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Abstract

Two n×n Latin squares L1, L2 are said to be orthogonal if, for every ordered pair (x, y) of symbols,

there are coordinates (i, j) such that L1(i, j) = x and L2(i, j) = y. A k-MOLS is a sequence of k
pairwise-orthogonal Latin squares, and the existence and enumeration of these objects has attracted a

great deal of attention.

Recent work of Keevash and Luria provides, for all fixed k, log-asymptotically tight bounds on the

number of k-MOLS. To study the situation when k grows with n, we bound the number of ways a k-

MOLS can be extended to a (k + 1)-MOLS. These bounds are again tight for constant k, and allow us

to deduce upper bounds on the total number of k-MOLS for all k. These bounds are close to tight even

for k linear in n, and readily generalise to the broader class of gerechte designs, which include Sudoku

squares.

1 Introduction

Latin squares have a long and storied history in combinatorics, sharing connections to several other areas of

mathematics and enjoying applications in statistics and experimental design. In particular, orthogonal Latin

squares are equivalent to many other classical structures in design theory, and their study dates back to Euler.

In this paper we shall answer questions concerning the enumeration of orthogonal Latin squares, but we first

present some of the relevant background.

1.1 Background and related work

We begin by recalling the definition of a Latin square, more in an effort to present our notation than in belief

that you, the reader, do not know what a Latin square is.

Definition 1. A Latin square of order n is an n×n matrix with entries in [n] such that each x ∈ [n] appears

exactly once in every row and in every column.

It is not difficult to see that Latin squares exist for all n; indeed, a rich class of constructions are given

by the Cayley tables of groups. We refer the reader to [40] for more definitions, results and proofs related to

Latin squares, noting only that the number of Latin squares is log-asymptotically given by

L(n) =
(

(1 + o(1))
n

e2

)n2

. (1)
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Ryser [38] showed that the lower bound follows from Van der Waerden’s conjecture on permanents of

matrices, which was famously later proven by Egorychev [14] and Falikman [15]. The upper bound is also

closely related to permanents, as it is a consequence of Brégman’s Theorem [5] (see [40, Chapter 17] for

details).

In this paper, we will be concerned with orthogonal Latin squares.

Definition 2. Two Latin squares L,L′ of order n are said to be orthogonal if, for all pairs (x, y) ∈ [n]2, there

exist unique i, j ∈ [n] such that L(i, j) = x and L′(i, j) = y. In this case, L′ is said to be an orthogonal

mate of L.

A k-tuple of Latin squares (L1, . . . , Lk) forms a system of k mutually orthogonal Latin squares, or a

k-MOLS, if for all 1 ≤ i < j ≤ k, the squares Li and Lj are orthogonal.

Orthogonal Latin squares have proven interesting from both a theoretical and a practical point of view:

they are related to various other classes of structures in design theory, some of which we shall encounter

later, while having applications in many real-world problems. In light of these applications, the early

research in this area concerned the existence of k-MOLS. In particular, there was much interest in the

maximum size of a set of mutually orthogonal Latin squares; that is, the function N(n) = max{k :
a k-MOLS of order n exists}.

It is well-known that N(n) ≤ n − 1. Indeed, suppose (L1, . . . , Lk) is a k-MOLS. Observing that

orthogonality is preserved under permutations of the symbols within each square, we may assume that the

first row of each square is [1, 2, . . . , n]. Considering the entries in position (2, 1), we find that all Li(2, 1)
must be distinct, by orthogonality, and different from 1, since the Li are Latin squares. Hence k ≤ n− 1.

One can further prove that one has equality if and only if a projective plane of order n exists. This shows

that the precise determination of the function N(n) is likely to be difficult, as the existence of projective

planes for orders n that are not prime powers is a longstanding open problem. Still, several polynomial

lower bounds on N(n) with ever-improving exponents appear in the literature [8, 37, 43], with the largest

one due to Lu [31], who proved N(n) = Ω(n1/14.3).

Given that large sets of mutually orthogonal Latin squares exist, it is natural to extend (1) and enumerate

k-MOLS for k ≥ 2. Early work in this direction was undertaken by Donovan and Grannell [10], who

constructed many k-MOLS, and also sought to bound the number of orthogonal mates a Latin square can

have. An important component of their argument is an upper bound on number of transversals in a Latin

square, where a transversal is a selection of n cells from the square, with no two sharing the same row,

column or symbol. Taranenko [39] later proved a sharp upper bound on the number of transversals in a

Latin square, which, when used in Donovan and Grannell’s proof, shows that a Latin square can have at

most
(

(1 + o(1))
n

e2+1/e

)n2

(2)

orthogonal mates. Coupled with (1), this can be used to give upper bounds on the number of pairs of

orthogonal Latin squares and, more generally, the number of k-MOLS (since in a k-MOLS (L1, . . . , Lk),
the Latin squares L2, . . . , Lk must all be orthogonal mates of L1).

More recently, tight bounds on the number of k-MOLS follow from the breakthroughs of Luria [32] and

Keevash [26]. Through an elegant entropic argument, Luria gives a general upper bound on the number of

perfect matchings a regular r-uniform hypergraph can have. Assuming certain pseudorandom conditions,

Keevash provides a matching lower bound, coupling randomized constructions with the use of absorbers.

When applied to the enumeration of k-MOLS, their theorems imply the following result, where we denote

by L(k)(n) the number of k-MOLS of order n.
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Theorem 1 (Luria, 2017, and Keevash, 2018). For every fixed k ∈ N, the number of k-MOLS of order n is

L(k)(n) =

(

(1 + o(1))
nk

e(
k+2
2 )−1

)n2

. (3)

1.2 Results

The one drawback of Theorem 1 is that both the lower and upper bounds in (3) require k to be fixed as

n tends to infinity. In this paper we seek upper bounds that hold when k grows with n. We combine the

approach of Donovan and Grannell [10] with the method of Luria [32], using entropy to bound the number

of ways of extending a k-MOLS by adding an additional Latin square.

Before presenting our upper bound, let us discuss a lower bound for this number of extensions. Since

every (k + 1)-MOLS contains a k-MOLS as a prefix, Theorem 1 implies that, for fixed k ∈ N, the average

number of extensions of a k-MOLS to a (k + 1)-MOLS is at least

L(k+1)(n)

L(k)(n)
=

(

(1 + o(1))
n

ek+2

)n2

. (4)

This clearly gives a lower bound for the maximum number of such extensions. In the following theorem,

we provide an upper bound that is valid for all k. (Throughout this paper, all logarithms are to the base e.)

