Construction and Applications of (k, d)-trees

Tibor Szabó

FU Berlin

November 5th, 2012

Tibor Szabó Construction and Applications of (k, d)-trees

3 N

k-uniform hypergraph (X, \mathcal{F}) : X is a set, $\mathcal{F} \subseteq {X \choose k}$

∃ >

k-uniform hypergraph (X, \mathcal{F}) : X is a set, $\mathcal{F} \subseteq {X \choose k}$

 \mathcal{F} is 2-colorable if there is a function (a "coloring")

 $f: X \to {\text{red, blue}}$ such that no edge $A \in \mathcal{F}$ is monochromatic

k-uniform hypergraph (X, \mathcal{F}) : X is a set, $\mathcal{F} \subseteq {X \choose k}$

 \mathcal{F} is 2-colorable if there is a function (a "coloring")

 $f: X \to {\text{red, blue}}$ such that no edge $A \in \mathcal{F}$ is monochromatic

Claim If $|\mathcal{F}| < 2^{k-1}$, then \mathcal{F} is 2-colorable.

k-uniform hypergraph (X, \mathcal{F}) : X is a set, $\mathcal{F} \subseteq {X \choose k}$

 \mathcal{F} is 2-colorable if there is a function (a "coloring")

 $f: X \to {\text{red, blue}}$ such that no edge $A \in \mathcal{F}$ is monochromatic

Claim If $|\mathcal{F}| < 2^{k-1}$, then \mathcal{F} is 2-colorable.

Proof. Random 2-coloring. Color all $x \in X$ independently, uniformly:

$$Pr[f(x) = red] = \frac{1}{2} = Pr[f(x) = blue].$$

k-uniform hypergraph (X, \mathcal{F}) : X is a set, $\mathcal{F} \subseteq {X \choose k}$

 \mathcal{F} is 2-colorable if there is a function (a "coloring")

 $f: X \to {\text{red, blue}}$ such that no edge $A \in \mathcal{F}$ is monochromatic

Claim If $|\mathcal{F}| < 2^{k-1}$, then \mathcal{F} is 2-colorable.

Proof. Random 2-coloring. Color all $x \in X$ independently, uniformly:

$$Pr[f(x) = red] = \frac{1}{2} = Pr[f(x) = blue].$$

For $A \in \mathcal{F}$, let $Y_A = 1$ if A is monochromatic, otherwise $Y_A = 0$.

$$\mathbb{E}[\#\text{of m.c. edges of } \mathcal{F}] = \mathbb{E}\left[\sum_{\mathcal{A} \in \mathcal{F}} Y_{\mathcal{A}}\right] = \sum_{\mathcal{A} \in \mathcal{F}} \mathbb{E}Y_{\mathcal{A}} = \frac{|\mathcal{F}|}{2^{k-1}} < 1$$

k-uniform hypergraph (X, \mathcal{F}) : X is a set, $\mathcal{F} \subseteq {X \choose k}$

 \mathcal{F} is 2-colorable if there is a function (a "coloring")

 $f: X \to {\text{red, blue}}$ such that no edge $A \in \mathcal{F}$ is monochromatic

Claim If $|\mathcal{F}| < 2^{k-1}$, then \mathcal{F} is 2-colorable.

Proof. Random 2-coloring. Color all $x \in X$ independently, uniformly:

$$Pr[f(x) = red] = \frac{1}{2} = Pr[f(x) = blue].$$

For $A \in \mathcal{F}$, let $Y_A = 1$ if A is monochromatic, otherwise $Y_A = 0$.

$$\mathbb{E}[\#\text{of m.c. edges of } \mathcal{F}] = \mathbb{E}\left[\sum_{A \in \mathcal{F}} Y_A\right] = \sum_{A \in \mathcal{F}} \mathbb{E}Y_A = \frac{|\mathcal{F}|}{2^{k-1}} < 1$$

Hence, for sure, **THERE EXISTS** 2-coloring without m.c. edges ("proper 2-coloring")

Question: Is there an (efficient, deterministic) algorithm which *finds* a proper 2-coloring?

Question: Is there an (efficient, deterministic) algorithm which *finds* a proper 2-coloring?

YES!

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Question: Is there an (efficient, deterministic) algorithm which *finds* a proper 2-coloring?

YES!

 \rightsquigarrow Positional games

Maker-Breaker Game (X, \mathcal{F}) : Board: set X; family of winning sets: $\mathcal{F} \subset 2^X$ Players: Maker and Breaker Play: players alternately occupy elements of X; Maker starts Winner: Maker if he occupies a winning set completely Breaker, if he puts his mark in every winning set

Maker-Breaker Game (X, \mathcal{F}) : Board: set X; family of winning sets: $\mathcal{F} \subset 2^X$ Players: Maker and Breaker Play: players alternately occupy elements of X; Maker starts Winner: Maker if he occupies a winning set completely Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:

1) Exactly one of the players has a winning strategy.

