
Construction and Applications of (k , d)-trees

Tibor Szabó

FU Berlin

November 5th, 2012

Tibor Szabó Construction and Applications of (k, d)-trees

Coloring hypergraphs

k-uniform hypergraph (X ,F): X is a set, F ⊆
(X
k

)

F is 2-colorable if there is a function (a ”coloring”)
f : X → {red, blue} such that no edge A ∈ F is monochromatic

Claim If |F| < 2k−1, then F is 2-colorable.

Proof. Random 2-coloring. Color all x ∈ X independently,
uniformly:

Pr [f (x) = red] =
1

2
= Pr [f (x) = blue].

For A ∈ F , let YA = 1 if A is monochromatic, otherwise YA = 0.

E[#of m.c. edges of F] = E

[∑

A∈F
YA

]
=
∑

A∈F
EYA =

|F|
2k−1

< 1

Hence, for sure, THERE EXISTS 2-coloring without m.c. edges
(”proper 2-coloring”) �

Tibor Szabó Construction and Applications of (k, d)-trees

Coloring hypergraphs

k-uniform hypergraph (X ,F): X is a set, F ⊆
(X
k

)

F is 2-colorable if there is a function (a ”coloring”)
f : X → {red, blue} such that no edge A ∈ F is monochromatic

Claim If |F| < 2k−1, then F is 2-colorable.

Proof. Random 2-coloring. Color all x ∈ X independently,
uniformly:

Pr [f (x) = red] =
1

2
= Pr [f (x) = blue].

For A ∈ F , let YA = 1 if A is monochromatic, otherwise YA = 0.

E[#of m.c. edges of F] = E

[∑

A∈F
YA

]
=
∑

A∈F
EYA =

|F|
2k−1

< 1

Hence, for sure, THERE EXISTS 2-coloring without m.c. edges
(”proper 2-coloring”) �

Tibor Szabó Construction and Applications of (k, d)-trees

Coloring hypergraphs

k-uniform hypergraph (X ,F): X is a set, F ⊆
(X
k

)

F is 2-colorable if there is a function (a ”coloring”)
f : X → {red, blue} such that no edge A ∈ F is monochromatic

Claim If |F| < 2k−1, then F is 2-colorable.

Proof. Random 2-coloring. Color all x ∈ X independently,
uniformly:

Pr [f (x) = red] =
1

2
= Pr [f (x) = blue].

For A ∈ F , let YA = 1 if A is monochromatic, otherwise YA = 0.

E[#of m.c. edges of F] = E

[∑

A∈F
YA

]
=
∑

A∈F
EYA =

|F|
2k−1

< 1

Hence, for sure, THERE EXISTS 2-coloring without m.c. edges
(”proper 2-coloring”) �

Tibor Szabó Construction and Applications of (k, d)-trees

Coloring hypergraphs

k-uniform hypergraph (X ,F): X is a set, F ⊆
(X
k

)

F is 2-colorable if there is a function (a ”coloring”)
f : X → {red, blue} such that no edge A ∈ F is monochromatic

Claim If |F| < 2k−1, then F is 2-colorable.

Proof. Random 2-coloring. Color all x ∈ X independently,
uniformly:

Pr [f (x) = red] =
1

2
= Pr [f (x) = blue].

For A ∈ F , let YA = 1 if A is monochromatic, otherwise YA = 0.

E[#of m.c. edges of F] = E

[∑

A∈F
YA

]
=
∑

A∈F
EYA =

|F|
2k−1

< 1

Hence, for sure, THERE EXISTS 2-coloring without m.c. edges
(”proper 2-coloring”) �

Tibor Szabó Construction and Applications of (k, d)-trees

Coloring hypergraphs

k-uniform hypergraph (X ,F): X is a set, F ⊆
(X
k

)

F is 2-colorable if there is a function (a ”coloring”)
f : X → {red, blue} such that no edge A ∈ F is monochromatic

Claim If |F| < 2k−1, then F is 2-colorable.

Proof. Random 2-coloring. Color all x ∈ X independently,
uniformly:

Pr [f (x) = red] =
1

2
= Pr [f (x) = blue].

For A ∈ F , let YA = 1 if A is monochromatic, otherwise YA = 0.

E[#of m.c. edges of F] = E

[∑

A∈F
YA

]
=
∑

A∈F
EYA =

|F|
2k−1

< 1

Hence, for sure, THERE EXISTS 2-coloring without m.c. edges
(”proper 2-coloring”) �

Tibor Szabó Construction and Applications of (k, d)-trees

Coloring hypergraphs

k-uniform hypergraph (X ,F): X is a set, F ⊆
(X
k

)

F is 2-colorable if there is a function (a ”coloring”)
f : X → {red, blue} such that no edge A ∈ F is monochromatic

Claim If |F| < 2k−1, then F is 2-colorable.

Proof. Random 2-coloring. Color all x ∈ X independently,
uniformly:

Pr [f (x) = red] =
1

2
= Pr [f (x) = blue].

For A ∈ F , let YA = 1 if A is monochromatic, otherwise YA = 0.

E[#of m.c. edges of F] = E

[∑

A∈F
YA

]
=
∑

A∈F
EYA =

|F|
2k−1

< 1

Hence, for sure, THERE EXISTS 2-coloring without m.c. edges
(”proper 2-coloring”) �

Tibor Szabó Construction and Applications of (k, d)-trees

Derandomization — Games

Question: Is there an (efficient, deterministic) algorithm which
finds a proper 2-coloring?

YES!

 Positional games

Tibor Szabó Construction and Applications of (k, d)-trees

Derandomization — Games

Question: Is there an (efficient, deterministic) algorithm which
finds a proper 2-coloring?

YES!

 Positional games

Tibor Szabó Construction and Applications of (k, d)-trees

Derandomization — Games

Question: Is there an (efficient, deterministic) algorithm which
finds a proper 2-coloring?

YES!

 Positional games

Tibor Szabó Construction and Applications of (k, d)-trees

Positional Games

Maker-Breaker Game (X ,F):
Board: set X ; family of winning sets: F ⊂ 2X

Players: Maker and Breaker
Play: players alternately occupy elements of X ; Maker starts
Winner: Maker if he occupies a winning set completely

Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:
1) Exactly one of the players has a winning strategy.
2) Given F , it is clear (at least to an all-powerful computer) which
of them has a winning strategy.
Terminology: F is Maker’s win, F is Breaker’s win

Proposition: F is a Breaker’s win ⇒ F is 2-colorable

Erdős-Selfridge: |F| < 2k−1 ⇒ Breaker has a winning strategy.

