) T is an induced subgraph of G, that is there exists S ⊆ V (G) such that G[S] ∼= T .

(ii) For any S ⊆ V (G), |S| ≤ ` there exists a strong homomorphism from G[S] to C.

Let us introduce some additional notions. For a given graph C, we say that a graph T uniquely embeds

into C if there exists a strong homomorphism ψ : V (T ) → V (C) and ψ is unique up to automorphism,

that is for any additional strong homomorphism ψ′ : V (T ) → V (C) there must exist ϕT ∈ Aut(T ) and

ϕC ∈ Aut(C) such that ϕC ◦ ψ′ ◦ ϕT ≡ ψ. For a set of vertices X ⊆ V (C), we write NC,X(v) = NC(v) ∩X
for the neighborhood of any v ∈ V (C) in X. We let ∼X denote the equivalence relationship induced in

V (C) by NC,X and [v]X the equivalence class containing v ∈ V (C). We say X defines unique neighborhoods

in C if [v]X = {v} for all v ∈ V (C).

It is easy to see that a graph C is an `-reconstructor of itself if |V (C)| ≤ `− 1. More commonly though,

the following lemma is used, which is also implicit in Theorem 4.1 in [65].

Lemma 4.6. For a given graph C and set of vertices X ⊆ V (C), the subgraph C[X] is an `-reconstructor

of C if (i) |X| ≤ `− 2, (ii) C[X] uniquely embeds into C, and (iii) X defines unique neighborhoods in C.

A more technical but stronger condition was previously already implicitly formulated in [66] to establish

stability of the Clebsch graph for g6,3 using a certificate with m = 7. Here we further strengthen it in the

form of the following lemma.

Lemma 4.7. Let a graph C be given. If there exists X ′ ⊆ X ⊆ V (C) satisfying

(1) either

(a) |X| = |X ′| ≤ `− 1 and C[X] uniquely embeds into C or

(b) |X| = `, |X ′| ≤ `− 2, and C[X ′ ∪ {x}] uniquely embeds into C for any x ∈ X,

(2) X ′ defines unique neighborhoods in C,

(3) for any v1, v2 ∈ V (C) \X there exists X ′′ ⊆ X with |X ′′| ≤ `− 2 such that

(a) if v1 = v2, then C[X ′′ ∪ {v1}] uniquely embeds into C and [v1]X′′ = {v1},
(b) if v1 6= v2, then C[X ′′ ∪ {vi}] uniquely embeds into C for some i ∈ {1, 2}, [v1]X′′ 6= [v2]X′′ and

the bipartite subgraph of C induced by [v1]X′′ and [v2]X′′ is either complete or empty,

then C[X] is an `-reconstructor of C.

Proof. Let some arbitrary graph G satisfying the assumptions of Definition 4.5 be given. Fix a copy of

C[X] in G that is guaranteed to exist by assumption (i) of Definition 4.5, that is fix Y ⊆ V (G) such that

G[Y ] ∼= C[X] and let ψ : Y ↪→ X be the corresponding graph isomorphism. The goal is to construct a

strong homomorphism ϕ : V (G) → V (C) satisfying ϕ|Y ≡ ψ given the requirements of the lemma and the

assumptions of a reconstructor.
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Let us first assume that |X| = |X ′| ≤ ` − 1, that is in particular X = X ′. By assumption (ii) of

Definition 4.5, there exists a strong homomorphism ϕv : Y ∪ {v} → V (C) for any vertex v ∈ V (G) since

|Y ∪ {v}| ≤ `. As C[X] uniquely embeds into C by (1a), there exist ξv ∈ Aut(G[Y ]) and χv ∈ Aut(C)

such that χv ◦ ϕv|Y ◦ ξv ≡ ψ. Let us therefore w.l.o.g. assume that ϕv|Y ≡ ψ. Since X defines unique

neighborhoods in C, it follows that ϕv(v) ∈ V (C) is uniquely defined for every v ∈ V (G) and its adjacencies

in X match those of v in Y , that is ψ(NG,Y (v)) = NC,X(ϕv(v)). Let ϕ : V (G) → V (C) therefore be given

by ϕ(v) = ϕv(v) for every v ∈ V (G).

