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Coloring hypergraphs

k-uniform hypergraph (X ,F): X is a set, F ⊆
(X
k

)

F is 2-colorable if there is a function (a ”coloring”)
f : X → {red, blue} such that no edge A ∈ F is monochromatic

Claim If |F| < 2k−1, then F is 2-colorable.

Proof. Random 2-coloring. Color all x ∈ X independently,
uniformly:

Pr [f (x) = red ] =
1

2
= Pr [f (x) = blue].

For A ∈ F , let YA = 1 if A is monochromatic, otherwise YA = 0.

E[#of m.c. edges of F ] = E

[∑

A∈F
YA

]
=
∑

A∈F
EYA =

|F|
2k−1

< 1

Hence, for sure, THERE EXISTS 2-coloring without m.c. edges
(”proper 2-coloring”) �
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Derandomization — Games

Question: Is there an (efficient, deterministic) algorithm which
finds a proper 2-coloring?

YES!

 Positional games
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Tibor Szabó Construction and Applications of (k, d)-trees



Positional Games

Maker-Breaker Game (X ,F):
Board: set X ; family of winning sets: F ⊂ 2X

Players: Maker and Breaker
Play: players alternately occupy elements of X ; Maker starts
Winner: Maker if he occupies a winning set completely

Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:
1) Exactly one of the players has a winning strategy.
2) Given F , it is clear (at least to an all-powerful computer) which
of them has a winning strategy.
Terminology: F is Maker’s win, F is Breaker’s win

Proposition: F is a Breaker’s win ⇒ F is 2-colorable

Erdős-Selfridge: |F| < 2k−1 ⇒ Breaker has a winning strategy.
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Lovász Local Lemma – Neighborhood Conjecture

LLL. A1,A2, . . . ,Ak events in some probability space, such that
(1) every Ai is mutually independent from all but d other events
(2) p ≥ Pr [Ai ] for every i

If ep(d + 1) ≤ 1 then Pr [∧ki=1Ai ] > 0.

Application of LLL: ∆(L(F)) ≤ 2k−1

e − 1 ⇒ F is 2-colorable.

∆(F) ≤ 2k−1

ek ⇒ F is 2-colorable.

Moser-Tardos (2010) There is a (simple) algorithm to efficiently
2-color such an F .

Neighborhood Conjecture [Beck]

∆(L(F)) < 2k−1 ⇒ F is Breaker’s win.
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Counterexamples to the strongest form of NC

Theorem (Gebauer, ’09)

(i) For every large enough k, there is a k-uniform Maker’s win
hypergraph H with ∆(L(H)) ≤ 0.75 · 2k−1

(ii) For every large enough k there is a k-uniform Maker’s win

hypergraph F with ∆(F) < 0.5 · 2k

k .

D(k) := min{∆(F) : k-uniform, Maker’s win F}
Best know lower bound D(k) > bk2 c.
Deciding whether D(k) = bk2 c+ 1 already seems to need new ideas.
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs

2

7

4

9
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5
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15 16
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6

10 14

22

k = 3 :

k

8

1

3
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs
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10 14

22

k = 3 :

k

8

1

3

vertices ! elements of the board X

Tibor Szabó Construction and Applications of (k, d)-trees



Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs

2

4

9

17

5

11

19

13

21
15 16
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12
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6

10 14

22

k = 3 :

k

8

20

1

3

7

vertices ! elements of the board X
winning sets ! end-paths
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs

1 2

7

4

9

17

5

11

3

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k

8

20

3

F := {{1, 3, 7}}
vertices ! elements of the board X
winning sets ! end-paths
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs

1 2

4

9
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5

11

3

19

13

21
15

8

16
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12

20

6

10 14

22

k = 3 :

k

18 21

1212 147

F := {{1, 3, 7}, {3, 8, 15}}
vertices ! elements of the board X
winning sets ! end-paths
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs
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F := {{1, 3, 7}, {3, 8, 15}, {3, 8, 16}}
vertices ! elements of the board X
winning sets ! end-paths
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full binary trees  k-uniform hypergraphs
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F := {{1, 3, 7}, {3, 8, 15}, {3, 8, 16}, . . .}
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Game-hypergraphs from trees

full binary trees  k-uniform hypergraphs

1 2

7

4

9

17

5

11

3

19

13

21
15 16

18

12

20

6

10 14

22

k = 3 :

k 3

8

20

F := {{1, 3, 7}, {3, 8, 15}, {3, 8, 16}, . . .}
vertices ! elements of the board X
winning sets ! end-paths

Proposition

Maker has a winning strategy on the hypergraph F .
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(k , d)-trees

Def. (k , d)-tree

Every leaf has depth ≥ k
Every vertex has ≤ d leaf-descendants of distance ≤ k

A (3, 6)-tree
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(k , d)-trees

Def. (k , d)-tree

Every leaf has depth ≥ k
Every vertex has ≤ d leaf-descendants of distance ≤ k

A (3, 6)-tree

k = 3

Proposition

There is a (k − 1, d)-tree ⇒ D(k) ≤ d
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Constructing (k , d)-trees

Theorem (Gebauer - Sz. - Tardos, 2011)

There exists a (k , d)-tree with

d =

(
2

e
+ o(1)

)
2k

k
.

Corollary

For every positive integer k there exists Maker’s win k-uniform
hypergraphs H and H′, such that

(i) ∆(L(H)) =
(

1 + O
(

1√
k

))
2k−1

e ,

(ii) ∆(H) =
(

1 + O
(

1√
k

))
2k

ek .
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Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let F be a boolean CNF-formula such that
every clause contains exactly k distinct literals. If every variable
occurs in less than 1

e · 2k

k , then F is satisfiable.

Def. (k , s)-CNF formula

every clause contains exactly k distinct literals
every variable occurs in at most s clauses

Extremal question: How large is

f (k) := max{s : every (k , s)-SAT is satisfiable}??

Known values: f (3) = 3, f (4) = 4, f (5) =?
f is NOT known to be computable

Upper bounds: k · 2k

k trivial

k0.74 · 2k

k Savicky-Sgall, ’00

log k · 2k

k Hoory-Szeider, ’06

1 · 2k

k Gebauer, ’09
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Formulas from trees

full binary trees  k-CNF formulas
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k = 3 :

k
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ḡ
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c

b̄
e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī
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Formulas from trees

full binary trees  k-CNF formulas

a ā

c

b̄
e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a)
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths
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Formulas from trees

full binary trees  k-CNF formulas

a ā

c

b̄
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f

g
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j
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c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a) ∧ (d ∨ c̄ ∨ b)
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths
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Formulas from trees

full binary trees  k-CNF formulas

a ā
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Formulas from trees

full binary trees  k-CNF formulas

a ā

c

b̄

e

f

g

h

b

i

j

md

c̄

d̄ f̄

h̄

ī

ḡ

ē j̄

m̄

k = 3 :

k

F = (c ∨ b ∨ a) ∧ (d ∨ c̄ ∨ b) ∧ (d̄ ∨ c̄ ∨ b) ∧ . . .
vertices ! distinct literals
siblings ! opposite literals
clauses ! end-paths

Proposition

The obtained formula is NOT satisfiable
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Asymptotics via (k , d)-trees

Proposition

There is a (k , d)-tree ⇒ f (k) < d

Theorem (Gebauer-Sz.-Tardos, ’11)

f (k) =

(
2

e
+ o(1)

)
2k

k

Def. The degree of clause C in formula F is the number of those
clauses of F that share a variable with C .
D(F ) denotes the largest of all clause-degrees in F .

l(k) := max{s : every k-CNF formula F with D(F ) ≤ s is saitisfiable}

Theorem (Gebauer-Sz.-Tardos, ’11)

l(k) =

(
1

e
+ o(1)

)
2k
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Tibor Szabó Construction and Applications of (k, d)-trees