Tibor Szabó Construction and Applications of (k, d)-trees

Positional Games

Maker-Breaker Game (X ,F):
Board: set X ; family of winning sets: F ⊂ 2X

Players: Maker and Breaker
Play: players alternately occupy elements of X ; Maker starts
Winner: Maker if he occupies a winning set completely

Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:
1) Exactly one of the players has a winning strategy.
2) Given F , it is clear (at least to an all-powerful computer) which
of them has a winning strategy.
Terminology: F is Maker’s win, F is Breaker’s win

Proposition: F is a Breaker’s win ⇒ F is 2-colorable

Erdős-Selfridge: |F| < 2k−1 ⇒ Breaker has a winning strategy.

Tibor Szabó Construction and Applications of (k, d)-trees

Positional Games

Maker-Breaker Game (X ,F):
Board: set X ; family of winning sets: F ⊂ 2X

Players: Maker and Breaker
Play: players alternately occupy elements of X ; Maker starts
Winner: Maker if he occupies a winning set completely

Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:
1) Exactly one of the players has a winning strategy.
2) Given F , it is clear (at least to an all-powerful computer) which
of them has a winning strategy.
Terminology: F is Maker’s win, F is Breaker’s win

Proposition: F is a Breaker’s win ⇒ F is 2-colorable

Erdős-Selfridge: |F| < 2k−1 ⇒ Breaker has a winning strategy.

Tibor Szabó Construction and Applications of (k, d)-trees

Positional Games

Maker-Breaker Game (X ,F):
Board: set X ; family of winning sets: F ⊂ 2X

Players: Maker and Breaker
Play: players alternately occupy elements of X ; Maker starts
Winner: Maker if he occupies a winning set completely

Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:
1) Exactly one of the players has a winning strategy.
2) Given F , it is clear (at least to an all-powerful computer) which
of them has a winning strategy.
Terminology: F is Maker’s win, F is Breaker’s win

Proposition: F is a Breaker’s win ⇒ F is 2-colorable

Erdős-Selfridge: |F| < 2k−1 ⇒ Breaker has a winning strategy.

Tibor Szabó Construction and Applications of (k, d)-trees

Lovász Local Lemma – Neighborhood Conjecture

LLL. A1,A2, . . . ,Ak events in some probability space, such that
(1) every Ai is mutually independent from all but d other events
(2) p ≥ Pr [Ai] for every i

If ep(d + 1) ≤ 1 then Pr [∧ki=1Ai] > 0.

Application of LLL: ∆(L(F)) ≤ 2k−1

e − 1 ⇒ F is 2-colorable.

∆(F) ≤ 2k−1

ek ⇒ F is 2-colorable.

Moser-Tardos (2010) There is a (simple) algorithm to efficiently
2-color such an F .

Neighborhood Conjecture [Beck]

∆(L(F)) < 2k−1 ⇒ F is Breaker’s win.

Tibor Szabó Construction and Applications of (k, d)-trees

Lovász Local Lemma – Neighborhood Conjecture

LLL. A1,A2, . . . ,Ak events in some probability space, such that
(1) every Ai is mutually independent from all but d other events
(2) p ≥ Pr [Ai] for every i

If ep(d + 1) ≤ 1 then Pr [∧ki=1Ai] > 0.

Application of LLL: ∆(L(F)) ≤ 2k−1

e − 1 ⇒ F is 2-colorable.

∆(F) ≤ 2k−1

ek ⇒ F is 2-colorable.

Moser-Tardos (2010) There is a (simple) algorithm to efficiently
2-color such an F .

Neighborhood Conjecture [Beck]

∆(L(F)) < 2k−1 ⇒ F is Breaker’s win.

Tibor Szabó Construction and Applications of (k, d)-trees

Lovász Local Lemma – Neighborhood Conjecture

LLL. A1,A2, . . . ,Ak events in some probability space, such that
(1) every Ai is mutually independent from all but d other events
(2) p ≥ Pr [Ai] for every i

If ep(d + 1) ≤ 1 then Pr [∧ki=1Ai] > 0.

Application of LLL: ∆(L(F)) ≤ 2k−1

e − 1 ⇒ F is 2-colorable.

∆(F) ≤ 2k−1

ek ⇒ F is 2-colorable.

Moser-Tardos (2010) There is a (simple) algorithm to efficiently
2-color such an F .

Neighborhood Conjecture [Beck]

∆(L(F)) < 2k−1 ⇒ F is Breaker’s win.

Tibor Szabó Construction and Applications of (k, d)-trees

Lovász Local Lemma – Neighborhood Conjecture

LLL. A1,A2, . . . ,Ak events in some probability space, such that
(1) every Ai is mutually independent from all but d other events
(2) p ≥ Pr [Ai] for every i

If ep(d + 1) ≤ 1 then Pr [∧ki=1Ai] > 0.

Application of LLL: ∆(L(F)) ≤ 2k−1

e − 1 ⇒ F is 2-colorable.

∆(F) ≤ 2k−1

ek ⇒ F is 2-colorable.

Moser-Tardos (2010) There is a (simple) algorithm to efficiently
2-color such an F .

Neighborhood Conjecture [Beck]

∆(L(F)) < 2k−1 ⇒ F is Breaker’s win.

Tibor Szabó Construction and Applications of (k, d)-trees

Counterexamples to the strongest form of NC

Theorem (Gebauer, ’09)

(i) For every large enough k, there is a k-uniform Maker’s win
hypergraph H with ∆(L(H)) ≤ 0.75 · 2k−1

(ii) For every large enough k there is a k-uniform Maker’s win

hypergraph F with ∆(F) < 0.5 · 2k

k .

D(k) := min{∆(F) : k-uniform, Maker’s win F}
Best know lower bound D(k) > bk2 c.
Deciding whether D(k) = bk2 c+ 1 already seems to need new ideas.

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

2

7

4

9

17

5

11

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k

8

1

3

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

2

7

4

9

17

5

11

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k

8

1

3

vertices ! elements of the board X

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

2

4

9

17

5

11

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k

8

20

1

3

7

vertices ! elements of the board X

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

2

4

9

17

5

11

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k

8

20

1

3

7

vertices ! elements of the board X
winning sets ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

1 2

7

4

9

17

5

11

3

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k

8

20

3

F := {{1, 3, 7}}
vertices ! elements of the board X
winning sets ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

1 2

4

9

17

5

11

3

19

13

21
15

8

16
18

12

20

6

10 14

22

k = 3 :

k

18 21

1212 147

F := {{1, 3, 7}, {3, 8, 15}}
vertices ! elements of the board X
winning sets ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

1 2

4

9

17

5

11

3

19

13

21
15

8

16
18

12

20

6

10 14

22

k = 3 :

k

18 21

1212 14
7

F := {{1, 3, 7}, {3, 8, 15}, {3, 8, 16}}
vertices ! elements of the board X
winning sets ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

1 2

7

4

9

17

5

11

3

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k 3

8

20

F := {{1, 3, 7}, {3, 8, 15}, {3, 8, 16}, . . .}
vertices ! elements of the board X
winning sets ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Game-hypergraphs from trees

full binary trees k-uniform hypergraphs

1 2

7

4

9

17

5

11

3

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k 3

8

20

F := {{1, 3, 7}, {3, 8, 15}, {3, 8, 16}, . . .}
vertices ! elements of the board X
winning sets ! end-paths

Proposition

Maker has a winning strategy on the hypergraph F .