Theorem 2. For 0 ≤ k ≤ n − 2, the logarithm of the number of ways to extend a k-MOLS of order n to a

(k + 1)-MOLS is at most

n2

∫ 1

0
log(1 + (n− 1)tk+2) dt.

We will estimate the value of this integral in Lemma 6. As a corollary, combining Theorem 2 with (4)

allows us to determine the number of extensions of a k-MOLS of fixed size. In particular, setting k = 1
bounds the number of orthogonal mates a Latin square can have, sharpening the bound in (2).

Corollary 3. For every fixed k ∈ N, the maximum number of ways to extend a k-MOLS of order n to a

(k + 1)-MOLS is
(

(1 + o(1))
n

ek+2

)n2

.

As previously stated, our primary goal is to bound the number of k-MOLS when k grows with n. We

can do so by building the k-MOLS one Latin square at a time, using Theorem 2 to bound the number of

choices at each step. In this way we can recover the upper bound of Theorem 1 when k is constant, but the

main novelty of this paper is the following extension to larger values of k.

Corollary 4. As n → ∞,

(i) logL(k)(n) ≤
(

k log n−
(k+2

2

)
+ 1 + k2n−1/(k+2)

)

n2 if k = o(log n),

(ii) logL(k)(n) ≤ (c(β) + o(1))kn2 log n if k = β log n, for fixed β > 0,

(iii) logL(k)(n) ≤
(
1
2 + o(1)

)
(log k − log log n)n2 log2 n if k = ω(log n),

where in (ii) we define c(β) = 1− β−1
∫ β
0 x(1− e−1/x) dx ∈ [0, 1].
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Note that we trivially have L(k)(n) ≤ L(n)k, which, in light of (1), gives the upper bound

logL(k)(n) ≤ kn2 log n. Corollary 4 provides a significant improvement over this trivial bound. Fur-

thermore, part (i) shows that the upper bound from Theorem 1 is valid whenever k = o
(

logn
log logn

)

.

It is well-known that mutually orthogonal Latin squares are equivalent to many other combinatorial

structures such as transversal designs, nets and orthogonal arrays, while also being related to certain error

correcting codes and affine and projective planes (see [40]), and so our results give upper bounds for the

number of structures in each of these classes. In fact, we shall prove Theorem 2 for the more general class

of gerechte designs (see Theorem 5), which allow us to, for instance, bound the number of sets of mutually

orthogonal Sudoku squares. We discuss this particular extension further in our concluding remarks.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we introduce gerechte designs and discuss

an equivalent formulation that will be more convenient for our proof. We also review some basic notions

about our main tool, entropy. Following that, we prove our results in Section 3. We then provide explicit

constructions of Latin squares with many orthogonal mates in Section 4, and close with some further remarks

and open problems in Section 5.

2 Designs and tools

In this section we will introduce the frameworks of gerechte designs and orthogonal arrays, in which we will

prove a generalization of Theorem 2. We will also review some definitions and results regarding entropy

that we shall require in our proofs.

2.1 Gerechte designs

Gerechte designs, defined below, are a special class of Latin squares introduced by Behrens in [2].

Definition 3. Let [n]2 = R1 ⊔ · · · ⊔ Rn be a partition of [n]2 into n regions Ri such that |Ri| = n for

all i ∈ [n]. A gerechte design of order n with respect to this partition is a Latin square with the additional

property that each symbol appears exactly once in each region Ri.

There are several natural examples of gerechte designs. For instance, if one takes the regions to be the

n rows (or columns) of the n × n grid, a gerechte design is simply a Latin square. If n = m2, and one

partitions the grid into n subsquares of dimension m×m, the corresponding gerechte designs are known as

Sudoku squares of order n. Finally, given a Latin square L, define the regions Rt = {(i, j) : L(i, j) = t}
for all t ∈ [n]. A gerechte design with respect to this partition is an orthogonal mate of L.

It is natural to study orthogonality between Latin squares that are gerechte designs with respect to the

same partition and, more generally, to consider systems of mutually orthogonal gerechte designs. Bailey,

Cameron and Connelly [1] generalized the function N(n) to the setting of gerechte designs, giving upper

bounds on the size of a set of mutually orthogonal gerechte designs that are tight for some orders n.

The counting questions concerning Latin squares discussed in the introduction can also be generalized

to gerechte designs, and our method will allow us to derive bounds in this broader setting. For this, note that

an n× n square with entries in [n] is a Latin square if and only if it is orthogonal (in the sense of Definition

2) to the square Sn, given by Sn(i, j) = i for all i, j ∈ [n], and its transpose. Similarly, it is not difficult to

show that an n × n square with entries in [n] is a gerechte design with respect to the regions R1, . . . , Rn if

and only if it is orthogonal to the squares Sn, ST
n , and B, where B is given by B(i, j) = t if (i, j) ∈ Rt.

Note that, while the squares Sn and ST
n are orthogonal to each other, the square B need not be orthogonal

to either (that is, B need not be a Latin square).
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2.2 Orthogonal arrays and nearly orthogonal arrays

When adding a square to a set of mutually orthogonal gerechte designs, we need to ensure three properties:

that it is a Latin square, that it respects the regions of the design, and that it is orthogonal to the previous

squares. For our proof, it will be helpful to use an equivalent but more symmetric formulation of mutually

orthogonal gerechte designs, where these three properties all take the same form. We begin in the setting of

mutually orthogonal Latin squares.

Definition 4. Let x, y be vectors in [n]n
2
. We say that x and y are orthogonal if, for all pairs (s, t) ∈ [n]2,

there exists a unique index ℓ such that xℓ = s and yℓ = t. An orthogonal array OA(n, d) is an n2 × d array

A with entries in [n] such that all pairs of its columns are orthogonal.

We note that in the literature orthogonal arrays are often defined more generally and Definition 4 de-

scribes what is known as an orthogonal array with strength two and index one. For the sake of simplicity,

we omit the general definition and refer the reader to [20] for more about orthogonal arrays.