Now if |X| = ` and |X ′| ≤ ` − 2, that is in particular X ′ ( X, then write Y ′ = ψ−1(X ′) ⊂ Y . Let

x ∈ X \X ′ be arbitrary but fixed and write y = ψ−1(x) ∈ Y \Y ′. By assumption (ii) of Definition 4.5, there

exists a strong homomorphism ϕv : Y ′∪{y, v} → V (C) for any vertex v ∈ V (G) since |Y ′∪{y, v}| ≤ ` by (1b).

As C[X ′ ∪ {x}] uniquely embeds into C by (1b), we can again w.l.o.g. assume that ϕv|Y ′∪{y} ≡ ψ|Y ′∪{y}.
Since X ′ defines unique neighborhoods in C by (2), it likewise follows that ϕv(v) is uniquely defined for

every v ∈ V (G) and its adjacencies in X ′ ∪ {x} match those of v in Y ′ ∪ {y} under ψ. Since this is actually

independent of our choice of x, we in fact also have that the adjacencies of ϕv(v) in X match those of v in

Y , that is ψ(NG,Y (v)) = NC,X(ϕv(v)) for any v ∈ V (G). Let ϕ : V (G)→ V (C) therefore again be given by

ϕ(v) = ϕv(v) for every v ∈ G.

Let us now establish that in either case ϕ is in fact a strong homomorphism from G to C. For arbitrary

w1, w2 ∈ V (G), let X ′′ ⊂ X be as given by (3) for v1 = ϕ(w1) ∈ V (C) and v2 = ϕ(w2) ∈ V (C) and write

Y ′′ = ϕ−1(X ′′) = ψ−1(X ′′) ⊂ Y . The induced subgraph G[Y ′′ ∪ {w1, w2}] has at most ` vertices, so by

assumption (ii) of Definition 4.5 there exists a strong homomorphism ϕ′ : Y ′′ ∪ {w1, w2} → V (C). Since

G[Y ′′∪{wi}] ∼= C[X ′′∪{vi}] for any i ∈ {1, 2} by construction of ϕ and since C[X ′′∪{vi}] uniquely embeds

into C for some i ∈ {1, 2} by (3), we can w.l.o.g. assume that ϕ′|Y ′′ ≡ ψ|Y ′′ ≡ ϕ|Y ′′ . We distinguish the

cases v1 = v2 and v1 6= v2. In the former, [v1]X′′ = {v1} by (3a). Since ϕ′ is a strong homomorphism, we

have ϕ′(wi) ∈ [v1]X′′ for i ∈ {1, 2} and it follows that ϕ′(w2) = v2 = v1 = ϕ′(w1). Since ϕ′ is a strong

homomorphism and C simple, w1 and w2 are therefore not adjacent in G if v1 = v2. Now if v1 6= v2,

then [v1]X′′ 6= [v2]X′′ and the bipartite subgraph induced by [v1]X′′ and [v2]X′′ in C is complete if v1 and

v2 are adjacent in C and empty if they are not by (3b). Since ϕ′ is a strong homomorphism, we have

ϕ′(w1) ∈ [v1]X′′ and ϕ′(w2) ∈ [v2]X′′ and therefore ϕ′(w1) and ϕ′(w2) are adjacent in C if and only if v1 and

v2 are. Since ϕ′ is a strong homomorphism, v1 and v2 are therefore adjacent in C if and only if w1 and w2

are adjacent in G, establishing that ϕ : V (G)→ V (C) is a strong homomorphism.

Having established how to find reconstructors, let us now formally introduce the relevant notion of

stability and how to establish it using a reconstructor. Let

B(C) = {C[m1, . . . ,mn] : m1, . . . ,mn ∈ N0} ⊂ G

denote the set of all blow-ups of C and assume that we have established that λ(G) = λ(B(C)).