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-trees

Def. (k , d)-tree

Every leaf has depth ≥ k
Every vertex has ≤ d leaf-descendants of distance ≤ k

A (3, 6)-tree

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-trees

Def. (k , d)-tree

Every leaf has depth ≥ k
Every vertex has ≤ d leaf-descendants of distance ≤ k

A (3, 6)-tree

k = 3

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-trees

Def. (k , d)-tree

Every leaf has depth ≥ k
Every vertex has ≤ d leaf-descendants of distance ≤ k

A (3, 6)-tree

k = 3

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-trees

Def. (k , d)-tree

Every leaf has depth ≥ k
Every vertex has ≤ d leaf-descendants of distance ≤ k

A (3, 6)-tree

k = 3

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-trees

Def. (k , d)-tree

Every leaf has depth ≥ k
Every vertex has ≤ d leaf-descendants of distance ≤ k

A (3, 6)-tree

k = 3

Proposition

There is a (k − 1, d)-tree ⇒ D(k) ≤ d

Tibor Szabó Construction and Applications of (k, d)-trees

Constructing (k , d)-trees

Theorem (Gebauer - Sz. - Tardos, 2011)

There exists a (k , d)-tree with

d =

(
2

e
+ o(1)

)
2k

k
.

Corollary

For every positive integer k there exists Maker’s win k-uniform
hypergraphs H and H′, such that

(i) ∆(L(H)) =
(

1 + O
(

1√
k

))
2k−1

e ,

(ii) ∆(H) =
(

1 + O
(

1√
k

))
2k

ek .

Tibor Szabó Construction and Applications of (k, d)-trees

Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let F be a boolean CNF-formula such that
every clause contains exactly k distinct literals. If every variable
occurs in less than 1

e · 2k

k , then F is satisfiable.

Def. (k , s)-CNF formula

every clause contains exactly k distinct literals
every variable occurs in at most s clauses

Extremal question: How large is

f (k) := max{s : every (k , s)-SAT is satisfiable}??

Known values: f (3) = 3, f (4) = 4, f (5) =?
f is NOT known to be computable

Upper bounds: k · 2k

k trivial

k0.74 · 2k

k Savicky-Sgall, ’00

log k · 2k

k Hoory-Szeider, ’06

1 · 2k

k Gebauer, ’09

Tibor Szabó Construction and Applications of (k, d)-trees

Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let F be a boolean CNF-formula such that
every clause contains exactly k distinct literals. If every variable
occurs in less than 1

e · 2k

k , then F is satisfiable.

Def. (k , s)-CNF formula

every clause contains exactly k distinct literals
every variable occurs in at most s clauses

Extremal question: How large is

f (k) := max{s : every (k , s)-SAT is satisfiable}??

Known values: f (3) = 3, f (4) = 4, f (5) =?
f is NOT known to be computable

Upper bounds: k · 2k

k trivial

k0.74 · 2k

k Savicky-Sgall, ’00

log k · 2k

k Hoory-Szeider, ’06

1 · 2k

k Gebauer, ’09

Tibor Szabó Construction and Applications of (k, d)-trees

Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let F be a boolean CNF-formula such that
every clause contains exactly k distinct literals. If every variable
occurs in less than 1

e · 2k

k , then F is satisfiable.

Def. (k , s)-CNF formula

every clause contains exactly k distinct literals
every variable occurs in at most s clauses

Extremal question: How large is

f (k) := max{s : every (k , s)-SAT is satisfiable}??

Known values: f (3) = 3, f (4) = 4, f (5) =?
f is NOT known to be computable

Upper bounds: k · 2k

k trivial

k0.74 · 2k

k Savicky-Sgall, ’00

log k · 2k

k Hoory-Szeider, ’06

1 · 2k

k Gebauer, ’09

Tibor Szabó Construction and Applications of (k, d)-trees

Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let F be a boolean CNF-formula such that
every clause contains exactly k distinct literals. If every variable
occurs in less than 1

e · 2k

k , then F is satisfiable.

Def. (k , s)-CNF formula

every clause contains exactly k distinct literals
every variable occurs in at most s clauses

Extremal question: How large is

f (k) := max{s : every (k , s)-SAT is satisfiable}??

Known values: f (3) = 3, f (4) = 4, f (5) =?
f is NOT known to be computable

Upper bounds: k · 2k

k trivial

k0.74 · 2k

k Savicky-Sgall, ’00

log k · 2k

k Hoory-Szeider, ’06

1 · 2k

k Gebauer, ’09

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c
b̄

e

f

g

h

b

i

j
md

c̄

d̄ f̄
h̄
ī

ḡ

ē j̄
m̄

k = 3 :

k

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c
b̄

e

f

g

h

b

i

j
md

c̄

d̄ f̄
h̄
ī

ḡ

ē j̄
m̄

k = 3 :

k

vertices ! distinct literals
siblings ! opposite literals

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c

b̄
e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

vertices ! distinct literals
siblings ! opposite literals

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c

b̄
e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c

b̄
e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a)
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c

b̄
e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a) ∧ (d ∨ c̄ ∨ b)
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c

b̄

e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a) ∧ (d ∨ c̄ ∨ b) ∧ (d̄ ∨ c̄ ∨ b)
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c

b̄

e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a) ∧ (d ∨ c̄ ∨ b) ∧ (d̄ ∨ c̄ ∨ b) ∧ . . .
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths

Tibor Szabó Construction and Applications of (k, d)-trees

Formulas from trees

full binary trees k-CNF formulas

a ā

c

b̄

e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a) ∧ (d ∨ c̄ ∨ b) ∧ (d̄ ∨ c̄ ∨ b) ∧ . . .
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths

Proposition

The obtained formula is NOT satisfiable

Tibor Szabó Construction and Applications of (k, d)-trees

Asymptotics via (k , d)-trees

Proposition

There is a (k , d)-tree ⇒ f (k) < d

Theorem (Gebauer-Sz.-Tardos, ’11)

f (k) =

(
2

e
+ o(1)

)
2k

k

Def. The degree of clause C in formula F is the number of those
clauses of F that share a variable with C .
D(F) denotes the largest of all clause-degrees in F .