2) Given \mathcal{F} , it is clear (at least to an all-powerful computer) which of them has a winning strategy.

Terminology: \mathcal{F} is Maker's win, \mathcal{F} is Breaker's win

Maker-Breaker Game (X, \mathcal{F}) : Board: set X; family of winning sets: $\mathcal{F} \subset 2^X$ Players: Maker and Breaker Play: players alternately occupy elements of X; Maker starts Winner: Maker if he occupies a winning set completely Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:

1) Exactly one of the players has a winning strategy.

2) Given \mathcal{F} , it is clear (at least to an all-powerful computer) which of them has a winning strategy.

Terminology: \mathcal{F} is Maker's win, \mathcal{F} is Breaker's win

Proposition: \mathcal{F} is a Breaker's win $\Rightarrow \mathcal{F}$ is 2-colorable

Maker-Breaker Game (X, \mathcal{F}) : Board: set X; family of winning sets: $\mathcal{F} \subset 2^X$ Players: Maker and Breaker Play: players alternately occupy elements of X; Maker starts Winner: Maker if he occupies a winning set completely Breaker, if he puts his mark in every winning set

Remark: Perfect information game with complementary goals:

1) Exactly one of the players has a winning strategy.

2) Given \mathcal{F} , it is clear (at least to an all-powerful computer) which of them has a winning strategy.

Terminology: \mathcal{F} is Maker's win, \mathcal{F} is Breaker's win

Proposition: \mathcal{F} is a Breaker's win $\Rightarrow \mathcal{F}$ is 2-colorable

Erdős-Selfridge: $|\mathcal{F}| < 2^{k-1} \Rightarrow$ Breaker has a winning strategy.

LLL. A_1, A_2, \ldots, A_k events in some probability space, such that (1) every A_i is mutually independent from **all but** d other events (2) $p \ge Pr[A_i]$ for every i

If $ep(d+1) \leq 1$ then $Pr[\wedge_{i=1}^{k}\overline{A_i}] > 0$.

LLL. A_1, A_2, \ldots, A_k events in some probability space, such that (1) every A_i is mutually independent from **all but** d other events (2) $p \ge Pr[A_i]$ for every i

If $ep(d+1) \leq 1$ then $Pr[\wedge_{i=1}^k \overline{A_i}] > 0$.

LLL. A_1, A_2, \ldots, A_k events in some probability space, such that (1) every A_i is mutually independent from **all but** d other events (2) $p \ge Pr[A_i]$ for every i

If $ep(d+1) \leq 1$ then $Pr[\wedge_{i=1}^k \overline{A_i}] > 0$.

Moser-Tardos (2010) There is a (simple) algorithm to efficiently 2-color such an \mathcal{F} .

LLL. A_1, A_2, \ldots, A_k events in some probability space, such that (1) every A_i is mutually independent from **all but** d other events (2) $p \ge Pr[A_i]$ for every i

If $ep(d+1) \leq 1$ then $Pr[\wedge_{i=1}^k \overline{A_i}] > 0$.

Moser-Tardos (2010) There is a (simple) algorithm to efficiently 2-color such an \mathcal{F} .

Neighborhood Conjecture [Beck]

$$\Delta(\mathcal{L}(\mathcal{F})) < 2^{k-1} \Rightarrow \mathcal{F}$$
 is Breaker's win.

Theorem (Gebauer, '09)

(i) For every large enough k, there is a k-uniform Maker's win hypergraph \mathcal{H} with $\Delta(\mathcal{L}(\mathcal{H})) \leq 0.75 \cdot 2^{k-1}$

(ii) For every large enough k there is a k-uniform Maker's win hypergraph \mathcal{F} with $\Delta(\mathcal{F}) < 0.5 \cdot \frac{2^k}{k}$.

 $D(k) := \min{\{\Delta(\mathcal{F}) : k \text{-uniform, Maker's win } \mathcal{F}\}}$

Best know lower bound $D(k) > \lfloor \frac{k}{2} \rfloor$. Deciding whether $D(k) = \lfloor \frac{k}{2} \rfloor + 1$ already seems to need new ideas.