Definition 4.8. We have perfect C-stability for λ on G if there exists some n0 such that for any graph

G ∈ Gn with n ≥ n0, the number of edges that need to be changed in order to turn G into an element of

B(C) is bounded by n0 (λ(G)− λ(G))
(
n
2

)
.

Perfect stability strengthens the standard notion of stability, where one requires that for every ε > 0

there exists δ > 0 such that λ(G) ≤ λ(G) + δ and n ≥ 1/δ implies that one has to change at most εn2 edges
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to obtain a graph in B(C). Clearly perfect stability also implies that any G ∈ Gn with n ≥ n0 satisfying

λ(G) = λ(n,G) is a blow-up of C.

Theorem 4.9. Assume we have the following:

1. A set of forbidden graphs X in which each graph X ∈ X defines unique neighborhoods in itself,

G = G(X ), and λ : G → R satisfying λ(G) =
∑

H∈Gn dH(G)λ(H) for any G of large enough order n.

2. A graph C ∈ G satisfying λ(B(C)) = λ(G).

3. A certificate (m, (τi), (Q(i))) establishing λ(G) in which all sharp graphs are in B(C).

4. An m-reconstructor T of C satisfying λ(G(X ∪ {T})) > λ(G).

Then we have perfect C-stability for λ on G.

Proof. The proof is essentially identical to that of Theorem 4.1 and Theorem 5.13 in [65], where the properties

of the reconstructor T replace requirements (2a) and (2b) and the requirement that λ(G(X∪{T})) > λ(G(X ))

replaces (2c) in Theorem 4.1.

Theorem 4.9 in combination with Lemma 4.7 allows us to establish our stability results. However, this

only implies that extremal constructions must be some blow-up of a given graph C of order n. One can go

further though and establish that a particular weighting of the blow-up must be optimal. For both of our

applications, that weighting will be the balanced one. For any vector of weights w ∈ Sn, where Sn is the

n-dimensional probability simplex, we define

Bw(C) = {C[m1, . . . ,mn] : |mi − wi (m1 + . . .+mn)| ≤ 1 for all 1 ≤ i ≤ n} ⊂ B(C)

as the set of all blow-ups of C where the parts are weighted according to w where wi denotes the i-th entry

of w.

While theoretically the problem of establishing arg minw∈Sn λ(Bw(C)) could be stated as a polynomial

minimization problem over n − 1 variables, the usual approach relies on studying if any of the matrices

Qi have unique zero eigenvectors and then invoking the subsequent proposition to relate them to graph

densities, assuming the associated types τi are present in C and fulfill certain properties. We will need the

following result, c.f. Lemma 3.4 in [65]. Before stating it, assume some 1 ≤ i ≤ r and ψ : [vi] ↪→ V (C) us

given, where vi is the order of τi, such that (C,ψ) is a τi-flag and wj 6= 0 for all j ∈ ψ([vi]). Let δψF (C,w)

now denote the probability that li − vi vertices chosen not-necessarily-injectively and at random according

to w in V (C)\ψ([vi]) together with the vertices labelled by ψ induce a flag isomorphic to F . Note that this

generalizes the previous definition of dψF (C), where the vertices were selected uniformly at random.

Lemma 4.10. Assume we have the following:

1. A set of forbidden graphs X , G = G(X ), and λ : G → R satisfying λ(G) =
∑

H∈Gn dH(G)λ(H) for any

G of large enough order n.

2. A certificate (m, (τi)i∈[r], (Q(i))i∈[r]) establishing λ(G).

3. A graph C ∈ Gn and vertex weights w ∈ Sn satisfying λ(Bw(C)) = λ(G).

4. Some 1 ≤ i ≤ r and ψ : [vi] ↪→ V (C), where vi is the order of τi, such that (C,ψ) is a τi-flag and

wj 6= 0 for all j ∈ ψ([vi]).
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Then denoting all τi-flags of order li = (m + vi)/2 by F1, . . . , Fgi in the same order that they are used as

indices for Qi, the vector

x = (δψF1
(C,w), . . . , δψFgi

(C,w)) (13)

is a zero eigenvector of Qi.