l(k) := max{s : every k-CNF formula F with D(F) ≤ s is saitisfiable}

Theorem (Gebauer-Sz.-Tardos, ’11)

l(k) =

(
1

e
+ o(1)

)
2k

Tibor Szabó Construction and Applications of (k, d)-trees

Asymptotics via (k , d)-trees

Proposition

There is a (k , d)-tree ⇒ f (k) < d

Theorem (Gebauer-Sz.-Tardos, ’11)

f (k) =

(
2

e
+ o(1)

)
2k

k

Def. The degree of clause C in formula F is the number of those
clauses of F that share a variable with C .
D(F) denotes the largest of all clause-degrees in F .

l(k) := max{s : every k-CNF formula F with D(F) ≤ s is saitisfiable}

Theorem (Gebauer-Sz.-Tardos, ’11)

l(k) =

(
1

e
+ o(1)

)
2k

Tibor Szabó Construction and Applications of (k, d)-trees

Asymptotics via (k , d)-trees

Proposition

There is a (k , d)-tree ⇒ f (k) < d

Theorem (Gebauer-Sz.-Tardos, ’11)

f (k) =

(
2

e
+ o(1)

)
2k

k

Def. The degree of clause C in formula F is the number of those
clauses of F that share a variable with C .
D(F) denotes the largest of all clause-degrees in F .

l(k) := max{s : every k-CNF formula F with D(F) ≤ s is saitisfiable}

Theorem (Gebauer-Sz.-Tardos, ’11)

l(k) =

(
1

e
+ o(1)

)
2k

Tibor Szabó Construction and Applications of (k, d)-trees

Asymptotics via (k , d)-trees

Proposition

There is a (k , d)-tree ⇒ f (k) < d

Theorem (Gebauer-Sz.-Tardos, ’11)

f (k) =

(
2

e
+ o(1)

)
2k

k

Def. The degree of clause C in formula F is the number of those
clauses of F that share a variable with C .
D(F) denotes the largest of all clause-degrees in F .

l(k) := max{s : every k-CNF formula F with D(F) ≤ s is saitisfiable}

Theorem (Gebauer-Sz.-Tardos, ’11)

l(k) =

(
1

e
+ o(1)

)
2k

Tibor Szabó Construction and Applications of (k, d)-trees

Complexity hardness jump

(k , s)-SAT Problem

• Input: a (k , s)-CNF F
• Decide whether F is satisfiable

Hardness Jump [Tovey ’84; Kratochv́ıl-Savický-Tuza ’93]

• (k, 1)-SAT trivial
• (k, 2)-SAT trivial

...
...

• (k, f (k))-SAT trivial
· ·
• (k, f (k) + 1)-SAT NP-hard

...
...

• (k,∞)-SAT NP-hard

Tibor Szabó Construction and Applications of (k, d)-trees

Complexity hardness jump

(k , s)-SAT Problem

• Input: a (k , s)-CNF F
• Decide whether F is satisfiable

Hardness Jump [Tovey ’84; Kratochv́ıl-Savický-Tuza ’93]

• (k, 1)-SAT trivial
• (k, 2)-SAT trivial

...
...

• (k, f (k))-SAT trivial
· ·
• (k, f (k) + 1)-SAT NP-hard

...
...

• (k,∞)-SAT NP-hard

Tibor Szabó Construction and Applications of (k, d)-trees

Complexity hardness jump

(k , s)-SAT Problem

• Input: a (k , s)-CNF F
• Decide whether F is satisfiable

Hardness Jump [Tovey ’84; Kratochv́ıl-Savický-Tuza ’93]

• (k, 1)-SAT trivial
• (k, 2)-SAT trivial

...
...

• (k, f (k))-SAT trivial

· ·
• (k, f (k) + 1)-SAT NP-hard

...
...

• (k,∞)-SAT NP-hard

Tibor Szabó Construction and Applications of (k, d)-trees

Complexity hardness jump

(k , s)-SAT Problem

• Input: a (k , s)-CNF F
• Decide whether F is satisfiable

Hardness Jump [Tovey ’84; Kratochv́ıl-Savický-Tuza ’93]

• (k, 1)-SAT trivial
• (k, 2)-SAT trivial

...
...

• (k, f (k))-SAT trivial
· ·
• (k, f (k) + 1)-SAT NP-hard

...
...

• (k,∞)-SAT NP-hard

Tibor Szabó Construction and Applications of (k, d)-trees

Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables

Tibor Szabó Construction and Applications of (k, d)-trees

Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables

Tibor Szabó Construction and Applications of (k, d)-trees

The Lopsided LLL

Lemma

(Lopsided Local Lemma) Let {AC}C∈I be a finite set of events in
some probability space. Let Γ(C) be a subset of I for each C ∈ I
such that for every subset J ⊆ I \ (Γ(C) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC).

Suppose there are real numbers 0 < xC < 1 for C ∈ I such that for
every C ∈ I we have

Pr(AC) ≤ xC
∏

D∈Γ(C)

(1− xD).

Then
Pr(∧C∈I ĀC) > 0.

Tibor Szabó Construction and Applications of (k, d)-trees

Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability Px = 1
2 + 2dx̄−s

2sk ,
where for literal v let dv := # of occurrences of v in F .
Surprise: The more a variable appears in the clauses of F as
non-negated, the less likely we will set it to true.

Works for every (k , s)-CNF formula F with s =
⌊

2
e · 2k

k+1

⌋
.

Tibor Szabó Construction and Applications of (k, d)-trees

Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability Px = 1
2 + 2dx̄−s

2sk ,
where for literal v let dv := # of occurrences of v in F .

Surprise: The more a variable appears in the clauses of F as
non-negated, the less likely we will set it to true.

Works for every (k , s)-CNF formula F with s =
⌊

2
e · 2k

k+1

⌋
.

Tibor Szabó Construction and Applications of (k, d)-trees

Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability Px = 1
2 + 2dx̄−s

2sk ,
where for literal v let dv := # of occurrences of v in F .
Surprise: The more a variable appears in the clauses of F as
non-negated, the less likely we will set it to true.

Works for every (k , s)-CNF formula F with s =
⌊

2
e · 2k

k+1

⌋
.

Tibor Szabó Construction and Applications of (k, d)-trees

Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability Px = 1
2 + 2dx̄−s

2sk ,
where for literal v let dv := # of occurrences of v in F .
Surprise: The more a variable appears in the clauses of F as
non-negated, the less likely we will set it to true.

Works for every (k , s)-CNF formula F with s =
⌊

2
e · 2k

k+1

⌋
.

Tibor Szabó Construction and Applications of (k, d)-trees

Searching with lies

Liar Game Player A thinks of an integer x ∈ [N] and Player B
tries to figure it out by asking Yes/No questions of the sort ”Is
x ∈ S?”, where S is a subset of [N] picked by B.