Asymptotics via (k , d)-trees

Proposition

There is a (k , d)-tree ⇒ f (k) < d

Theorem (Gebauer-Sz.-Tardos, ’11)

f (k) =

(
2

e
+ o(1)

)
2k

k

Def. The degree of clause C in formula F is the number of those
clauses of F that share a variable with C .
D(F ) denotes the largest of all clause-degrees in F .

l(k) := max{s : every k-CNF formula F with D(F ) ≤ s is saitisfiable}

Theorem (Gebauer-Sz.-Tardos, ’11)

l(k) =

(
1

e
+ o(1)

)
2k
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Complexity hardness jump

(k , s)-SAT Problem

• Input: a (k , s)-CNF F
• Decide whether F is satisfiable

Hardness Jump [Tovey ’84; Kratochv́ıl-Savický-Tuza ’93]

• (k, 1)-SAT trivial
• (k, 2)-SAT trivial

...
...

• (k, f (k))-SAT trivial
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
• (k, f (k) + 1)-SAT NP-hard

...
...

• (k,∞)-SAT NP-hard

Tibor Szabó Construction and Applications of (k, d)-trees



Complexity hardness jump

(k , s)-SAT Problem

• Input: a (k , s)-CNF F
• Decide whether F is satisfiable

Hardness Jump [Tovey ’84; Kratochv́ıl-Savický-Tuza ’93]
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Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables
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The Lopsided LLL

Lemma

(Lopsided Local Lemma) Let {AC}C∈I be a finite set of events in
some probability space. Let Γ(C ) be a subset of I for each C ∈ I
such that for every subset J ⊆ I \ (Γ(C ) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC ).

Suppose there are real numbers 0 < xC < 1 for C ∈ I such that for
every C ∈ I we have

Pr(AC ) ≤ xC
∏

D∈Γ(C)

(1− xD).

Then
Pr(∧C∈I ĀC ) > 0.
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Improved lower bound with Lopsided LLL

For LLL: set every variable x to true with probability Px = 1
2 .

Works for every (k , s)-CNF formula F with s =
⌊

1
e · 2k

k

⌋
.

How to improve? Take the particular formula F into account
[idea of Berman-Karpinski-Scott, ’04]
LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability Px = 1
2 + 2dx̄−s

2sk ,
where for literal v let dv := # of occurrences of v in F .
Surprise: The more a variable appears in the clauses of F as
non-negated, the less likely we will set it to true.

Works for every (k , s)-CNF formula F with s =
⌊

2
e · 2k

k+1

⌋
.
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Tibor Szabó Construction and Applications of (k, d)-trees



Searching with lies

Liar Game Player A thinks of an integer x ∈ [N] and Player B
tries to figure it out by asking Yes/No questions of the sort ”Is
x ∈ S?”, where S is a subset of [N] picked by B.

A is allowed to lie. However for B to have a chance to be
successful, but the lies have to come in some controlled fashion.

Ulam’s problem for binary search with k lies: A is allowed to
lie a total of k times What is the smallest number q(N, k) of
questions that allows B to figure out the answer.
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Problem 3, 2012 International Mathematics Olympiad

Instead of limiting the total number of lies, now the number of
consecutive lies is limited: A is not allowed to lie k consecutive
times
This restriction on the lies is not enough for B to find the value x
with certainty, but he will be able to narrow the set of possibilities.
The IMO problem asked for estimates on how small B can
guarantee this set of possibilities will eventually be.