Using this, one can formulate some sufficient criteria to establish the uniqueness of a given optimal

weighting. The following is a generalization of Lemma 6.2 in [65] that is based on ideas previously used

in [66].

Proposition 4.11. Assume we have the following:

1. A set of forbidden graphs X , G = G(X ), and λ : G → R satisfying λ(G) =
∑

H∈Gn dH(G)λ(H) for any

G of large enough order n.

2. A certificate (m, (τi)i∈[r], (Q(i))i∈[r]) establishing λ(G).

3. C ∈ Gn and w ∈ Sn satisfying λ(Bw(C)) = λ(G) and wv 6= 0 for all v ∈ V (C).

4. A sequence of sets X1, . . . , Xk ⊆ V (C) such that

(a) C[X1] uniquely embeds into C and λ(G(X ∪ {C[X1]})) > λ(G),

(b) Xi ⊆ X1 ∪
⋃i−1
j=1

{
v ∈ V (C) : [v]Xj = {v}

}
for any 1 ≤ i ≤ k,

(c) V (C) =
⋃k
i=1

{
v ∈ V (C) : [v]Xi = {v}

}
,

(d) the type τi is a labelled version of C[Xi] for any 1 ≤ i ≤ k,

(e) the matrix Qi is of co-rank 1 for any 1 ≤ i ≤ k.

Then w is the unique minimizer of λ(Bw′(C)) for w′ ∈ Sn.

Proof. Let w′ ∈ Sn satisfy λ(Bw′(C)) = λ(G). Since λ(G(X ∪ {C[X1]})) > λ(G) and C[X1] uniquely

embeds into C, it follows that w.l.o.g. w′v 6= 0 for any v ∈ X1. Let us now inductively argue over

1 ≤ i ≤ k that in fact w′v = wv for any v ∈ V (C) satisfying [v]Xi = {v}. We can apply Lemma 4.10

since Xi ⊆ X1 ∪
⋃i−1
j=1

{
v ∈ V (C) : [v]Xj = {v}

}
and therefore w′v 6= 0 for any v ∈ Xi by inductive

assumption. Let xi and x′i therefore be as given for w and w′, where ψ : [vi] ↪→ Xi is chosen such that

(C[Xi], ψ) = τi and where vi is the order of τi. Since Qi has co-rank 1 by assumption, it follows that in

fact xi = x′i. Consider the τi-flag Fv consisting li − vi isolated vertices, where li = (m+ vi)/2, connected to

τi according to the neighbors of v to Xi in C. Using Fv to index xi, we note that [xi]Fv = wli−viv since v

has a unique neighborhood in Xi. It follows that wv = w′v for any v ∈
{
v ∈ V (C) : [v]Xi = {v}

}
and since

V (C) =
⋃k
i=1{v ∈ V (C) : [v]Xi = {v}

}
, it follows inductively that w′ = w.

4.3 Practical aspects of using the flag algebra approach

flagmatic, developed by Emil Vaughan and hosted on github.com/jsliacan/flagmatic, calculates graph

densities and passes SDP formulations to solvers like CSDP [9] and SDPA [93]. In order to obtain rigorous

mathematical proofs, the floating point-based solutions from the SDPs need to be rounded to (fractional)

values while ensuring the matrices remain positive semi-definite. flagmatic handles this rounding process

and produces verifiable certificates for the proofs, allowing anyone with access to the software to verify the

results independently. The certificates for our lower bounds can be found at doi.org/10.5281/zenodo.

https://www.github.com/jsliacan/flagmatic
https://doi.org/10.5281/zenodo.6364588
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6364588. We do not supply certificates of stability and symmetry from [65], as they are incompatible with

our ad-hoc arguments in Lemma 4.7 and Theorem 4.9. Below we describe some specifics regarding the

bounds for each problem.