A is allowed to lie. However for B to have a chance to be
successful, but the lies have to come in some controlled fashion.

Ulam’s problem for binary search with k lies: A is allowed to
lie a total of k times What is the smallest number q(N, k) of
questions that allows B to figure out the answer.

Tibor Szabó Construction and Applications of (k, d)-trees

Searching with lies

Liar Game Player A thinks of an integer x ∈ [N] and Player B
tries to figure it out by asking Yes/No questions of the sort ”Is
x ∈ S?”, where S is a subset of [N] picked by B.

A is allowed to lie. However for B to have a chance to be
successful, but the lies have to come in some controlled fashion.

Ulam’s problem for binary search with k lies: A is allowed to
lie a total of k times What is the smallest number q(N, k) of
questions that allows B to figure out the answer.

Tibor Szabó Construction and Applications of (k, d)-trees

Problem 3, 2012 International Mathematics Olympiad

Instead of limiting the total number of lies, now the number of
consecutive lies is limited: A is not allowed to lie k consecutive
times
This restriction on the lies is not enough for B to find the value x
with certainty, but he will be able to narrow the set of possibilities.
The IMO problem asked for estimates on how small B can
guarantee this set of possibilities will eventually be.

Theorem

(Gebauer-Sz.-Tardos) Let N > d and k be positive integers.
Assume A and B play the game in which A thinks of an element
x ∈ [N] and then answers an arbitrary number of B’s questions of
the form ”Is x ∈ S?”. Assume further that A is allowed to lie, but
never to k consecutive questions. Then B can guarantee to narrow
the number of possibilities for x with his questions to at most d
distinct values if and only if a (k , d + 1)-tree exists, that is, if

d ' 2k+1

ek (1 + o(1)).

Tibor Szabó Construction and Applications of (k, d)-trees

Problem 3, 2012 International Mathematics Olympiad

Instead of limiting the total number of lies, now the number of
consecutive lies is limited: A is not allowed to lie k consecutive
times
This restriction on the lies is not enough for B to find the value x
with certainty, but he will be able to narrow the set of possibilities.
The IMO problem asked for estimates on how small B can
guarantee this set of possibilities will eventually be.

Theorem

(Gebauer-Sz.-Tardos) Let N > d and k be positive integers.
Assume A and B play the game in which A thinks of an element
x ∈ [N] and then answers an arbitrary number of B’s questions of
the form ”Is x ∈ S?”. Assume further that A is allowed to lie, but
never to k consecutive questions. Then B can guarantee to narrow
the number of possibilities for x with his questions to at most d
distinct values if and only if a (k , d + 1)-tree exists, that is, if

d ' 2k+1

ek (1 + o(1)).

Tibor Szabó Construction and Applications of (k, d)-trees

Tenure Game (J. Spencer)

Two players: the (good) chairman of the department, and the
(vicious) dean of the school
The pieces: d non-tenured faculty of the department each at one
of k pre-tenured rungs
Winner: The chairman if a faculty is promoted to tenure,
otherwise the dean. (A non-tenured faculty becomes tenured if she
has rung k and is promoted.)
Procedure: Once each year, the chairman proposes to the dean a
subset S of the non-tenured faculty to be promoted by one rung.
The dean has two choices: either he accepts the suggestion of the
chairman, promotes everybody in S by one rung and fires
everybody else, or he does the complete opposite: fires everybody
in S and promotes everybody else by one rung.

If all d faculties are at rung 1, then chairman wins iff k ≤ blog dc.

Tibor Szabó Construction and Applications of (k, d)-trees

European Tenure Game (B. Doerr)

Modified Rules: the non-promoted part of the non-tenured
faculty is not fired, rather demoted back to rung 1. Assume that
all non-tenured faculty are at the lowest rung in the beginning For
fixed d let vd stand for the largest number k of rungs such that
the chairman wins.

Doerr (2004) showed

blog d + log log d + o(1)c ≤ vd ≤ blog d + log log d + 1.73 + o(1)c.

Theorem

(Gebauer-Sz.-Tardos) The chairman wins the European Tenure
Game with d faculty and k rungs if and only if there exists a
(k, d)-tree. In particular,

vd = blog d + log log d + log e − 1 + o(1)c.

Tibor Szabó Construction and Applications of (k, d)-trees

The construction

How to construct (k , d)-trees?

Tibor Szabó Construction and Applications of (k, d)-trees

Leaf-vectors

(x0, x1, . . . , xi, . . . , xk)

leaf-descendants at dist. i

(x′0, x
′
1, . . . , x

′
i, . . . , x

′
k)

(0, x0 + x′0, x1 + x′1, . . . , xk−1 + x′k−1)

∑
xi ≤ d

Tibor Szabó Construction and Applications of (k, d)-trees

Leaf-vectors

(x0, x1, . . . , xi, . . . , xk)

leaf-descendants at dist. i

(x′0, x
′
1, . . . , x

′
i, . . . , x

′
k)

(0, x0 + x′0, x1 + x′1, . . . , xk−1 + x′k−1)

∑
xi ≤ d

Tibor Szabó Construction and Applications of (k, d)-trees

Leaf-vectors

(x0, x1, . . . , xi, . . . , xk)

leaf-descendants at dist. i

(x′0, x
′
1, . . . , x

′
i, . . . , x

′
k)

(0, x0 + x′0, x1 + x′1, . . . , xk−1 + x′k−1)

∑
xi ≤ d

Tibor Szabó Construction and Applications of (k, d)-trees

Leaf-vectors

(x0, x1, . . . , xi, . . . , xk)

leaf-descendants at dist. i

(x′0, x
′
1, . . . , x

′
i, . . . , x

′
k)

(0, x0 + x′0, x1 + x′1, . . . , xk−1 + x′k−1)

∑
xi ≤ d

Tibor Szabó Construction and Applications of (k, d)-trees

Parents and children

Building the tree from top to bottom by ”distributing the debt”
The Fair — SPLIT

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

(x0, x1, . . . , xk)

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

Tibor Szabó Construction and Applications of (k, d)-trees

Parents and children

Building the tree from top to bottom by ”distributing the debt”
The Fair — SPLIT

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

(x0, x1, . . . , xk)

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

Tibor Szabó Construction and Applications of (k, d)-trees

Parents and children

Building the tree from top to bottom by ”distributing the debt”
The Fair — SPLIT

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

(x0, x1, . . . , xk)

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

The Unfair — CUT

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

(x0, x1, . . . , xk)

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

Tibor Szabó Construction and Applications of (k, d)-trees

Parents and children

Building the tree from top to bottom by ”distributing the debt”
The Fair — SPLIT

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

(x0, x1, . . . , xk)

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

The Unfair — CUT

(x1, . . . , xr, 0, . . . , 0)