full binary trees \rightsquigarrow k-uniform hypergraphs

æ

full binary trees \rightsquigarrow k-uniform hypergraphs

э

full binary trees \rightsquigarrow k-uniform hypergraphs

vertices \iff elements of the board X

full binary trees \rightsquigarrow k-uniform hypergraphs

vertices \iff elements of the board X

full binary trees \rightsquigarrow k-uniform hypergraphs

vertices $\leftrightarrow \rightarrow$ elements of the board X winning sets $\leftrightarrow \rightarrow$ end-paths

full binary trees \rightsquigarrow k-uniform hypergraphs

$$\mathcal{F} := \{\{1, 3, 7\}\}\$$

vertices \longleftrightarrow elements of the board X
winning sets \longleftrightarrow end-paths

full binary trees \rightsquigarrow k-uniform hypergraphs

$$\begin{split} \mathcal{F} &:= \{\{1,3,7\},\{3,8,15\}\} \\ \text{vertices} &\longleftrightarrow & \text{elements of the board } X \\ \text{winning sets} & \longleftrightarrow & \text{end-paths} \end{split}$$

full binary trees \rightsquigarrow k-uniform hypergraphs

 $\begin{aligned} \mathcal{F} &:= \{\{1,3,7\},\{3,8,15\},\{3,8,16\}\} \\ \text{vertices} &\longleftrightarrow \text{ elements of the board } X \\ \text{winning sets} &\longleftrightarrow \text{ end-paths} \end{aligned}$

full binary trees \rightsquigarrow k-uniform hypergraphs

 $\begin{aligned} \mathcal{F} &:= \{\{1,3,7\},\{3,8,15\},\{3,8,16\},\ldots\} \\ \text{vertices} &\longleftrightarrow \text{ elements of the board } X \\ \text{winning sets} &\longleftrightarrow \text{ end-paths} \end{aligned}$

full binary trees \rightsquigarrow k-uniform hypergraphs

$$\mathcal{F} := \{\{1,3,7\}, \{3,8,15\}, \{3,8,16\}, \ldots\}$$
vertices \iff elements of the board X
winning sets \iff end-paths

Proposition

Maker has a winning strategy on the hypergraph \mathcal{F} .

Def. (k, d)-tree

- Every leaf has depth $\geq k$
- Every vertex has $\leq d$ leaf-descendants of distance $\leq k$

I = ►

Def. (k, d)-tree

- Every leaf has depth $\geq k$
- Every vertex has $\leq d$ leaf-descendants of distance $\leq k$
- A (3, 6)-tree

Def. (k, d)-tree

- Every leaf has depth $\geq k$
- Every vertex has $\leq d$ leaf-descendants of distance $\leq k$
- A (3, 6)-tree

Def. (k, d)-tree

- Every leaf has depth $\geq k$
- Every vertex has $\leq d$ leaf-descendants of distance $\leq k$
- A (3, 6)-tree

Def. (k, d)-tree

- Every leaf has depth $\geq k$
- Every vertex has $\leq d$ leaf-descendants of distance $\leq k$
- A (3, 6)-tree

Proposition

There is a
$$(k-1, d)$$
-tree \Rightarrow $D(k) \leq d$

Theorem (Gebauer - Sz. - Tardos, 2011)

There exists a (k, d)-tree with

$$d = \left(\frac{2}{e} + o(1)\right) \frac{2^k}{k}$$

Corollary

For every positive integer k there exists Maker's win k-uniform hypergraphs \mathcal{H} and \mathcal{H}' , such that

(i)
$$\Delta(L(\mathcal{H})) = \left(1 + O\left(\frac{1}{\sqrt{k}}\right)\right) \frac{2^{k-1}}{e},$$

(ii) $\Delta(\mathcal{H}) = \left(1 + O\left(\frac{1}{\sqrt{k}}\right)\right) \frac{2^{k}}{ek}.$

< ∃ > <

Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let *F* be a boolean CNF-formula such that every clause contains exactly *k* distinct literals. If every variable occurs in less than $\frac{1}{e} \cdot \frac{2^k}{k}$, then *F* is satisfiable.
Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let *F* be a boolean CNF-formula such that every clause contains exactly *k* distinct literals. If every variable occurs in less than $\frac{1}{e} \cdot \frac{2^k}{k}$, then *F* is satisfiable.

Def. (k, s)-CNF formula

- every clause contains exactly k distinct literals
- every variable occurs in at most s clauses

Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let *F* be a boolean CNF-formula such that every clause contains exactly *k* distinct literals. If every variable occurs in less than $\frac{1}{e} \cdot \frac{2^k}{k}$, then *F* is satisfiable.

Def. (k, s)-CNF formula

- every clause contains exactly k distinct literals
- every variable occurs in at most s clauses

Extremal question: How large is

 $f(k) := \max\{s : every (k, s)-SAT \text{ is satisfiable}\}??$

Application 2 of LLL: (k,s)-SAT

Application 2 of LLL: Let *F* be a boolean CNF-formula such that every clause contains exactly *k* distinct literals. If every variable occurs in less than $\frac{1}{e} \cdot \frac{2^k}{k}$, then *F* is satisfiable.