Bounds and stability for cs,t. For the lower bounds of c3,4 and c3,5, we used m = 6 and were able to

reduce the number of types to 4 for each problem. The certificates for these proofs are contained in the files

c 34.json and c 35.json.

In order to derive stability for c3,4, we also obtained a certificate for m = 7 and verified that all

sharp graphs are those with a strong homomorphism into the Schläfli graph. The certificate for this proof

is contained in the file c 34 7.json. Perfect stability now follows from Theorem 4.9 using the uniquely

embeddable subgraph T of CS consisting of two triangles joined by an edge. The fact that T is a 7-

reconstructor of the Schläfli graph follows by computationally verifying the requirements of Lemma 4.7.

The certificate for the proof that λ(G({T}) > λ(G) is contained in the file c 34 reconstructor.json. The

fact that the balanced blow-up of the Schläfli graph is the unique optimal weighting follows by applying

Proposition 4.11. Here let the Schläfli graph be as ordered in the graph6 representation stated in Section 3.3

with vertices labelled 1, . . . , 27 and use X1 = {1, 2, 4, 6, 7}, X2 = {1, 2, 12, 13, 14} and X3 = {1, 2, 4, 6, 12}.
The certificate for the proof that λ(G(CS [X1])) > λ(G) is contained in the file c 34 symmetry.json.

Regarding the non-differentiability of c3,4(x) at x = 41 ·3−6, we considered a differently weighted version

of Equation (1). For ws, wt ≥ 0 satisfying ws + wt = 2, let

c
(ws,wt)
s,t = lim

n→∞
min

{
ws

ks(G)(
n
s

) + wt
kt(G)(
n
t

) : |G| = n

}
(14)

and note that clearly cs,t = c
(1,1)
s,t . We used flagmatic to establish a lower bound for c

(1−ε,1+ε)
3,4 that matches

the upper bound given by the Schläfli graph when ε = 10−4, implying the non-differentiability of c3,4(x) at

that point. The certificate for this proof is contained in the file c 34 epsilon.json and uses m = 6 as well

as the same types as the proof of c3,4.

For the lower bounds of c5 and c4,5, we used m = 8 and the values obtained after rounding are reasonably

close to those indicated by the SDP solver. The certificates for these proofs are contained in the files c 5.json

and c 45.json.

Bounds and stability for gs,t. For g4,5, we used m = 7 and also used the full 38 types to establish this

bound as the rounding failed when attempting to reduce the number of types involved. In general, this

problem seemed more demanding and for example required the double precision solver. The certificate for

the proof is contained in the file g 45.json. We can also easily derive perfect stability from this certificate by

verifying that all sharp graphs are those with a strong homomorphism into CR(3,5) and noting that the graph

T of order 5 obtained by joining two triangles at a vertex is a 7-reconstructor of CR(3,5) by Lemma 4.6. The

certificate for the proof that λ(G({K5,K
+
4 }) > λ(G({K5}) is contained in the file g 45 reconstructor.json.

The fact that the balanced blow-up of CR(3,5) is the unique optimal weighting also easily follows by applying

Proposition 4.11 with T as C[X1] and k = 1 after verifying that the associated matrix Q indeed has co-rank

1.

All of the reported lower bounds for gs,t when (s, t) 6= (4, 5) were obtained using m = 8. The certificates

for these proofs are contained in the files g st.json.

https://doi.org/10.5281/zenodo.6364588
https://doi.org/10.5281/zenodo.6364588
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5 Remarks and open problems

5.1 Symmetric Ramsey multiplicity

The crucial question regarding the Ramsey multiplicity ofK4 is whether it whether there exists a graph whose

blow-up sequence determines its value. Our answer to the c3,4 and c3,5 problem supports this possibility for

c4. Our efforts for Theorem 1.1 however show that this construction could be unexpectedly complex.