Given a k-MOLS (L1, . . . , Lk) of order n, we can construct an orthogonal array OA(n, k + 2) by

taking, for all (i, j) ∈ [n]2, the vectors [i, j, L1(i, j), L2(i, j), . . . , Lk(i, j)] as rows of the orthogonal ar-

ray (and ordering them lexicographically). Similarly, given an n2 × (k + 2) orthogonal array A, we can

construct a k-MOLS of order n by setting Lj(A(ℓ, 1), A(ℓ, 2)) = A(ℓ, j + 2) for all 1 ≤ ℓ ≤ n2 and

1 ≤ j ≤ k (in fact, any two columns of the orthogonal array can be used to coordinatize the Latin

squares; here we use the first two). Notice that distinct sequences of mutually orthogonal Latin squares

correspond to distinct orthogonal arrays with first two columns v1 = [1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n]T and

v2 = [1, 2, . . . , n, 1, 2, . . . , n, . . . , 1, 2, . . . , n]T , and hence the number of k-MOLS of order n is the same

as the number of orthogonal arrays OA(n, k + 2) with first columns v1 and v2.

We now extend these ideas to mutually orthogonal gerechte designs. Let v3 be a vector in [n]n
2

with

each integer in [n] appearing n times. Note that v3 determines a partition of the elements of [n2] (and thus

[n]2, after we fix a linear ordering of this set) into n equally-sized regions. From the equivalence between

mutually orthogonal Latin squares and orthogonal arrays and the discussion at the end of Section 2.1, we can

conclude that an OA(n, k + 2), whose first two columns are v1 and v2, and in which all other columns are

also orthogonal to v3, is equivalent to k mutually orthogonal gerechte designs with respect to the partition

determined by v3. For notational convenience, we add the column v3 to the array and call the resulting

structure an n2 × (k + 3) nearly orthogonal array.

Definition 5. Given n ∈ N and d ≥ 3, a nearly orthogonal array NOA(n, d) is an n2 × d array A with

symbols [n] such that:

(a) the first column is v1 and the second column is v2, as defined above,

(b) each symbol in [n] appears exactly n times in the third column v3, and

(c) for all i ≥ 4, the ith column vi is orthogonal to all other columns in A.

Again, it follows that the number of nearly orthogonal arrays NOA(n, k + 3) is equal to the number of

sets of k mutually orthogonal gerechte designs with respect to the partition defined by v3.

2.3 Entropy

The proof of our main result is based on entropy. This method has previously given good asymptotic upper

bounds for similar problems; for instance, it is used in [36] to prove Brégman’s Theorem on the permanent

of a matrix (which yields an asymptotically tight upper bound on the number of Latin squares), in [28] to

show an upper bound on the number of Steiner triple systems, later shown to be tight in [27], and in [17]
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to provide a simpler proof of Taranenko’s result on the maximum number of transversals in a Latin square,

also shown to be tight in the same paper; see also [32] for some further applications. In this section, we

review some basic facts about entropy that will be used in our proof. For more on entropy, see [9].

Let X be a discrete random variable taking values in a given finite set S , and let p(x) = Pr[X = x] for

all x ∈ S . The (base e) entropy of X is given by

H(X) = −
∑

x∈S
p(x) log p(x) = −E[log p(X)],

where we adopt the convention that 0 log 0 = 0. The entropy of X can be seen as a measure of the amount

of information the random variable encodes. It is not difficult to show that

H(X) ≤ log |R(X)|, (5)

where R(X) = {x ∈ S : p(x) > 0} is the range of the random variable, with equality if and only if X is

uniformly distributed over R(X).
This definition can be extended to multiple random variables in the natural way. We define the joint

entropy of two random variables X and Y to be

H(X,Y ) = −
∑

x,y

p(x, y) log p(x, y) = −E[log p(X,Y )],

where p(x, y) = Pr[X = x, Y = y] denotes the joint distribution of X and Y .

The conditional entropy of X given Y is defined to be

H(X|Y ) = EY [H(X|Y = y)] =
∑

y

Pr[Y = y]H(X|Y = y).

Conditional entropy gives us a way to measure how much additional information we expect to learn from

X once we know the value of Y . It is a simple exercise to show that the joint entropy and the conditional

entropy of several random variables satisfy the following equality, known as the chain rule:

H(X1, . . . ,Xn) =

n∑

i=1

H(Xi|X1, . . . ,Xi−1).

We end this section by outlining the basic idea behind counting proofs based on entropy. Suppose we

want to obtain a bound on the size of a set S . We sample an element X ∈ S uniformly at random. By the

above discussion, we have H(X) = log |S|, and so an upper bound on the entropy H(X) yields an upper

bound on |S|. To bound H(X), we break up the random variable X into simpler random variables; the

chain rule then allows us to consider these new random variables one at a time.

3 Proofs of our results

We now use the material from the previous section to prove Theorem 2 and its corollaries.

3.1 Bounding the number of extensions

In the language of orthogonal arrays, Theorem 2 is a statement about the number of ways to extend an

orthogonal array by one column. We will in fact prove the following more general result, bounding the

number of ways to extend a nearly orthogonal array by one column. Indeed, by inserting a copy of the first

column in the third column (and reordering the rows if needed), one obtains a nearly orthogonal array from

an orthogonal array.
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Theorem 5. Given n ∈ N and d ≥ 3, let A be a nearly orthogonal array NOA(n, d). For each row

ℓ ∈ [n2], define

rℓ = |{s 6= ℓ : A(s, 1) = A(ℓ, 1) and A(s, 3) = A(ℓ, 3)}|, and

cℓ = |{s 6= ℓ : A(s, 2) = A(ℓ, 2) and A(s, 3) = A(ℓ, 3)}|.

Then the logarithm of the number of ways to extend A to a nearly orthogonal array with d+1 columns is at

most

n2
∑

ℓ=1

∫ 1

0
log(1 + (rℓ + cℓ)t

d−1 + (n− rℓ − cℓ − 1)td) dt.

Observe that in the gerechte design setting, for a cell ℓ ∈ [n]2, rℓ counts the number of other cells in the

same row and region as ℓ, while cℓ counts the number of cells sharing the same column and region.

Before proving Theorem 5, we quickly derive Theorem 2.

Proof of Theorem 2. As previously mentioned, a Latin square is a gerechte design with respect to the parti-

tion of the cells into their rows. A k-MOLS is thus equivalent to an NOA(n, k + 3) with v3 = v1, and an

extension to a (k + 1)-MOLS corresponds to adding a column to obtain an NOA(n, k + 4).
We can thus apply Theorem 5 with d = k+3 ≥ 3. For our choice of v3, we have rℓ = n− 1 and cℓ = 0

for all ℓ ∈ [n2]. Substituting in these values, the bound on the number of extensions is

n2
∑

ℓ=1

∫ 1

0
log(1 + (n− 1)tk+2) dt = n2

∫ 1

0
log(1 + (n− 1)tk+2) dt,

as required.