Def. (k, s)-CNF formula

- every clause contains exactly k distinct literals
- every variable occurs in at most s clauses

Extremal question: How large is

 $f(k) := \max\{s : every (k, s)-SAT \text{ is satisfiable}\}??$

Known values: f(3) = 3, f(4) = 4, f(5) =? f is NOT known to be computable

Upper bounds:
$$k \cdot \frac{2^{k}}{k}$$
 trivial
 $k^{0.74} \cdot \frac{2^{k}}{k}$ Savicky-Sgall, '00
 $\log k \cdot \frac{2^{k}}{k}$ Hoory-Szeider, '06
 $1 \cdot \frac{2^{k}}{k}$ Gebauer, '09

full binary trees \rightsquigarrow k-CNF formulas

▶ ★ 臣 ▶ ★ 臣 ▶ …

æ

full binary trees \rightsquigarrow k-CNF formulas

э

full binary trees \rightsquigarrow *k*-CNF formulas

vertices	\longleftrightarrow	distinct literals
siblings	\longleftrightarrow	opposite literals

э

full binary trees \rightsquigarrow k-CNF formulas

vertices	\longleftrightarrow	distinct literals
siblings	\longleftrightarrow	opposite literals

full binary trees \rightsquigarrow k-CNF formulas

vertices	\longleftrightarrow	distinct literals
siblings	\longleftrightarrow	opposite literals
clauses	\longleftrightarrow	end-paths

full binary trees \rightsquigarrow k-CNF formulas

$$F = (c \lor b \lor a)$$

vertices \longleftrightarrow distinct literals
siblings \longleftrightarrow opposite literals
clauses \longleftrightarrow end-paths

э

full binary trees \rightsquigarrow k-CNF formulas

$$F = (c \lor b \lor a) \land (d \lor \overline{c} \lor b)$$

vertices \longleftrightarrow distinct literals
siblings \longleftrightarrow opposite literals
clauses \longleftrightarrow end-paths

full binary trees \rightsquigarrow k-CNF formulas

$$\begin{split} F &= (c \lor b \lor a) \land (d \lor \bar{c} \lor b) \land (\bar{d} \lor \bar{c} \lor b) \\ \text{vertices} &\longleftrightarrow & \text{distinct literals} \\ \text{siblings} &\longleftrightarrow & \text{opposite literals} \end{split}$$

 ${\sf clauses} \quad {\scriptstyle \longleftrightarrow} \quad {\sf end-paths}$

full binary trees \rightsquigarrow *k*-CNF formulas

$$F = (c \lor b \lor a) \land (d \lor \overline{c} \lor b) \land (\overline{d} \lor \overline{c} \lor b) \land \ldots$$

vertices $\leftrightarrow \rightarrow$ distinct literals siblings $\leftrightarrow \rightarrow$ opposite literals clauses $\leftrightarrow \rightarrow$ end-paths

full binary trees \rightsquigarrow *k*-CNF formulas

$$F = (c \lor b \lor a) \land (d \lor \overline{c} \lor b) \land (\overline{d} \lor \overline{c} \lor b) \land \ldots$$

 $\begin{array}{rcl} \mbox{vertices} & & & \mbox{distinct literals} \\ \mbox{siblings} & & & \mbox{opposite literals} \end{array}$

Proposition

The obtained formula is NOT satisfiable

Proposition

There is a (k, d)-tree \Rightarrow f(k) < d

▲御▶ ▲理▶ ▲理▶

æ

Proposition

There is a (k, d)-tree \Rightarrow f(k) < d

Theorem (Gebauer-Sz.-Tardos, '11)

$$f(k) = \left(\frac{2}{e} + o(1)\right) \frac{2^k}{k}$$

A I > A I > A

A 10

э

Proposition

There is a (k, d)-tree \Rightarrow f(k) < d

Theorem (Gebauer-Sz.-Tardos, '11)

$$f(k) = \left(\frac{2}{e} + o(1)\right) \frac{2^k}{k}$$

Def. The degree of clause C in formula F is the number of those clauses of F that share a variable with C.

D(F) denotes the largest of all clause-degrees in F.

 $l(k) := \max\{s : \text{ every } k \text{-CNF formula } F \text{ with } D(F) \le s \text{ is saitisfiable}\}$

Proposition

There is a (k, d)-tree \Rightarrow f(k) < d

Theorem (Gebauer-Sz.-Tardos, '11)

$$f(k) = \left(\frac{2}{e} + o(1)\right) \frac{2^k}{k}$$

Def. The degree of clause C in formula F is the number of those clauses of F that share a variable with C.

D(F) denotes the largest of all clause-degrees in F.