In any case, the deeper understanding of the generating sets of our Cayley graphs on 192, 384, and 768

vertices, to the extent that they can be generalized, for arbitrary large k, to (semi-)direct products of the

3-element cyclic group Z3 with k copies of Z2, would be extremely interesting. Besides that they would of

course improve the upper bound on c4, more importantly they might shed light on how to count cliques in

blow-ups of certain Cayley graphs. This could also lead to identifying the right choice of generating sets

and help in constructing new Cayley graph sequences that improve the value of ct for t ≥ 5. This would

be particularly desirable, since the best known general upper bound for the Ramsey multiplicity problem

still comes from the original construction of Thomason [83], the analysis of which was improved by Jagger,

Št́ov́ıček, and Thomason [45] to ct < 0.835 · 21−(t2) for t ≥ 7 via a direct counting of the homogeneous sets

in the blow-up with Fourier analytic methods.

For large t Rödl conjectured (cf. [27]) that ct2
(t2) → 0, possibly even exponentially fast. Yet, no t is

known where the value of the quotient is less than 1/2. The best known general lower bound is due to

Conlon [14] who showed that ct ≥ C−t
2(1+o(1)) where C ≈ 2.18. Conlon comments, that his proof is the

Ramsey multiplicity analogue of the Erdős-Szekeres proof for the symmetric Ramsey number. Hence it seems

plausible that the approach of the recent improvements of Campos, Griffiths, Morris, and Sahasrabudhe [12]

on the upper bound of the symmetric Ramsey number could be adapted to improve Conlon’s constant C,

though likely not to the best possible
√

2.

5.2 Asymmetric Ramsey multiplicities

Additionally, we explored graphs with small clique densities of order s and given independent set densities of

order t. It is a tantalizing open problem to determine, or just obtain a better idea about the lower bounding

curve c3,4(x) of the region of realizable K3- and K̄4-density pairs in graphs. Given the results in Figure 3,

even formulating a conjecture seems challenging. The properties of the curve, such as the number of non-

differentiable points, what constructions they would be determined by, and convexity or concavity, remain

unclear. The argument of Bollobás [8] giving a piece-wise linear lower bound for c2,t(x) does not seem to

generalize easily.

Nikiforov [62] established that gs,t = (t− 1)1−s holds only for a finite number of pairs s, t ≥ 3, that is for

all but a finite number of such pairs the construction given by Turán graphs is not optimal. Das et al. [15]

established that equality does not hold for s > 3 and arbitrary t as well as for t ≥ 2074 when s = 3. The

results of Pikhurko and Vaughan [66] establish that equality holds when s = 3 and t ≤ 7. The following

proposition shows that there must exist a smallest 7 < t0 ≤ 2074 such that g3,t = 1/(t − 1)2 for t < t0

and g3,t < 1/(t − 1)2 for t ≥ t0. It would be interesting to precisely determine this value and to therefore

determine all pairs of s, t for which Erdős’ original intuition about the Turán graph holds true.

Proposition 5.1. Given s, t0 ≥ 2, we have gs,t ≤ (t − t0 + g
1/(1−s)
s,t0

)1−s for all t ≥ t0. In particular, if

gs,t0 < (t0 − 1)1−s then gs,t < (t− 1)1−s for all t ≥ t0
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Proof. Let γ = g
1/(s−1)
s,t and (Gn)n∈N a sequence of graphs on n vertices with clique number at most t0 − 1

satisfying limn→∞ ks(Gn)/
(
n
s

)
= gs,t0 . By adding an independent set of bγnc vertices to each Gn and fully

connecting it to all other vertices, we get a sequence of graphs with clique number at most t0 that establishes

gs,t0+1 ≤ (gs,t0 + γs)/(1 + γ)s = (g
1/(1−s)
s,t0

+ 1)1−s.

Recursively applying this gives us the desired result.

5.3 Learning-based optimization

Recent interest has emerged in using Machine Learning approaches to tackle combinatorial optimization

problems. Specifically, Wagner [91] proposed finding constructions in Extremal Combinatorics by framing

the underlying optimization problems within a Reinforcement Learning context, an idea similar to the

‘active learning’ approach suggested earlier by Bello et al. [6]. In the context of round-based games and

Reinforcement Learning, states are constructed bit-by-bit, using a Neural Network to decide for each bit

whether it should be 1 or 0 based on previous decisions. After sampling several discrete states through this

procedure, the Neural Network’s parameters are updated to produce states closer to the best ones sampled.