(x0, x1, . . . , xk)

(0, . . . , 0, xr+1, . . . , xk, 0)

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-constructible leaf-vectors

For the leaf-vector ~̀
w = (x0, x1, . . . , xk) of any vertex w of a

(k , d)-tree we have | ~̀w | :=
∑

xi ≤ d

Def. For a vector ~x with |~x | ≤ d we say that a tree T with root r
is a (k , d ,~x)-tree if

~̀
r ≤ ~x (coordinatewise)

every vertex has ≤ d leaf-descendants of distance ≤ k

Def. A vector ~x is (k , d)-constructible if there is a (k , d ,~x)-tree

Observation

There is a (k , d)-tree ⇔ (0, 0, . . . , 0) is (k , d)-constructible

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-constructible leaf-vectors

For the leaf-vector ~̀
w = (x0, x1, . . . , xk) of any vertex w of a

(k , d)-tree we have | ~̀w | :=
∑

xi ≤ d

Def. For a vector ~x with |~x | ≤ d we say that a tree T with root r
is a (k , d ,~x)-tree if

~̀
r ≤ ~x (coordinatewise)

every vertex has ≤ d leaf-descendants of distance ≤ k

Def. A vector ~x is (k , d)-constructible if there is a (k , d ,~x)-tree

Observation

There is a (k , d)-tree ⇔ (0, 0, . . . , 0) is (k , d)-constructible

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-constructible leaf-vectors

For the leaf-vector ~̀
w = (x0, x1, . . . , xk) of any vertex w of a

(k , d)-tree we have | ~̀w | :=
∑

xi ≤ d

Def. For a vector ~x with |~x | ≤ d we say that a tree T with root r
is a (k , d ,~x)-tree if

~̀
r ≤ ~x (coordinatewise)

every vertex has ≤ d leaf-descendants of distance ≤ k

Def. A vector ~x is (k , d)-constructible if there is a (k , d ,~x)-tree

Observation

There is a (k , d)-tree ⇔ (0, 0, . . . , 0) is (k , d)-constructible

Tibor Szabó Construction and Applications of (k, d)-trees

(k , d)-constructible leaf-vectors

For the leaf-vector ~̀
w = (x0, x1, . . . , xk) of any vertex w of a

(k , d)-tree we have | ~̀w | :=
∑

xi ≤ d

Def. For a vector ~x with |~x | ≤ d we say that a tree T with root r
is a (k , d ,~x)-tree if

~̀
r ≤ ~x (coordinatewise)

every vertex has ≤ d leaf-descendants of distance ≤ k

Def. A vector ~x is (k , d)-constructible if there is a (k , d ,~x)-tree

Observation

There is a (k , d)-tree ⇔ (0, 0, . . . , 0) is (k , d)-constructible

Tibor Szabó Construction and Applications of (k, d)-trees

Payoff Lemma

Some vectors that are (k, 2i)-constructible:

Tibor Szabó Construction and Applications of (k, d)-trees

Payoff Lemma

Some vectors that are (k, 2i)-constructible:

k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Tibor Szabó Construction and Applications of (k, d)-trees

Payoff Lemma

Some vectors that are (k, 2i)-constructible:

k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Tibor Szabó Construction and Applications of (k, d)-trees

Payoff Lemma

Some vectors that are (k, 2i)-constructible:

k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Tibor Szabó Construction and Applications of (k, d)-trees

Payoff Lemma

Some vectors that are (k, 2i)-constructible:

k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Tibor Szabó Construction and Applications of (k, d)-trees

Payoff Lemma

Some vectors that are (k, 2i)-constructible:

k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Def. weight of ~x := w(~x) :=
k∑

i=0

xi
2i

Tibor Szabó Construction and Applications of (k, d)-trees

Payoff Lemma

Some vectors that are (k, 2i)-constructible:

k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Def. weight of ~x := w(~x) :=
k∑

i=0

xi
2i

Lemma (Payoff Lemma)

Let |~x | ≤ d. If w(~x) ≥ 1, then ~x is (k , d)-constructible.

Inverse of Kraft’s Inequality

Tibor Szabó Construction and Applications of (k, d)-trees

The Gebauer-trees

For simplicity assume that d = 2s+1 is a power of 2.
Then

(
0, . . . , 0, 1, 2, 4, . . . , d4 ,

d
2

)
is (k, d)-constructible if

s+1∑

i=1

d/2i

2k+1−i = (s + 1)
d

2k+1
≥ 1

That is, when d log2 d ≥ 2k+1. Holds for d ≈ 2k+1

k .

Tibor Szabó Construction and Applications of (k, d)-trees

The Gebauer-trees

For simplicity assume that d = 2s+1 is a power of 2.
Then

(
0, . . . , 0, 1, 2, 4, . . . , d4 ,

d
2

)
is (k, d)-constructible if

s+1∑

i=1

d/2i

2k+1−i = (s + 1)
d

2k+1
≥ 1

That is, when d log2 d ≥ 2k+1. Holds for d ≈ 2k+1

k .

k − log k + 1

(0, . . . , 0︸ ︷︷ ︸
log k

, 1, 2, . . . , 2
k

k)
val = (k + 2− log k) · 2k+1/k

leaf descendants ≤ 2 · 2k+1/k

⇒ Easy Criterion applies

(0, . . . , 0)

Tibor Szabó Construction and Applications of (k, d)-trees

The Gebauer-trees

For simplicity assume that d = 2s+1 is a power of 2.
Then

(
0, . . . , 0, 1, 2, 4, . . . , d4 ,

d
2

)
is (k, d)-constructible if

s+1∑

i=1

d/2i

2k+1−i = (s + 1)
d

2k+1
≥ 1

That is, when d log2 d ≥ 2k+1. Holds for d ≈ 2k+1

k .

k − log k + 1

(0, . . . , 0︸ ︷︷ ︸
log k

, 1, 2, . . . , 2
k

k)
val = (k + 2− log k) · 2k+1/k

leaf descendants ≤ 2k+1/k

⇒ Easy Criterion applies

(0, . . . , 0)

Tibor Szabó Construction and Applications of (k, d)-trees

First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector
(x0, x1, . . . , xr , xr+1, . . . , xk)?

Cut at SMALLEST coordinate r with
∑r−1

i=0
xi+1

2i
≥ 1; just enough

so Left Child (x1, x2, . . . , xr , 0, . . . , 0) can immediately pay off

Split Right Child (0, . . . , 0, xr+1, . . . , xk , 0) log2 xr+1 =: m-times
and HOPE that with

(
0, . . . , 0, xr+1

2m ,
xr+2

2m , . . . ,
xk
2m ,

d
2m ,

d
2m−1 , . . . ,

d
2

)

the situation is BETTER than with the parent.