 $l(k) := \max\{s : \text{ every } k \text{-CNF formula } F \text{ with } D(F) \le s \text{ is saitisfiable}\}$

Theorem (Gebauer-Sz.-Tardos, '11) $l(k) = \left(\frac{1}{e} + o(1)\right) 2^{k}$

Complexity hardness jump

(*k*, *s*)-SAT Problem

- Input: a (k, s)-CNF F
- Decide whether F is satisfiable

- 4 注 2 4 注 3

Complexity hardness jump

(k, s)-SAT Problem

- Input: a (k, s)-CNF F
- Decide whether F is satisfiable

Hardness Jump [Tovey '84; Kratochvíl-Savický-Tuza '93]

< ∃ >

(k, s)-SAT Problem

- Input: a (k, s)-CNF F
- Decide whether F is satisfiable

Hardness Jump [Tovey '84; Kratochvíl-Savický-Tuza '93]

• (k,1)-SAT	trivial
• (k,2)-SAT	trivial
: • (k, f(k))-SAT	trivial

< ∃ >

(*k*, *s*)-SAT Problem

- Input: a (k, s)-CNF F
- Decide whether F is satisfiable

Hardness Jump [Tovey '84; Kratochvíl-Savický-Tuza '93]

- (*k*, 1)-SAT trivial • (*k*, 2)-SAT trivial
- (k, f(k))-SAT trivial
- (k, f(k) + 1)-SAT NP-hard
- (k, ∞) -SAT NP-hard

How to improve? Take the particular formula *F* into account [idea of Berman-Karpinski-Scott, '04] LLLL: Cares only about conflicting occurrences of variables

Lemma

(Lopsided Local Lemma) Let $\{A_C\}_{C \in I}$ be a finite set of events in some probability space. Let $\Gamma(C)$ be a subset of I for each $C \in I$ such that for every subset $J \subseteq I \setminus (\Gamma(C) \cup \{C\})$ we have

$$Pr(A_C| \wedge_{D \in J} \overline{A}_D) \leq Pr(A_C).$$

Suppose there are real numbers $0 < x_C < 1$ for $C \in I$ such that for every $C \in I$ we have

$$Pr(A_C) \leq x_C \prod_{D \in \Gamma(C)} (1-x_D).$$

Then

$$Pr(\wedge_{C\in I}\bar{A}_C)>0.$$

How to improve? Take the particular formula *F* into account [idea of Berman-Karpinski-Scott, '04] LLLL: Cares only about conflicting occurrences of variables

How to improve? Take the particular formula *F* into account [idea of Berman-Karpinski-Scott, '04] LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability $P_x = \frac{1}{2} + \frac{2d_{\bar{x}}-s}{2sk}$, where for literal v let $d_v := \#$ of occurrences of v in F.

How to improve? Take the particular formula *F* into account [idea of Berman-Karpinski-Scott, '04] LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability $P_x = \frac{1}{2} + \frac{2d_x - s}{2sk}$, where for literal v let $d_v := \#$ of occurrences of v in F. **Surprise**: The more a variable appears in the clauses of F as non-negated, the less likely we will set it to true.

How to improve? Take the particular formula *F* into account [idea of Berman-Karpinski-Scott, '04] LLLL: Cares only about conflicting occurrences of variables

Set variable x to true with probability $P_x = \frac{1}{2} + \frac{2d_x - s}{2sk}$, where for literal v let $d_v := \#$ of occurrences of v in F. **Surprise**: The more a variable appears in the clauses of F as non-negated, the less likely we will set it to true.

Works for every (k, s)-CNF formula F with $s = \left| \frac{2}{e} \cdot \frac{2^k}{k+1} \right|$.

Liar Game Player A thinks of an integer $x \in [N]$ and Player B tries to figure it out by asking Yes/No questions of the sort "Is $x \in S$?", where S is a subset of [N] picked by B.

A is allowed to lie. However for B to have a chance to be successful, but the lies have to come in some controlled fashion.

Liar Game Player A thinks of an integer $x \in [N]$ and Player B tries to figure it out by asking Yes/No questions of the sort "Is $x \in S$?", where S is a subset of [N] picked by B.

A is allowed to lie. However for B to have a chance to be successful, but the lies have to come in some controlled fashion.

Ulam's problem for binary search with k **lies**: A is allowed to lie a total of k times What is the smallest number q(N, k) of questions that allows B to figure out the answer.

Problem 3, 2012 International Mathematics Olympiad

Instead of limiting the total number of lies, now the number of consecutive lies is limited: A is not allowed to lie k consecutive times

This restriction on the lies is not enough for B to find the value x with certainty, but he will be able to narrow the set of possibilities. The IMO problem asked for estimates on how small B can guarantee this set of possibilities will eventually be.