The update procedure in [91] employs the Cross-Entropy (CE) method by Rubinstein [72], [73].

We experimented a fair amount with Reinforcement Learning-based methods, including different network

architectures and learning methods from the ones suggested in [91], but found their performance inferior

to both SA and Tabu Search (TS) in terms of solution quality and computation time for medium and

large-sized problems:

• Finding the 13-vertex graph for g4,5 takes TS 1s, SA 10s, and CE around 8min.

• Finding the (presumably unique) Cayley graph in Z3 × Z×6
2 giving an upper bound of c4 < 0.03027

takes TS around 1 min, SA around 4 min, and CE just under one hour.

• For the 27-vertex graph for c3,4 TS tends to get stuck in local minima, only very rarely finding it in

around 30s, SA consistently finds it in 30s, and CE did not find it in any reasonable timeframe.

• For c4 CE also found meaningful improvement over the previous best upper bound by constructing

Cayley graphs on 192 vertices, but the corresponding value of 0.03022 is weaker than what TS found

in the same search space and significantly weaker than what TS found on 768 vertices, a search space

where CE could not feasibly be run.

While the values above do no constitute fully rigorous and definitive benchmarking of the three meth-

ods, they do reflect a fair amount of (hyper)parameter tuning as well as our anecdotal experience for these

particular problems. We find it notable that for the problems studied here Tabu Search, with its straight-

forward idea and implementation, emerged as perhaps the most preferable method, fairly reliably finding

good solutions in a short amount of time while requiring essentially zero tuning.

The idea of pretraining-free learning-based meta-heuristics using neural networks has a long history [42],

[80], but seems to so far not yet outperform simple baselines. There is a fair amount of ongoing research

focused on improving optimization methods by training their behavior on dedicated training datasets, which

are hoped to reflect real-world applications prior to the actual usage of these methods. However, this

approach strongly differs from our use case, where we are predominantly interested in solving singular,

difficult problems rather than a large pool of small or moderately-sized ones. It should be further noted
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that an RL-based approach is inherently wasteful in our particular context, that is for attacking simple

black-box discrete optimization problems given by Equation (4); it models a distribution over the states

{0, 1}N through N consecutive evaluations of a neural network. This round-based approach is artificially

imposed, since, unlike with playing chess or Go, we do not have any opponent’s choices to respond to and

our distribution will ultimately collapse to a single state. This effectively means that rather than trying to

find (an approximation of) a strategy, i.e., a still very large sub-tree of the full game tree, we are merely

looking for a single path from the root to a leaf.

5.4 Classifying common and uncommon graphs

Before it was disproved, the conjecture of Erdős mentioned in the introduction was generalised to arbitrary

graphs by Burr and Rosta [10]. For graphs H and G we let t(H,G) be the number of copies of H in G and

c(H) = lim
n→∞

min{t(H,G) + t(H,G) : |G| = n}/
(
n

|H|

)
.

We note that ct = c(Kt) and while Burr and Rosta conjectured that the minimum is always attained by the

random graph, we say that a graph H is common if c(H) = 21−|E(H)| and uncommon otherwise. A triangle is

common by Goodman’s result and Thomason’s [83] result implies that Kt is uncommon for t ≥ 4. Since then

large families of common and uncommon graphs have been found and for an overview we refer to the recent

paper of Grzesik, Lee, Lidicky, and Volec [39] and the references therein. Only recently the first uncommon

graphs H were found, for which c(H) is known [26]. Also an off-diagonal variant of common and uncommon

pairs of graphs was studied by Behague, Morrison, and Noel [4], [5]. Lower bounds for common graphs

are usually obtained through the flag algebra approach and upper bounds rely on constructions that beat

21−|E(H)|. There is also an interesting connection to the famous and still open conjecture of Sidorenko [78],

which implies that every bipartite graph is common.