We now proceed to the proof of the general theorem.

Proof of Theorem 5. Let A be as given, and let S denote the set of column vectors that are valid extensions

for A. Our goal is to bound |S|. We can assume S 6= ∅, otherwise we are done. Let X ∈ S be chosen

uniformly at random. Then H(X) = log |S|, and so it suffices to bound the entropy of X. We will expose

the coordinates of X one at a time, using the chain rule to express the total entropy H(X) as the sum of the

conditional entropies from each successive reveal.

For ℓ ∈ [n2], we denote the ℓth coordinate of X by Xℓ and, given a permutation π of [n2], we reveal the

coordinates in the order Xπ(1),Xπ(2), . . . ,Xπ(n2). The chain rule then gives

log |S| = H(X) =
n2
∑

j=1

H(Xπ(j)|Xπ(s) : s < j)

=

n2
∑

j=1

E(Xπ(s):s<j)[H(Xπ(j)|Xπ(s) = xπ(s) : s < j)]. (6)

Given x ∈ [n]n
2
, let Rπ(j)(π, x) = R(Xπ(j)|Xπ(s) = xπ(s) : s < j) denote the range of this conditional

random variable, that is,

Rπ(j)(π, x) = {y ∈ [n] : ∃Y ∈ S : Yπ(j) = y and ∀s < j, Yπ(s) = xπ(s)},
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and let Nπ(j)(π, x) = |Rπ(j)(π, x)| be the size of this range. Note that Rπ(j)(π, x), and hence also

Nπ(j)(π, x), only depends on the first j − 1 coordinates of x with respect to π; for s ≥ j, the values

xπ(s) can be chosen arbitrarily without changing the range of the random variable.

Thus, by (5), we can bound the conditional entropy by H(Xπ(j)|Xπ(s) = xπ(s) : s < j) ≤ log
(
Nπ(j)(π, x)

)

for all x ∈ [n]n
2
. Substituting this into (6) and reordering the sum gives

log |S| ≤
n2
∑

j=1

∑

x∈[n]n2

Pr[X = x] log
(
Nπ(j)(π, x)

)
=

n2
∑

ℓ=1

EX [log(Nℓ(π, x))].

This bound holds for any permutation π, and thus it holds when we average over the choice of π. We

sample a uniformly random permutation of [n2] by choosing a vector α = (αℓ)ℓ with αℓ ∼ U [0, 1] for all

1 ≤ ℓ ≤ n2 and defining πα = π to be such that απ(1) > απ(2) > · · · > απ(n2). We then have

log |S| ≤ Eα





n2
∑

ℓ=1

EX [log(Nℓ(π, x))]



 =
n2
∑

ℓ=1

EX [Eα[log(Nℓ(π, x))]]

=

n2
∑

ℓ=1

EX

[
Eαℓ

[Eα|αℓ
[log(Nℓ(π, x))]]

]
≤

n2
∑

ℓ=1

EX

[
Eαℓ

[log(Eα|αℓ
[Nℓ(π, x)])]

]
,

where the last inequality follows from Jensen’s inequality and the concavity of y 7→ log y. It therefore

suffices to show that, for all ℓ ∈ [n2] and all x ∈ S , we have

Eαℓ
[log(Eα|αℓ

[Nℓ(π, x)])] ≤
∫ 1

0
log(1 + (rℓ + cℓ)t

d−1 + (n− rℓ − cℓ − 1)td) dt. (7)

We first estimate the inner expectation Eα|αℓ
[Nℓ(π, x)] = Eα[Nℓ(π, x)|αℓ]. By the linearity of expecta-

tion, this is equal to
∑

y∈[n]
P[y ∈ Rℓ(π, x)|αℓ]. Unfortunately, it is not straightforward to determine whether

or not y ∈ Rℓ(π, x), and so we shall instead use a simple necessary condition that we call availability.

Recall that for the column x to be orthogonal to the ith column of A, the pairs (A(s, i), xs) must be

distinct for all s ∈ [n2]. Therefore, if for some symbol y ∈ [n] there is some column i ∈ [d] and previously

exposed coordinate s such that A(s, i) = A(ℓ, i) and xs = y, we cannot also have xℓ = y. In this case we

declare y unavailable, and observe that we must have y /∈ Rℓ(π, x). Otherwise, if there is no such column i
and coordinate s, we say y is available. We now seek to compute the probability that a symbol y is available.

Fix a symbol y ∈ [n]. If y is the true value of the entry in the ℓth coordinate of x, then y cannot possibly

have been ruled out by the previously exposed entries, and is thus available with probability 1.

Now suppose y ∈ [n] is not the true value of xℓ. For each i ∈ [d], since x is orthogonal to the ith column

of A, there must be a unique entry si(y) 6= ℓ such that xsi(y) = y and A(si(y), i) = A(ℓ, i). In order for y
to be available, ℓ must be exposed before the entries in the set S(y) = {si(y) : i ∈ [d]}.

To find the probability of y being available, then, we need to compute the size of S(y). Suppose for

distinct columns 1 ≤ i < j ≤ d we had si(y) = sj(y). It then follows that A(si(y), i) = A(ℓ, i)
and A(si(y), j) = A(ℓ, j), and thus the ith and jth columns cannot be orthogonal. Since A is nearly

orthogonal, the only possibilities are i ∈ {1, 2} and j = 3 (by definition, all columns after the third column

are orthogonal to all others, and the first two columns are orthogonal by construction).

Therefore |S(y)| = d, unless either s1(y) = s3(y) or s2(y) = s3(y). Note that these cannot happen

simultaneously, as we have ruled out s1(y) = s2(y), and thus in these cases we have |S(y)| = d− 1. There

are rℓ choices of s 6= ℓ for which A(s, 1) = A(ℓ, 1) and A(s, 3) = A(ℓ, 3), and hence rℓ values y for which

8



s1(y) = s3(y). By orthogonality of x with the first column of A, these values are all distinct. Similarly,

there are cℓ choices for y with s2(y) = s3(y).