Problem 3, 2012 International Mathematics Olympiad

Instead of limiting the total number of lies, now the number of consecutive lies is limited: A is not allowed to lie k consecutive times

This restriction on the lies is not enough for B to find the value x with certainty, but he will be able to narrow the set of possibilities. The IMO problem asked for estimates on how small B can guarantee this set of possibilities will eventually be.

Theorem

(Gebauer-Sz.-Tardos) Let N > d and k be positive integers. Assume A and B play the game in which A thinks of an element $x \in [N]$ and then answers an arbitrary number of B's questions of the form "Is $x \in S$?". Assume further that A is allowed to lie, but never to k consecutive questions. Then B can guarantee to narrow the number of possibilities for x with his questions to at most d distinct values if and only if a (k, d + 1)-tree exists, that is, if $d \gtrsim \frac{2^{k+1}}{ek}(1 + o(1))$. **Two players:** the (good) chairman of the department, and the (vicious) dean of the school

The pieces: d non-tenured faculty of the department each at one of k pre-tenured rungs

Winner: The chairman if a faculty is promoted to tenure, otherwise the dean. (A non-tenured faculty becomes tenured if she has rung k and is promoted.)

Procedure: Once each year, the chairman proposes to the dean a subset S of the non-tenured faculty to be promoted by one rung. The dean has two choices: either he accepts the suggestion of the chairman, promotes everybody in S by one rung and fires everybody else, or he does the complete opposite: fires everybody in S and promotes everybody else by one rung.

If all d faculties are at rung 1, then chairman wins iff $k \leq \lfloor \log d \rfloor$.

European Tenure Game (B. Doerr)

Modified Rules: the non-promoted part of the non-tenured faculty is not fired, rather demoted back to rung 1. Assume that all non-tenured faculty are at the lowest rung in the beginning For fixed d let v_d stand for the largest number k of rungs such that the chairman wins.

Doerr (2004) showed

 $\lfloor \log d + \log \log d + o(1) \rfloor \leq v_d \leq \lfloor \log d + \log \log d + 1.73 + o(1) \rfloor.$

Theorem

(Gebauer-Sz.-Tardos) The chairman wins the European Tenure Game with d faculty and k rungs if and only if there exists a (k, d)-tree. In particular,

$$v_d = \lfloor \log d + \log \log d + \log e - 1 + o(1)
floor.$$

- 4 同 6 4 日 6 4 日 6

э

How to construct (k, d)-trees?

Image: Image:

æ

æ

.⊒ . ►

Building the tree from top to bottom by "distributing the debt" The Fair — SPLIT

Building the tree from top to bottom by "distributing the debt" **The Fair** — SPLIT

Building the tree from top to bottom by "distributing the debt" **The Fair** — SPLIT

The Unfair — CUT

Building the tree from top to bottom by "distributing the debt" **The Fair** — SPLIT

For the leaf-vector $\vec{\ell_w} = (x_0, x_1, \dots, x_k)$ of any vertex w of a (k, d)-tree we have $|\vec{\ell_w}| := \sum x_i \leq d$

For the leaf-vector $\vec{\ell_w} = (x_0, x_1, \dots, x_k)$ of any vertex w of a (k, d)-tree we have $|\vec{\ell_w}| := \sum x_i \le d$

Def. For a vector \vec{x} with $|\vec{x}| \le d$ we say that a tree T with root r is a (k, d, \vec{x}) -tree if

- $\vec{\ell_r} \leq \vec{x}$ (coordinatewise)
- every vertex has $\leq d$ leaf-descendants of distance $\leq k$

For the leaf-vector $\vec{\ell_w} = (x_0, x_1, \dots, x_k)$ of any vertex w of a (k, d)-tree we have $|\vec{\ell_w}| := \sum x_i \le d$

Def. For a vector \vec{x} with $|\vec{x}| \le d$ we say that a tree T with root r is a (k, d, \vec{x}) -tree if

- $\vec{\ell_r} \leq \vec{x}$ (coordinatewise)
- every vertex has $\leq d$ leaf-descendants of distance $\leq k$

Def. A vector \vec{x} is (k, d)-constructible if there is a (k, d, \vec{x}) -tree

For the leaf-vector $\vec{\ell_w} = (x_0, x_1, \dots, x_k)$ of any vertex w of a (k, d)-tree we have $|\vec{\ell_w}| := \sum x_i \le d$

Def. For a vector \vec{x} with $|\vec{x}| \le d$ we say that a tree T with root r is a (k, d, \vec{x}) -tree if

- $\vec{\ell_r} \leq \vec{x}$ (coordinatewise)
- every vertex has $\leq d$ leaf-descendants of distance $\leq k$

Def. A vector \vec{x} is (k, d)-constructible if there is a (k, d, \vec{x}) -tree

Observation

There is a (k, d)-tree \Leftrightarrow (0, 0, ..., 0) is (k, d)-constructible

Some vectors that are $(k, 2^i)$ -constructible:

æ

Some vectors that are $(k, 2^i)$ -constructible:

$$(1,0,\ldots,0)$$

æ

Some vectors that are $(k, 2^i)$ -constructible:

 $(1,0,\ldots,0) \qquad (0,2,0\ldots,0)$

Some vectors that are $(k, 2^i)$ -constructible:

3

Some vectors that are $(k, 2^i)$ -constructible:

Some vectors that are $(k, 2^i)$ -constructible:

Def. weight of
$$\vec{x} := w(\vec{x}) := \sum_{i=0}^{n} \frac{\vec{x}_i}{2}$$

Some vectors that are $(k, 2^i)$ -constructible:

Lemma (Payoff Lemma)

Let $|\vec{x}| \leq d$. If $w(\vec{x}) \geq 1$, then \vec{x} is (k, d)-constructible.

Inverse of Kraft's Inequality

The Gebauer-trees

For simplicity assume that $d = 2^{s+1}$ is a power of 2. Then $(0, \ldots, 0, 1, 2, 4, \ldots, \frac{d}{4}, \frac{d}{2})$ is (k, d)-constructible if

$$\sum_{i=1}^{s+1}rac{d/2^i}{2^{k+1-i}}=(s+1)rac{d}{2^{k+1}}\geq 1$$

That is, when $d \log_2 d \ge 2^{k+1}$. Holds for $d \approx \frac{2^{k+1}}{k}$.

The Gebauer-trees

For simplicity assume that $d = 2^{s+1}$ is a power of 2. Then $(0, \ldots, 0, 1, 2, 4, \ldots, \frac{d}{4}, \frac{d}{2})$ is (k, d)-constructible if

$$\sum_{i=1}^{s+1}rac{d/2^i}{2^{k+1-i}}=(s+1)rac{d}{2^{k+1}}\geq 1$$

That is, when $d \log_2 d \ge 2^{k+1}$. Holds for $d \approx \frac{2^{k+1}}{k}$.

The Gebauer-trees

For simplicity assume that $d = 2^{s+1}$ is a power of 2. Then $(0, \ldots, 0, 1, 2, 4, \ldots, \frac{d}{4}, \frac{d}{2})$ is (k, d)-constructible if

$$\sum_{i=1}^{s+1} rac{d/2^i}{2^{k+1-i}} = (s+1)rac{d}{2^{k+1}} \geq 1$$

That is, when $d \log_2 d \ge 2^{k+1}$. Holds for $d \approx \frac{2^{k+1}}{k}$.

First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector $(x_0, x_1, \ldots, x_r, x_{r+1}, \ldots, x_k)$?

First idea: Cut-and-Split, Left Child pays off

How else can we prove constructibility of vector $(x_0, x_1, \ldots, x_r, x_{r+1}, \ldots, x_k)$?

Cut at SMALLEST coordinate r with $\sum_{i=0}^{r-1} \frac{x_{i+1}}{2^i} \ge 1$; just enough so Left Child $(x_1, x_2, \dots, x_r, 0, \dots, 0)$ can immediately pay off

How else can we prove constructibility of vector $(x_0, x_1, \ldots, x_r, x_{r+1}, \ldots, x_k)$?

Cut at SMALLEST coordinate r with $\sum_{i=0}^{r-1} \frac{x_{i+1}}{2^i} \ge 1$; just enough so Left Child $(x_1, x_2, \dots, x_r, 0, \dots, 0)$ can immediately pay off

Split Right Child $(0, \ldots, 0, x_{r+1}, \ldots, x_k, 0)$ log₂ $x_{r+1} =: m$ -times and HOPE that with $(0, \ldots, 0, \frac{x_{r+1}}{2^m}, \frac{x_{r+2}}{2^m}, \ldots, \frac{x_k}{2^m}, \frac{d}{2^m}, \frac{d}{2^{m-1}}, \ldots, \frac{d}{2})$ the situation is BETTER than with the parent. How else can we prove constructibility of vector $(x_0, x_1, \ldots, x_r, x_{r+1}, \ldots, x_k)$?

Cut at SMALLEST coordinate r with $\sum_{i=0}^{r-1} \frac{x_{i+1}}{2^i} \ge 1$; just enough so Left Child $(x_1, x_2, \dots, x_r, 0, \dots, 0)$ can immediately pay off

Split Right Child $(0, \ldots, 0, x_{r+1}, \ldots, x_k, 0)$ log₂ $x_{r+1} =: m$ -times and HOPE that with $(0, \ldots, 0, \frac{x_{r+1}}{2^m}, \frac{x_{r+2}}{2^m}, \ldots, \frac{x_k}{2^m}, \frac{d}{2^m}, \frac{d}{2^{m-1}}, \ldots, \frac{d}{2})$ the situation is BETTER than with the parent.