Theorem

(Gebauer-Sz.-Tardos) Let N > d and k be positive integers.
Assume A and B play the game in which A thinks of an element
x ∈ [N] and then answers an arbitrary number of B’s questions of
the form ”Is x ∈ S?”. Assume further that A is allowed to lie, but
never to k consecutive questions. Then B can guarantee to narrow
the number of possibilities for x with his questions to at most d
distinct values if and only if a (k , d + 1)-tree exists, that is, if

d ' 2k+1

ek (1 + o(1)).
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Tenure Game (J. Spencer)

Two players: the (good) chairman of the department, and the
(vicious) dean of the school
The pieces: d non-tenured faculty of the department each at one
of k pre-tenured rungs
Winner: The chairman if a faculty is promoted to tenure,
otherwise the dean. (A non-tenured faculty becomes tenured if she
has rung k and is promoted.)
Procedure: Once each year, the chairman proposes to the dean a
subset S of the non-tenured faculty to be promoted by one rung.
The dean has two choices: either he accepts the suggestion of the
chairman, promotes everybody in S by one rung and fires
everybody else, or he does the complete opposite: fires everybody
in S and promotes everybody else by one rung.

If all d faculties are at rung 1, then chairman wins iff k ≤ blog dc.
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European Tenure Game (B. Doerr)

Modified Rules: the non-promoted part of the non-tenured
faculty is not fired, rather demoted back to rung 1. Assume that
all non-tenured faculty are at the lowest rung in the beginning For
fixed d let vd stand for the largest number k of rungs such that
the chairman wins.

Doerr (2004) showed

blog d + log log d + o(1)c ≤ vd ≤ blog d + log log d + 1.73 + o(1)c.

Theorem

(Gebauer-Sz.-Tardos) The chairman wins the European Tenure
Game with d faculty and k rungs if and only if there exists a
(k, d)-tree. In particular,

vd = blog d + log log d + log e − 1 + o(1)c.
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The construction

How to construct (k , d)-trees?
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Leaf-vectors

(x0, x1, . . . , xi, . . . , xk)

# leaf-descendants at dist. i

(x′0, x
′
1, . . . , x

′
i, . . . , x

′
k)

(0, x0 + x′0, x1 + x′1, . . . , xk−1 + x′k−1)

∑
xi ≤ d
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Tibor Szabó Construction and Applications of (k, d)-trees



Leaf-vectors

(x0, x1, . . . , xi, . . . , xk)

# leaf-descendants at dist. i

(x′0, x
′
1, . . . , x

′
i, . . . , x

′
k)

(0, x0 + x′0, x1 + x′1, . . . , xk−1 + x′k−1)

∑
xi ≤ d
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Parents and children

Building the tree from top to bottom by ”distributing the debt”
The Fair — SPLIT

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

(x0, x1, . . . , xk)

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)
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Parents and children

Building the tree from top to bottom by ”distributing the debt”
The Fair — SPLIT

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

(x0, x1, . . . , xk)

(x12 ,
x2
2 , . . . ,

xk
2 ,

d
2)

The Unfair — CUT

(x1, . . . , xr, 0, . . . , 0)

(x0, x1, . . . , xk)

(0, . . . , 0, xr+1, . . . , xk, 0)
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(k , d)-constructible leaf-vectors

For the leaf-vector ~̀
w = (x0, x1, . . . , xk) of any vertex w of a

(k , d)-tree we have | ~̀w | :=
∑

xi ≤ d

Def. For a vector ~x with |~x | ≤ d we say that a tree T with root r
is a (k , d ,~x)-tree if

~̀
r ≤ ~x (coordinatewise)

every vertex has ≤ d leaf-descendants of distance ≤ k

Def. A vector ~x is (k , d)-constructible if there is a (k , d ,~x)-tree

Observation

There is a (k , d)-tree ⇔ (0, 0, . . . , 0) is (k , d)-constructible
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Payoff Lemma

Some vectors that are (k, 2i )-constructible:
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k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Def. weight of ~x := w(~x) :=
k∑

i=0

xi
2i
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Payoff Lemma

Some vectors that are (k, 2i )-constructible:

k

(1, 0, . . . , 0) (0, 2, 0 . . . , 0) (0, 0, 4, 0, . . . , 0) (0, . . . , 0, 2k)

Def. weight of ~x := w(~x) :=
k∑

i=0

xi
2i

Lemma (Payoff Lemma)

Let |~x | ≤ d. If w(~x) ≥ 1, then ~x is (k , d)-constructible.