To summarize, there is one choice of y that is available with probability 1, there are rℓ + cℓ choices of y
that are available only if the ℓth coordinate is exposed before some fixed set of d− 1 other coordinates, and

the remaining n − rℓ − cℓ − 1 choices of y are available only if the ℓth coordinate precedes some d other

coordinates.

A coordinate s is revealed after ℓ if αs < αℓ, which occurs with probability αℓ. Moreover, these events

are independent for distinct coordinates, and so the probabilities in the latter two cases are αd−1
ℓ and αd

ℓ

respectively. This gives

Eα|αℓ
[Nℓ(π, x)] =

∑

y∈[n]
Pr[y ∈ Rℓ(π, x)] ≤

∑

y∈[n]
Pr[y is available] = 1+(rℓ+cℓ)α

d−1
ℓ +(n−rℓ−cℓ−1)αd

ℓ .

Since αℓ is uniformly distributed over [0, 1], substituting this into Eαℓ
[log(Eα|αℓ

[Nℓ(π, x)])] results in (7),

completing the proof.

3.2 Estimating the integral

In order to apply Theorem 2, we need to understand the asymptotics of the bound it provides. In this next

lemma, we show how to estimate the integral from the theorem.

Lemma 6. Let 2 ≤ d ≤ n and Id =
∫ 1
0 log(1 + (n− 1)td) dt. Then

Id ≤ log

(
n− 1

ed

)

+
d

(n− 1)1/d
+

3

d(n− 1)1/d
.

Proof. Set t0 = (n− 1)−1/d. Note that (n− 1)td < 1 if and only if t < t0. We have

Id =

∫ 1

0
log(1 + (n− 1)td) dt

=

∫ t0

0
log(1 + (n− 1)td) dt+

∫ 1

t0

log((n − 1)td) dt+

∫ 1

t0

log

(

1 +
1

(n− 1)td

)

dt.

We estimate the three integrals in turn:

∫ t0

0
log(1 + (n− 1)td) dt ≤

∫ t0

0
(n − 1)td dt =

n− 1

d+ 1
td+1

∣
∣
∣

t0

0
=

t0
d+ 1

,

where for the inequality we use the fact that log(1 + x) ≤ x for all x > −1, and in the final equality we use

td0 = (n− 1)−1,

∫ 1

t0

log((n− 1)td) dt =

∫ 1

t0

log(n− 1) + d log t dt

= (1− t0) log(n − 1) + d(t log t− t)
∣
∣
∣

1

t0

= (1− t0) log(n − 1) + (t0 − 1)d+ t0 log(n− 1)

= log(n− 1) + (t0 − 1)d,

where the penultimate equality again follows from td0 = (n− 1)−1, and

∫ 1

t0

log

(

1 +
1

(n− 1)td

)

dt ≤
∫ 1

t0

1

(n− 1)td
dt = − 1

(n− 1)(d − 1)
+

t0
d− 1

.
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Hence, we have

Id ≤ t0
d+ 1

+ log(n− 1) + (t0 − 1)d− 1

(n− 1)(d− 1)
+

t0
d− 1

≤ log

(
n− 1

ed

)

+
d

(n− 1)1/d
+

3

d(n− 1)1/d
,

where we ignore the negative term and bound 1
d+1 +

1
d−1 by 3

d .

Corollary 3 now follows easily from Theorem 2 and Lemma 6.

Proof of Corollary 3. The lower bound comes from the average number of extensions of a k-MOLS, com-

puted in (3). For the upper bound, Theorem 2 asserts that the logarithm of the number of extensions of a

k-MOLS of order n is, in the notation of Lemma 6, at most n2Ik+2. By the lemma, this is bounded by

n2

(

log

(
n− 1

ek+2

)

+
(k + 2)

(n − 1)1/(k+2)
+

3

(k + 2)(n − 1)1/(k+2)

)

≤ n2

(

log

(
n− 1

ek+2

)

+
k + 4

(n− 1)1/(k+2)

)

.

Since k is fixed as n tends to infinity, this is

n2

(

log

(
n− 1

ek+2

)

+ o(1)

)

= n2 log

(

(1 + o(1))
n − 1

ek+2

)

= n2 log
(

(1 + o(1))
n

ek+2

)

,

giving the desired upper bound.

Finally, we deduce our upper bound on the number of large sets of mutually orthogonal Latin squares.

Proof of Corollary 4. We can build a k-MOLS by starting with the empty 0-MOLS, and extending it by one

Latin square at a time. Theorem 2 bounds the number of possible extensions at each step, and so, in the

notation of Lemma 6, we have

logL(k)(n) ≤ n2
k+1∑

d=2

Id. (8)

We shall prove each part of the corollary by estimating this sum appropriately.

(i) By Lemma 6, we have

Id ≤ log(n− 1)− d+
d+ 2

(n− 1)1/d
.

Hence, summing over d, we obtain

k+1∑

d=2

Id ≤ k log(n − 1)−
((

k + 2

2

)

− 1

)

+

(
k + 4

2

)

(n− 1)−1/(k+2),

from which the bound follows.

(ii) Rearranging the bound in Lemma 6 gives

Id ≤ log(n− 1)− d
(

1− (n − 1)−1/d
)

+
3

d(n− 1)1/d

≤ log(n− 1)− d

(

1− e−
log(n−1)

d

)

+
3

d
.
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Therefore we have

k+1∑

d=2

Id ≤ k log(n− 1)−
k+1∑

d=2

d

(

1− e−
log(n−1)

d

)

+

k+1∑

d=2

3

d
.

The second sum, an error term, is at most 3 log(k + 1). For the first sum, by making the substitution

x = d
log(n−1) , we observe that this is related to the estimation of the integral

∫
x
(
1− e−1/x

)
dx by the

Riemann sum with step size 1/ log(n− 1). More precisely, we have

1

log(n− 1)

k+1∑

d=2

d

log(n− 1)

(

1− e−
log(n−1)

d

)

=

∫ k+1
log(n−1)

2
log(n−1)

x
(

1− e−1/x
)

dx+ o(1).

Making the necessary substitutions and letting n tend to infinity gives the claimed bound.

(iii) In this range, we estimate e−1/x to observe that

x
(

1− e−1/x
)

= 1− 1

2x
+O(x−2),

where the asymptotics are as x tends to infinity. Hence, when β tends to infinity,

∫ β

0
x
(

1− e−1/x
)

dx =

∫ β

0
1− 1

2x
+O(x−2) dx = β − 1

2 log(β) +O(1).