5.5 Parallels to problems in Additive Combinatorics

Similar problems to the ones considered in this paper have been studied in Additive Combinatorics, where

one is interested in minimizing the number of monochromatic solutions to some system of linear equations in

a coloring of the integers [n] = {1, . . . , n}, the cyclic group Zn or the repeated product of a fixed small finite

field Fnq . Graham, Rödl and Ruciński [37] asked this question regarding Schur triples in two-colorings of

[n], which was independently resolved by Datskovsky [16], Robertson and Zeilberger [70], and Schoen [77],

who showed that the true answer lies far below the number expected in a random coloring. In contrast

to this, Cameron, Cilleruelo and Serra [11] showed that in finite groups the number of monochromatic

solutions to any equation in an odd number of variables, which includes Schur triples, is minimized by the

random coloring. Wolf [92] as well as Lu and Peng [57] studied the question of how many 4-term arithmetic

progressions a two-coloring of Zn can contain. Interestingly, the upper bounds given for this type of problem

likewise consist of a type of ‘blow-up’ of a finite construction, indicating that the methods used here are

also applicable in this context. In fact, denoting the minimum fraction of monochromatic k-term arithmetic

progressions in a 2-coloring of Zn by mk(Zn), it is easy to derive the following lemma from their work (see

the proof of Lemma 4.1 and Theorem 1.5 in [57]).
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Lemma 5.2. Let k ≥ 3 be an integer and A be a partial coloring of Zm, where ` distinct elements in

arithmetic progression are uncolored for some ` dividing m. If for all colorings of these ` elements there are

no monochromatic k-APs in Zm using both elements colored in A and in the coloring of the ` elements, then

for any integer t we have

mk(tm) ≤ mk(A)−mk(`)
(
`
m

)2
+mk(t`)

(
`
m

)2
,

where mk(A) denotes the maximum fraction of monochromatic k-term arithmetic progressions for any col-

oring of the ` remaining elements in A. In particular, if mk(A) = 1/n and therefore mk(`) = 1/`, we

get

lim inf
n→∞

mk(Zn) ≤ 1

n+ `
.

Lu and Peng [57] found a construction for k = 4 with n = 11 and ` = 1 giving lim inf m4(Zn) ≤ 1/12.

Using Tabu Search we found the following partial colorings of Z44

?1101111011 ? 1000101110

?0010000100 ? 0111010001

and of Z226

?01111001000001011110111001111101101110100011101001010011

00110101101000111010001001000001100010000101111101100001

?10000110111110100001000110000010010001011100010110101100

11001010010111000101110110111110011101111010000010011110

that together with Lemma 5.2 establish lim infn→∞m5(Zn) ≤ 1/48 as well as lim infn→∞m6(Zn) ≤ 1/228

with the former improving upon a bound found by Lu and Peng [57], who also conjectured their construction

for k = 4 to be tight. We believe that our constructions for k = 5, 6 provide tight bounds as well.

Lastly, we note that Saad and Wolf [75] also initiated a more systematic study of the question when the

answer is given by random colorings, with recent results by Fox, Pham and Zhao [25], Kamčev, Liebenau

and Morrison [46], [47] as well as Versteegen [88], [89]. Rué and the third author also recently extended the

flag algebra framework to additive problems in vector spaces over finite fields [74].

Note. Recently McKay [58] experimented with various local search strategies in order to further improve

the upper bound on c4. Starting from our best Cayley graph on 768 vertices, his search iteratively switches

the edge/non-edge status of certain pairs of vertices. The most successful attempt created a graph with

value 10486266368/7684 = 0.0301422734319, which is an improvement over Theorem 1.1 of the order 10−6.

McKay’s graph has 768 vertices, 148724 edges, 536 vertices of degree 387, 232 vertices of degree 388, and,

unlike our construction, has a trivial automorphism group.
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