Repeat this Operation ”Cut-and-Split then Left Child pays off”

Question Will the sequence of Right Child vectors ever converge
to one that can pay off?
How to analyse?

Tibor Szabó Construction and Applications of (k, d)-trees

First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector
(x0, x1, . . . , xr , xr+1, . . . , xk)?

Cut at SMALLEST coordinate r with
∑r−1

i=0
xi+1

2i
≥ 1; just enough

so Left Child (x1, x2, . . . , xr , 0, . . . , 0) can immediately pay off

Split Right Child (0, . . . , 0, xr+1, . . . , xk , 0) log2 xr+1 =: m-times
and HOPE that with

(
0, . . . , 0, xr+1

2m ,
xr+2

2m , . . . ,
xk
2m ,

d
2m ,

d
2m−1 , . . . ,

d
2

)

the situation is BETTER than with the parent.

Repeat this Operation ”Cut-and-Split then Left Child pays off”

Question Will the sequence of Right Child vectors ever converge
to one that can pay off?
How to analyse?

Tibor Szabó Construction and Applications of (k, d)-trees

First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector
(x0, x1, . . . , xr , xr+1, . . . , xk)?

Cut at SMALLEST coordinate r with
∑r−1

i=0
xi+1

2i
≥ 1; just enough

so Left Child (x1, x2, . . . , xr , 0, . . . , 0) can immediately pay off

Split Right Child (0, . . . , 0, xr+1, . . . , xk , 0) log2 xr+1 =: m-times
and HOPE that with

(
0, . . . , 0, xr+1

2m ,
xr+2

2m , . . . ,
xk
2m ,

d
2m ,

d
2m−1 , . . . ,

d
2

)

the situation is BETTER than with the parent.

Repeat this Operation ”Cut-and-Split then Left Child pays off”

Question Will the sequence of Right Child vectors ever converge
to one that can pay off?
How to analyse?

Tibor Szabó Construction and Applications of (k, d)-trees

First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector
(x0, x1, . . . , xr , xr+1, . . . , xk)?

Cut at SMALLEST coordinate r with
∑r−1

i=0
xi+1

2i
≥ 1; just enough

so Left Child (x1, x2, . . . , xr , 0, . . . , 0) can immediately pay off

Split Right Child (0, . . . , 0, xr+1, . . . , xk , 0) log2 xr+1 =: m-times
and HOPE that with

(
0, . . . , 0, xr+1

2m ,
xr+2

2m , . . . ,
xk
2m ,

d
2m ,

d
2m−1 , . . . ,

d
2

)

the situation is BETTER than with the parent.

Repeat this Operation ”Cut-and-Split then Left Child pays off”

Question Will the sequence of Right Child vectors ever converge
to one that can pay off?
How to analyse?

Tibor Szabó Construction and Applications of (k, d)-trees

First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector
(x0, x1, . . . , xr , xr+1, . . . , xk)?

Cut at SMALLEST coordinate r with
∑r−1

i=0
xi+1

2i
≥ 1; just enough

so Left Child (x1, x2, . . . , xr , 0, . . . , 0) can immediately pay off

Split Right Child (0, . . . , 0, xr+1, . . . , xk , 0) log2 xr+1 =: m-times
and HOPE that with

(
0, . . . , 0, xr+1

2m ,
xr+2

2m , . . . ,
xk
2m ,

d
2m ,

d
2m−1 , . . . ,

d
2

)

the situation is BETTER than with the parent.

Repeat this Operation ”Cut-and-Split then Left Child pays off”

Question Will the sequence of Right Child vectors ever converge
to one that can pay off?
How to analyse?

Tibor Szabó Construction and Applications of (k, d)-trees

Normalized analytic setting

Set d = 2
T · 2k

k . Eventually we want to get to T = e − ε.

ayoff: w(~x) ≥ 1

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)

Tibor Szabó Construction and Applications of (k, d)-trees

Normalized analytic setting

Set d = 2
T · 2k

k . Eventually we want to get to T = e − ε.

leaf-vector
~x =

(
0, . . . , 0, 1, . . . , d4 ,

d
2

)

Payoff: w(~x) ≥ 1

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)

Tibor Szabó Construction and Applications of (k, d)-trees

Normalized analytic setting

Set d = 2
T · 2k

k . Eventually we want to get to T = e − ε.

leaf-vector normalized leaf-vector
~x =

(
0, . . . , 0, 1, . . . , d4 ,

d
2

)
 ~y = (0, . . . , 0, 1, . . . , 1, 1)

 yi = xi
2k+1−i

d

Payoff: w(~x) ≥ 1

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)

Tibor Szabó Construction and Applications of (k, d)-trees

Normalized analytic setting

Set d = 2
T · 2k

k . Eventually we want to get to T = e − ε.

leaf-vector normalized leaf-vector leaf-function
~x =

(
0, . . . , 0, 1, . . . , d4 ,

d
2

)
 ~y = (0, . . . , 0, 1, . . . , 1, 1) f ≡ 1

 yi = xi
2k+1−i

d f : [0, 1]→ R

Payoff: w(~x) ≥ 1
∫ 1

0 f (x)dx ≥ T

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)

Tibor Szabó Construction and Applications of (k, d)-trees

Analytic Cut-and-Split

Let v ∈ (0, 1).
Operation Cut-at-v-and-Split
Input function f : [0, 1]→ R

Output
Left Child Right Child

fleft(x) =

{
2f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2f (x + v) x ∈ [0, 1− v)
1 x ∈ [1− v , 1]

↓ ↓

should pay off should be ”better” than parent

2

∫ v

0
f ≥ T does not mean ”greater integral”

Tibor Szabó Construction and Applications of (k, d)-trees

Analytic Cut-and-Split

Let v ∈ (0, 1).
Operation Cut-at-v-and-Split
Input function f : [0, 1]→ R
Output
Left Child Right Child

fleft(x) =

{
2f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2f (x + v) x ∈ [0, 1− v)
1 x ∈ [1− v , 1]

↓ ↓

should pay off should be ”better” than parent

2

∫ v

0
f ≥ T does not mean ”greater integral”

Tibor Szabó Construction and Applications of (k, d)-trees

Analytic Cut-and-Split

Let v ∈ (0, 1).
Operation Cut-at-v-and-Split
Input function f : [0, 1]→ R
Output
Left Child Right Child

fleft(x) =

{
2f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2f (x + v) x ∈ [0, 1− v)
1 x ∈ [1− v , 1]

↓ ↓

should pay off should be ”better” than parent

2

∫ v

0
f ≥ T does not mean ”greater integral”

Tibor Szabó Construction and Applications of (k, d)-trees

Where to cut?

We perform a series of Cut-and-Splits, cutting at
1− δ, 1− 2δ, . . . , 1− Nδ
for some CONSTANTS δ > 0 and integer N.