The result then follows by substituting this into the statement of part (ii) with β = k
logn ; since the

integrand x
(
1− e−1/x

)
is bounded and monotone increasing for large x, the Riemann sum remains a

good approximation of the integral when β → ∞.

4 Explicit constructions

Corollary 3 establishes the existence of Latin squares with several orthogonal mates. Given the numerous

applications of orthogonal Latin squares, however, it is of great interest to have explicit constructions of

such squares. For instance, in the closely related problem of counting transversals in Latin squares, Tara-

nenko [39] showed that a Latin square of order n can have at most
(
(1 + o(1)) n

e2

)n
transversals. Glebov

and Luria [17] later proved that Taranenko’s bound is tight via a probabilistic construction. Recent results

of Eberhard et al. [12] and Eberhard [11] give a constructive proof of the theorem of Glebov and Luria,

providing explicit examples of Latin squares attaining this bound (in a very precise sense). They show that

the Cayley table of any abelian group G where
∑

g∈G
g = 0 has

(
2πn2√

e
+ o(1)

)(
n
e2

)n
transversals.

To see the relation between transversals and orthogonal mates, observe that the n translates of any

transversal in a Cayley table partition the Latin square. For each such partition into transversals, we can

construct n! distinct orthogonal mates by assigning distinct symbols in [n] to the n transversals. The above

results thus imply that these Latin squares have at least

(√

8π3n5

e + o(1)

)(
n2

e3

)n
orthogonal mates. This

lower bound is much smaller than the upper bound we would like to match, because this simple argument

only counts orthogonal mates of a very special type. Here we describe a construction of MacNeish [33] that

allows us to significantly improve this bound, even if we still fall slightly short of the true maximum number

of orthogonal mates given by Corollary 3.

The Kronecker product of two Latin squares L1 and L2 of order n1 and n2 respectively is the Latin

square L1 ⊗ L2 of order n1n2 given by (L1 ⊗ L2)((i1, j1), (i2, j2)) = (L1(i1, i2), L2(j1, j2)). (Of course,
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the row and column indices and the symbols of L1 ⊗ L2 can be seen as elements of [n1n2] after fixing

an arbitrary bijection from [n1] × [n2].) For a Latin square L, we write L⊗k to denote the k-fold product

L⊗ · · · ⊗ L
︸ ︷︷ ︸

k times

.

Proposition 7. Let L1 and L2 be Latin squares of order n1 and n2 that have q1 and q2 orthogonal mates

respectively. Then the number of orthogonal mates of L1 ⊗ L2 is at least q1q
n2
1

2
(n1n2)!

n1!(n2!)n1
.

Proof. We will show how orthogonal mates of L1 and L2 can be combined in several ways to produce

orthogonal mates of the product L1 ⊗ L2. For this, it is again useful to view an orthogonal mate as an

ordered partition of L1 ⊗ L2 into disjoint transversals.

Further observe that L1⊗L2 can be partitioned into n2
1 blocks of the form L1(i1, i2)⊗L2 for i1, i2 ∈ [n1].

Each of these is isomorphic to L2, and thus admits q2 orthogonal mates.

There are q1 orthogonal mates of L1, and thus q1
n1!

unordered partitions of L1 into disjoint transversals,

say {T1, . . . , Tn1}. In the product L1 ⊗ L2, this partitions the blocks into n1 disjoint sets.

Let Tj be one of the transversals in this decomposition of L1. The corresponding blocks Tj ⊗ L2 =
{L1(i1, i2) ⊗ L2 : (i1, i2) ∈ Tj} then have all distinct symbols from [n1] in the first coordinate, and hence

cover each symbol in [n1] × [n2] precisely n2 times. To get a transversal of L1 ⊗ L2, we can choose a

transversal in each block L1(i1, i2) ⊗ L2 and stitch them together. Furthermore, if we partition each block

into transversals, stitching them together gives a partition of Tj ⊗ L2 into transversals of L1 ⊗ L2.

There are qn1
2 ways to choose orthogonal mates for each of the n1 blocks in Tj ⊗ L2. Here we keep the

ordering, as that tells us which transversals in different blocks should be stitched together. This gives us an

ordered partition of Tj ⊗ L2 into n2 transversals of L1 ⊗ L2, and so there are
q
n1
2
n2!

unordered partitions of

this set of blocks into transversals.

Making these choices for each Tj , we obtain a total of
q1
n1!

(
q
n1
2
n2!

)n1

partitions of L1 ⊗ L2 into n1n2

disjoint transversals, each of which can easily be shown to be distinct. To obtain an orthogonal mate, we

can order these transversals arbitrarily, and thus obtain q1q
n2
1

2
(n1n2)!

n1!(n2!)n1
mates, as claimed.

In particular, this implies that powers of a single Latin square have many orthogonal mates.

Corollary 8. Let L be a Latin square of order m with q orthogonal mates. Then L⊗k is a Latin square of

order mk with at least q
m2k−1
m2−1 orthogonal mates.

Proof. We proceed by induction. The statement is clearly true for k = 1. Suppose it holds for some k ≥ 1.

Then, by Proposition 7, with L1 = L⊗k, L2 = L, n1 = mk, n2 = m, q1 = m2k−1
m2−1

, and q2 = q, we know

the number of mates of L⊗(k+1) is at least

q
m2k−1
m2−1 qm

2k (mk+1)!

(mk)!(m!)mk
≥ q

m2(k+1)−1
m2−1 .

If we take L to be the Cayley table of Z3, then we have q = 6. The k-fold Kronecker product of the

Cayley table gives the Cayley table of the product group Z
k
3, which by Corollary 8 has at least (61/8)3

2k−1

orthogonal mates. In the next corollary, we show that the constant in the base of the exponent can be made

arbitrarily large at the cost of having a slightly less explicit construction.

Corollary 9. For any C > 0, there are infinitely many orders n for which we can efficiently produce Latin

squares with at least Cn2
orthogonal mates.
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Proof. Let m be such that m
2e3

> C . By Corollary 3, provided m is sufficiently large, there is a Latin

square L of order m with
(
(1 + o(1))m

e3

)m2

> Cm2
orthogonal mates; we can find such a square with a

(finite) exhaustive search. By Corollary 8, we know that the Latin square L⊗k of order n = mk has at least

C
m2(m2k−1)

m2−1 ≥ Cn2
orthogonal mates.