Inverse of Kraft’s Inequality
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The Gebauer-trees

For simplicity assume that d = 2s+1 is a power of 2.
Then

(
0, . . . , 0, 1, 2, 4, . . . , d4 ,

d
2

)
is (k, d)-constructible if

s+1∑

i=1

d/2i

2k+1−i = (s + 1)
d

2k+1
≥ 1

That is, when d log2 d ≥ 2k+1. Holds for d ≈ 2k+1

k .
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For simplicity assume that d = 2s+1 is a power of 2.
Then

(
0, . . . , 0, 1, 2, 4, . . . , d4 ,

d
2

)
is (k, d)-constructible if

s+1∑

i=1

d/2i

2k+1−i = (s + 1)
d

2k+1
≥ 1

That is, when d log2 d ≥ 2k+1. Holds for d ≈ 2k+1

k .

k − log k + 1

(0, . . . , 0︸ ︷︷ ︸
log k

, 1, 2, . . . , 2
k

k )
val = (k + 2− log k) · 2k+1/k

# leaf descendants ≤ 2 · 2k+1/k

⇒ Easy Criterion applies

(0, . . . , 0)
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k .

k − log k + 1

(0, . . . , 0︸ ︷︷ ︸
log k

, 1, 2, . . . , 2
k

k )
val = (k + 2− log k) · 2k+1/k

# leaf descendants ≤ 2k+1/k

⇒ Easy Criterion applies

(0, . . . , 0)
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First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector
(x0, x1, . . . , xr , xr+1, . . . , xk)?

Cut at SMALLEST coordinate r with
∑r−1

i=0
xi+1

2i
≥ 1; just enough

so Left Child (x1, x2, . . . , xr , 0, . . . , 0) can immediately pay off

Split Right Child (0, . . . , 0, xr+1, . . . , xk , 0) log2 xr+1 =: m-times
and HOPE that with

(
0, . . . , 0, xr+1

2m ,
xr+2

2m , . . . ,
xk
2m ,

d
2m ,

d
2m−1 , . . . ,

d
2

)

the situation is BETTER than with the parent.

Repeat this Operation ”Cut-and-Split then Left Child pays off”

Question Will the sequence of Right Child vectors ever converge
to one that can pay off?
How to analyse?
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Normalized analytic setting

Set d = 2
T · 2k

k . Eventually we want to get to T = e − ε.

ayoff: w(~x) ≥ 1

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)
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k . Eventually we want to get to T = e − ε.

leaf-vector
~x =

(
0, . . . , 0, 1, . . . , d4 ,

d
2

)

Payoff: w(~x) ≥ 1

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)
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T · 2k

k . Eventually we want to get to T = e − ε.

leaf-vector normalized leaf-vector
~x =

(
0, . . . , 0, 1, . . . , d4 ,

d
2

)
 ~y = (0, . . . , 0, 1, . . . , 1, 1)

 yi = xi
2k+1−i

d

Payoff: w(~x) ≥ 1

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)
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Normalized analytic setting

Set d = 2
T · 2k

k . Eventually we want to get to T = e − ε.

leaf-vector normalized leaf-vector leaf-function
~x =

(
0, . . . , 0, 1, . . . , d4 ,

d
2

)
 ~y = (0, . . . , 0, 1, . . . , 1, 1)  f ≡ 1

 yi = xi
2k+1−i

d f : [0, 1]→ R

Payoff: w(~x) ≥ 1
∫ 1

0 f (x)dx ≥ T

For the leaf-function ignore o(k) long segments of the normalized
leaf-vector.
(Like the Θ(log k) long segment of 0 at the beginning.)
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Analytic Cut-and-Split

Let v ∈ (0, 1).
Operation Cut-at-v-and-Split
Input function f : [0, 1]→ R

Output
Left Child Right Child

fleft(x) =

{
2f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2f (x + v) x ∈ [0, 1− v)
1 x ∈ [1− v , 1]

↓ ↓

should pay off should be ”better” than parent

2

∫ v

0
f ≥ T does not mean ”greater integral”
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Where to cut?