At the end of the process the integral of Right Child grows above
T = 2− ε and hence the process stops.

T = 2− ε is the limit of the simple Cut-and-Split.

Tibor Szabó Construction and Applications of (k, d)-trees

Where to cut?

We perform a series of Cut-and-Splits, cutting at
1− δ, 1− 2δ, . . . , 1− Nδ
for some CONSTANTS δ > 0 and integer N.

At the end of the process the integral of Right Child grows above
T = 2− ε and hence the process stops.

T = 2− ε is the limit of the simple Cut-and-Split.

Tibor Szabó Construction and Applications of (k, d)-trees

Where to cut?

We perform a series of Cut-and-Splits, cutting at
1− δ, 1− 2δ, . . . , 1− Nδ
for some CONSTANTS δ > 0 and integer N.

At the end of the process the integral of Right Child grows above
T = 2− ε and hence the process stops.

T = 2− ε is the limit of the simple Cut-and-Split.

Tibor Szabó Construction and Applications of (k, d)-trees

How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Easy
Criterion v2

Easy
Criterion v3

r

r

Tibor Szabó Construction and Applications of (k, d)-trees

How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Payoff
Lemma v2

Easy
Criterion v3

r

r

Tibor Szabó Construction and Applications of (k, d)-trees

How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Payoff
Lemma v2

Payoff
Lemma v3

r

r

Tibor Szabó Construction and Applications of (k, d)-trees

How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Payoff
Lemma v2

Payoff
Lemma v3

r

r

Tibor Szabó Construction and Applications of (k, d)-trees

How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Lemma v2

Payoff
Lemma v3

r

r

Payoff

Tibor Szabó Construction and Applications of (k, d)-trees

How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Lemma v2

Payoff
Lemma v3

r

r

Payoff

fleft(x) =

{
2r f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2r

2r−1 f (x + v) x ∈ [0, 1− v)

1 x ∈ [1− v , 1]

Tibor Szabó Construction and Applications of (k, d)-trees

How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Lemma v2

Payoff
Lemma v3

r

r

Payoff

fleft(x) =

{
2r f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2r

2r−1 f (x + v) x ∈ [0, 1− v)

1 x ∈ [1− v , 1]

↓ ↓

Payoff: 2r
∫ v

0
f ≥ T should be better than parent

Tibor Szabó Construction and Applications of (k, d)-trees

How to analyse?

Look at Right Child fright(x) after ”time” t F (t, x)
(after t/δ infinitesimally small cuts of length δ)

F (0, x) = 1 for all x ∈ [0, 1]

F (t, 1) = 1 for all t ≥ 0

WANT to pay off:

∫ 1

0
Fleft(t, x)dx ≈ 2rδF (t, 0) ≥ T

So let r ≈ log2
T

δF (t,0)
THEN:

Fright(t, x) ≈ F (t, x) · 2r

2r − 1
≈ F (t, x)

(
1 +

δF (t, 0)

T

)

That is F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

Tibor Szabó Construction and Applications of (k, d)-trees

How to analyse?

Look at Right Child fright(x) after ”time” t F (t, x)
(after t/δ infinitesimally small cuts of length δ)

F (0, x) = 1 for all x ∈ [0, 1]

F (t, 1) = 1 for all t ≥ 0

WANT to pay off:

∫ 1

0
Fleft(t, x)dx ≈ 2rδF (t, 0) ≥ T

So let r ≈ log2
T

δF (t,0)

THEN:

Fright(t, x) ≈ F (t, x) · 2r

2r − 1
≈ F (t, x)

(
1 +

δF (t, 0)

T

)

That is F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

Tibor Szabó Construction and Applications of (k, d)-trees

How to analyse?

Look at Right Child fright(x) after ”time” t F (t, x)
(after t/δ infinitesimally small cuts of length δ)

F (0, x) = 1 for all x ∈ [0, 1]

F (t, 1) = 1 for all t ≥ 0

WANT to pay off:

∫ 1

0
Fleft(t, x)dx ≈ 2rδF (t, 0) ≥ T

So let r ≈ log2
T

δF (t,0)
THEN:

Fright(t, x) ≈ F (t, x) · 2r

2r − 1
≈ F (t, x)

(
1 +

δF (t, 0)

T

)

That is F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

Tibor Szabó Construction and Applications of (k, d)-trees

A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �

Tibor Szabó Construction and Applications of (k, d)-trees

A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �

Tibor Szabó Construction and Applications of (k, d)-trees

A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T

∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �

Tibor Szabó Construction and Applications of (k, d)-trees

A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �

Tibor Szabó Construction and Applications of (k, d)-trees

A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �

Tibor Szabó Construction and Applications of (k, d)-trees

A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �

Tibor Szabó Construction and Applications of (k, d)-trees

A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �
Tibor Szabó Construction and Applications of (k, d)-trees

Open problems — The Neighborhood Conjecture

Def. Let D(k) be the largest integer such that for every k-uniform
hypergraph (X ,F) with ∆(F) ≤ D(k) Breaker has a winning
strategy.

Neighborhood Conjecture There is an ε > 0 such that
D(k) > (1 + ε)k .
More modest goal: D(k) > 0.51k
It is still possible that some ε = ε(k)→ 1 could be chosen.

Tibor Szabó Construction and Applications of (k, d)-trees

Open problems — The Neighborhood Conjecture

Def. Let D(k) be the largest integer such that for every k-uniform
hypergraph (X ,F) with ∆(F) ≤ D(k) Breaker has a winning
strategy.
Neighborhood Conjecture There is an ε > 0 such that
D(k) > (1 + ε)k .

More modest goal: D(k) > 0.51k
It is still possible that some ε = ε(k)→ 1 could be chosen.

Tibor Szabó Construction and Applications of (k, d)-trees

Open problems — The Neighborhood Conjecture

Def. Let D(k) be the largest integer such that for every k-uniform
hypergraph (X ,F) with ∆(F) ≤ D(k) Breaker has a winning
strategy.
Neighborhood Conjecture There is an ε > 0 such that
D(k) > (1 + ε)k .
More modest goal: D(k) > 0.51k

It is still possible that some ε = ε(k)→ 1 could be chosen.

Tibor Szabó Construction and Applications of (k, d)-trees

Open problems — The Neighborhood Conjecture

Def. Let D(k) be the largest integer such that for every k-uniform
hypergraph (X ,F) with ∆(F) ≤ D(k) Breaker has a winning
strategy.
Neighborhood Conjecture There is an ε > 0 such that
D(k) > (1 + ε)k .
More modest goal: D(k) > 0.51k
It is still possible that some ε = ε(k)→ 1 could be chosen.

Tibor Szabó Construction and Applications of (k, d)-trees