5 Concluding remarks and open questions

In this paper, by bounding the number of extensions of a set of mutually orthogonal Latin squares, we

obtained upper bounds on the number of k-MOLS when k grows with n. The obvious question is how

tight these bounds are — can we find corresponding lower bounds? The constructions of Donovan and

Grannell [10], valid for infinitely many values of n when k ≤ √
n, give lower bounds of the form logL(k)(n) =

Ω
(
γ(k, n)n2 log n

)
, where γ(k, n) = max

{
log k

k2 logn
, 1
k4

}

. This is considerably smaller than our upper

bounds in Corollary 4, and it would be of great interest to narrow the gap. One might hope to extend the

lower bounds of Keevash [26], which were tight for constant k, but, as he notes in his paper, it is unclear

how his methods could be used when k grows.

Aside from the enumeration of k-MOLS, there are several other related open problems, and we elaborate

on these possible directions of study below.

Orthogonal mates We have bounded the maximum number of orthogonal mates a Latin square can have,

but it is natural to ask if it is typical for a Latin square to have any orthogonal mates at all. Computational

results in this direction are given in [6], [13], and [34]. His study of squares of small order led van Rees [41]

to conjecture that, as n → ∞, the proportion of Latin squares without orthogonal mates tends to one. On the

other hand, having studied slightly larger orders, Wanless and Webb [42] suggested that the opposite may

be true.

In (4), we saw that the results of Luria [32] and Keevash [26] imply that the average Latin square of

order n has
(
(1 + o(1)) n

e3

)n2

orthogonal mates. Since Theorem 2 shows that this is roughly the maximum

number of mates a square can have, this implies that at least
(
(1 + o(1)) n

e2

)n2

Latin squares must have an

orthogonal mate. Unfortunately, due to the asymptotic error in the base of the exponent, this falls short of

resolving the question of whether or not most Latin squares have orthogonal mates.

Some evidence that this may not be straightforward to resolve is provided in [7], where Cavenagh and

Wanless showed that, for almost all even n, there are at least n(1−o(1))n2
Latin squares of order n without a

transversal, let alone an orthogonal mate. However, Ferber and Kwan [16] study the analogous question in

Steiner triple systems, and show that almost all Steiner triple systems are almost resolvable. In the context

of Latin squares, they say (personal communication) that their methods would show that almost all Latin

squares have (1− o(1))n disjoint transversals. Still, some new ideas would be needed to find the n disjoint

transversals that form an orthogonal mate.

In Section 4 we showed, for any given C > 0, that we can, for infinitely many n, construct Latin squares

of order n with at least Cn2
orthogonal mates. Given the existence of Latin squares with many more, namely

n(1+o(1))n2
, orthogonal mates, it is natural to seek better constructions.

Problem 1. Is there an explicit construction of a Latin square of order n with at least nΩ(n2) orthogonal

mates?

In our product construction in Section 4, we only considered orthogonal mates consisting of very special

kinds of transversals (those built within blocks, using transversals of the two factor squares). It is likely that
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these product squares have a much larger number of orthogonal mates, perhaps even close to the maximum

possible.

We have also been vague with regards to what we mean by an explicit construction. As is customary

in computer science, by explicit we mean there is an algorithm that constructs the Latin square in question

in time polynomial in n. One can go further, and call a construction strongly explicit if each individual

entry of the Latin square can be determined in polylogarithmic time. One can verify that our construction

in the previous section is indeed strongly explicit. Yet one feels somewhat cheated, as in the first step

of the construction we perform an exhaustive search to find an initial Latin square with many orthogonal

mates (whose existence is guaranteed by random methods, see Corollary 3). It would be desirable to find

constructions that are also “morally explicit” in the sense that they can be described mathematically, and in

particular avoid any initial brute-force search. In this direction, it would be natural to investigate whether

the Cayley tables of abelian groups G with
∑

g∈G
g = 0 give examples of such Latin squares (cf. [11, 12]).

Affine and projective planes As mentioned earlier, (n − 1)-MOLS of order n correspond to affine, and

hence projective, planes of order n. Our knowledge of lower bounds in this setting is even direr; it is

conjectured that there are no such systems when n is not a prime power, and believed that there is a unique

(up to isomorphism) projective plane when n is a prime. As a step towards proving these conjectures, one

could seek to bound the number of affine/projective planes from above, a problem raised by Hedayat and

Federer [19].

In our definition of L(k)(n), we do not account for isomorphism. Thus, given a single projective plane,

we can permute the symbols within each square of the corresponding (n − 1)-MOLS to obtain (n!)n−1

distinct (n − 1)-MOLS. This gives a lower bound of L(n−1)(n) ≥ (n!)n−1 = e(1−o(1))n2 logn whenever n
is a prime power. We remark that, for certain prime powers n, Kantor [22] and Kantor and Williams [23]

provide algebraic constructions of superpolynomially many non-isomorphic projective planes of order n,

but this contributes a lower order term in the above bound.

For an upper bound, Corollary 4 yields L(n−1)(n) ≤ e

(

1
2+o(1)

)

n2 log3 n
. However, since a projective

plane corresponds to a maximum possible set of mutually orthogonal Latin squares, it has a very restricted

structure, and we can take advantage of this to obtain a better upper bound. Given a projective plane Πn

of order n, a subset H of its lines is called a defining set if Πn is the unique projective plane containing H
— that is, the lines in H determine the remaining lines in Πn. Building on the work of Kahn [21], Boros,

Szőnyi and Tichler [4] showed that every projective plane admits a small defining set.

Theorem 10 (Boros, Szőnyi and Tichler, 2005). Every projective plane of order n (for n sufficiently large)

contains a defining set of size at most 22n log n.

This immediately improves our upper bound.

Corollary 11. L(n−1)(n) ≤ e(22+o(1))n2 log2 n.

Proof. By Theorem 10, each projective plane of order n contains a set H of 22n log n lines that determine

the remaining ones uniquely. Each line is a subset of size n + 1 of the n2 + n + 1 points. Thus, there are
(n2+n+1

n+1

)
= e(1+o(1))n logn possible lines and at most (e(1+o(1))n logn)22n logn possible sets H and hence

projective planes of order n.