We perform a series of Cut-and-Splits, cutting at
1− δ, 1− 2δ, . . . , 1− Nδ
for some CONSTANTS δ > 0 and integer N.

At the end of the process the integral of Right Child grows above
T = 2− ε and hence the process stops.

T = 2− ε is the limit of the simple Cut-and-Split.
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How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Easy
Criterion v2

Easy
Criterion v3

r

r
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How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Lemma v2

Payoff
Lemma v3

r

r

Payoff

fleft(x) =

{
2r f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2r

2r−1 f (x + v) x ∈ [0, 1− v)

1 x ∈ [1− v , 1]
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How to get to T = e − ε? — r -deep cuts

(x0, x1, . . . , xk)v1 :=

Lemma v2

Payoff
Lemma v3

r

r

Payoff

fleft(x) =

{
2r f (x) x ∈ [0, v)
0 x ∈ [v , 1]

fright(x) =

{
2r

2r−1 f (x + v) x ∈ [0, 1− v)

1 x ∈ [1− v , 1]

↓ ↓

Payoff: 2r
∫ v

0
f ≥ T should be better than parent
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How to analyse?

Look at Right Child fright(x) after ”time” t  F (t, x)
(after t/δ infinitesimally small cuts of length δ)

F (0, x) = 1 for all x ∈ [0, 1]

F (t, 1) = 1 for all t ≥ 0

WANT to pay off:

∫ 1

0
Fleft(t, x)dx ≈ 2rδF (t, 0) ≥ T

So let r ≈ log2
T

δF (t,0)
THEN:

Fright(t, x) ≈ F (t, x) · 2r

2r − 1
≈ F (t, x)

(
1 +

δF (t, 0)

T

)

That is F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)
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THEN:

Fright(t, x) ≈ F (t, x) · 2r

2r − 1
≈ F (t, x)

(
1 +

δF (t, 0)

T

)

That is F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)
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A differential equation

From the previous page: F (t + δ, x − δ) ≈ F (t, x)
(

1 + δF (t,0)
T

)

For some time s, introduce Fs(t) := F (t, s − t).
Rewritten, for any s − 1 ≤ t ≤ s:

Fs(t + δ) ≈ Fs(t)

(
1 +

δF (t, 0)

T

)

F ′s(t) ≈ Fs(t + δ)− Fs(t)

δ
≈ Fs(t)

F (t, 0)

T∫ s

s−1

F ′s(t)

Fs(t)
dt ≈ 1

T

∫ s

s−1
F (t, 0)dt

ln Fs(s)− ln Fs(s − 1) '
F (s − 1, 0)

T

ln F (s, 0) '
F (s − 1, 0)

T

If F (s, 0) converged to a finite limit a, we would have T ≥ a
ln a ≥ e.

So
∫ 1

0 F (s, x)dx ≈ F (s, 0)→∞ and the right child pays off. �
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Open problems — The Neighborhood Conjecture

Def. Let D(k) be the largest integer such that for every k-uniform
hypergraph (X ,F) with ∆(F) ≤ D(k) Breaker has a winning
strategy.

Neighborhood Conjecture There is an ε > 0 such that
D(k) > (1 + ε)k .
More modest goal: D(k) > 0.51k
It is still possible that some ε = ε(k)→ 1 could be chosen.
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Tibor Szabó Construction and Applications of (k, d)-trees



Open problems — The Neighborhood Conjecture

Def. Let D(k) be the largest integer such that for every k-uniform
hypergraph (X ,F) with ∆(F) ≤ D(k) Breaker has a winning
strategy.
Neighborhood Conjecture There is an ε > 0 such that
D(k) > (1 + ε)k .
More modest goal: D(k) > 0.51k

It is still possible that some ε = ε(k)→ 1 could be chosen.
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