Each (n − 1)-MOLS corresponds to an affine plane of order n (the n2 cells represent the points, two

parallel classes are formed by the rows and columns, and each of the n − 1 Latin squares labels the lines

of one of the remaining parallel classes), and every affine plane has a unique extension to a projective plane

(for each parallel class, we extend the lines to a common new point, and add a line at infinity consisting

of the new points). In the reverse direction, a projective plane corresponds to at most n2 + n + 1 different
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affine planes, by choosing the line at infinity. Furthermore, each affine plane corresponds to at most (n +
1)!(n!)n+1 = e(1+o(1))n2 logn distinct (n − 1)-MOLS, since we can permute the parallel classes, and the

lines within parallel classes. This contributes a lower order term, and so we can also bound L(n−1)(n) ≤
e(22+o(1))n2 log2 n.

It would be of great interest to remove the extra logarithmic factor in the exponent of the upper bound,

and thus reduce it log-asymptotically to the lower bound.

Conjecture 1.

L(n−1)(n) = eO(n
2 logn).

As we obtain this many (n−1)-MOLS from a single projective plane, this would provide qualitative evidence

in favor of the non-existence conjectures concerning projective planes. Note that a stronger result than

Conjecture 1 (and a possible avenue of attack) would be to improve Theorem 10, which is not known to be

tight. The best known lower bound for Theorem 10 is only linear in n, and, if every projective plane were

to indeed contain a defining set of O(n) lines, that would imply L(n−1)(n) = eΘ(n2 logn).

Sudoku squares As mentioned in Section 2.1, Sudoku squares are a special class of gerechte designs

of order n, where n = m2, with the array partitioned into m × m subsquares in the natural way. After

Golomb [18] asked about the existence of a pair of orthogonal Sudoku squares of order 9 (corresponding

to the popular puzzle), systems of k mutually orthogonal Sudoku squares (k-MOSS) have been studied by

several authors. This research has primarily sought to determine the largest k for which a k-MOSS of order

n can exist; we refer the reader to [1, 24, 25, 29, 30, 35] for constructions and results in this direction.

One may ask the same counting questions as before for this restricted class of Latin squares, and these

are relatively less well-studied. The number of Sudoku squares of order n is known to be
(
(1 + o(1)) n

e3

)n2

;

the upper bound is shown independently by Luria [32] (using entropy) and Berend [3] (using Brégman’s

Theorem), while the matching lower bound is due to Keevash [26].

To enumerate k-MOSS for fixed k, we extend an idea of Keevash, defining a 4-uniform hypergraph H

with vertices V (H) = {x1, x2, y1, y2, z(1)1 , z
(1)
2 , . . . , z

(k)
1 , z

(k)
2 } and edges {x1, x2, y1, y2}, {x1, x2, z(i)1 , z

(i)
2 },

{y1, y2, z(i)1 , z
(i)
2 }, {x1, y1, z(i)1 , z

(i)
2 } and {z(i)1 , z

(i)
2 , z

(j)
1 , z

(j)
2 } for all 1 ≤ i < j ≤ k. Letting H(

√
n) be the

(2k + 4)-partite 4-uniform hypergraph obtained by blowing each vertex up into
√
n new vertices, it follows

that a k-MOSS is equivalent to a decomposition of H(
√
n) into copies of H . For fixed k, the results of

Luria and Keevash show there are

(

(1 + o(1)) nk

e(
k+3
2 )−3

)n2

such decompositions.

Our results allow us to bound the number of ways of extending a k-MOSS by an additional Sudoku

square. Since each cell shares its row (or column) with
√
n − 1 other cells from the same subsquare, we

have rℓ = cℓ =
√
n − 1 for each ℓ ∈ [n2]. Applying Theorem 5 shows that our upper bounds on k-MOSS

coincide with our upper bounds on (k + 1)-MOLS. In particular, the bound in (a) is once again tight, as it

matches the average number of extensions of a k-MOSS.

Corollary 12. (a) For all fixed k, the maximum number of extensions of a k-MOSS of order n to a (k + 1)-

MOSS is
(
(1 + o(1)) n

ek+3

)n2

.

(b) For k = k(n) ≥ 0, the logarithm of the number of k-MOSS is at most

(i)
(

(k + 1) log n−
(k+3

2

)
+ 3 + (k + 1)2n−1/(k+3) + o(1)

)

n2 if k = o(log n),

(ii) (c(β) + o(1))kn2 log n if k = β log n, for fixed β > 0,
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(iii)
(
1
2 + o(1)

)
(log k − log log n)n2 log2 n if k = ω(log n),

where c(β), as in Corollary 4, is defined to be 1− β−1
∫ β
0 x(1− e−1/x) dx.

Proof. A k-MOSS corresponds to a NOA(n, k+3) with rℓ = cℓ =
√
n− 1. Substituting these parameters

into Theorem 5, the logarithm of the number of extensions of a k-MOSS is at most

n2

∫ 1

0
log

(

1 + 2(
√
n− 1)tk+2 + (n− 2

√
n+ 1)tk+3

)

dt

= n2

∫ 1

0
log

(

1 + (n− 1)tk+3
)

dt+ n2

∫ 1

0
log

(

1 +
2(
√
n− 1)(1 − t)tk+2

1 + (n− 1)tk+3

)

dt.

The first integral is simply Ik+3, as evaluated in Lemma 6.

To bound the second integral, observe that

∫ 1

0
log

(

1 +
2(
√
n− 1)(1 − t)tk+2

1 + (n − 1)tk+3

)

dt ≤
∫ 1

0

2(
√
n− 1)(1− t)tk+2

1 + (n− 1)tk+3
dt

≤
∫ 1

0

(2
√
n− 1)tk+2

1 + (n− 1)tk+3
dt

=
2

(k + 3)
√
n− 1

log
(

1 + (n− 1)tk+3
)∣
∣
∣

1

0
=

2 log n

(k + 3)
√
n− 1

.

Thus, even if we sum up over all k ∈ [n], the contribution from this second integral is a lower order error

term. Hence our upper bound on the logarithm of the number of extensions of a k-MOSS is n2(Ik+3+o(1)),
and therefore we obtain the same enumeration as when extending a (k + 1)-MOLS.

Aside from the general lower bound of Keevash [26], we are not aware of any lower bounds on the

number of k-MOSS. It would therefore be interesting to find lower bounds on the number of k-MOSS when

k grows with n.

Problem 2. How tight are the upper bounds in Corollary 12(b)? That is, for k = k(n) that grows with n,

can we show the existence of many distinct k-MOSS?
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