Repeat this Operation "Cut-and-Split then Left Child pays off"

How else can we prove constructibility of vector $(x_0, x_1, \ldots, x_r, x_{r+1}, \ldots, x_k)$?

Cut at SMALLEST coordinate r with $\sum_{i=0}^{r-1} \frac{x_{i+1}}{2^i} \ge 1$; just enough so Left Child $(x_1, x_2, \dots, x_r, 0, \dots, 0)$ can immediately pay off

Split Right Child $(0, \ldots, 0, x_{r+1}, \ldots, x_k, 0)$ log₂ $x_{r+1} =: m$ -times and HOPE that with $(0, \ldots, 0, \frac{x_{r+1}}{2^m}, \frac{x_{r+2}}{2^m}, \ldots, \frac{x_k}{2^m}, \frac{d}{2^m}, \frac{d}{2^{m-1}}, \ldots, \frac{d}{2})$ the situation is BETTER than with the parent.

Repeat this Operation "Cut-and-Split then Left Child pays off"

Question Will the sequence of Right Child vectors ever converge to one that can pay off? How to analyse?

Normalized analytic setting

Set $d = \frac{2}{T} \cdot \frac{2^k}{k}$. Eventually we want to get to $T = e - \epsilon$.

高 とう きょう く ほ とう ほう

Normalized analytic setting

Set $d = \frac{2}{T} \cdot \frac{2^k}{k}$. Eventually we want to get to $T = e - \epsilon$.

$$\frac{\text{leaf-vector}}{\vec{x} = (0, \dots, 0, 1, \dots, \frac{d}{4}, \frac{d}{2})}$$

Payoff: $w(\vec{x}) \ge 1$

通 とう きょう うちょう しょう

Normalized analytic setting

Set $d = \frac{2}{T} \cdot \frac{2^k}{k}$. Eventually we want to get to $T = e - \epsilon$.

$$\frac{\text{leaf-vector}}{\vec{x} = (0, \dots, 0, 1, \dots, \frac{d}{4}, \frac{d}{2}) \rightsquigarrow \frac{\text{normalized leaf-vector}}{\vec{y} = (0, \dots, 0, 1, \dots, 1, 1)}$$
$$\rightsquigarrow y_i = x_i \frac{2^{k+1-i}}{d}$$

Payoff: $w(\vec{x}) \ge 1$

通 とう きょう うちょう しょう

Set $d = \frac{2}{T} \cdot \frac{2^k}{k}$. Eventually we want to get to $T = e - \epsilon$.

 $\frac{\text{leaf-vector}}{\vec{x}} = (0, \dots, 0, 1, \dots, \frac{d}{4}, \frac{d}{2}) \rightsquigarrow \vec{y} = (0, \dots, 0, 1, \dots, 1, 1) \xrightarrow{\text{leaf-function}} \vec{f} \equiv 1$ $\rightsquigarrow y_i = x_i \frac{2^{k+1-i}}{d} \qquad f: [0, 1] \to \mathbb{R}$

Payoff: $w(\vec{x}) \ge 1$ $\int_0^1 f(x) dx \ge T$

For the leaf-function ignore o(k) long segments of the normalized leaf-vector. (Like the $\Theta(\log k)$ long segment of 0 at the beginning.)

高 とう きょう うちょう しょう

Analytic Cut-and-Split

Let $v \in (0, 1)$. **Operation** Cut-at-v-and-Split **Input** function $f : [0, 1] \rightarrow \mathbb{R}$

A B > A B >

Let $v \in (0, 1)$.**Operation** Cut-at-v-and-SplitInput function $f : [0, 1] \rightarrow \mathbb{R}$ **Output**Left ChildRight Child

$$f_{left}(x)=\left\{egin{array}{cc} 2f(x) & x\in [0,v)\ 0 & x\in [v,1] \end{array}
ight. f_{right}(x)=\left\{egin{array}{cc} 2f(x+v) & x\in [0,1-v)\ 1 & x\in [1-v,1] \end{array}
ight.$$

伺 ト く ヨ ト く ヨ ト

э

Let $v \in (0, 1)$. **Operation** Cut-at-v-and-Split **Input** function $f : [0, 1] \rightarrow \mathbb{R}$ **Output** <u>Left Child</u> $f_{left}(x) = \begin{cases} 2f(x) & x \in [0, v) \\ 0 & x \in [v, 1] \end{cases}$ $f_{right}(x) = \begin{cases} 2f(x + v) & x \in [0, 1 - v) \\ 1 & x \in [1 - v, 1] \end{cases}$ \downarrow \downarrow

should pay off

should be "better" than parent

 $2\int_0^v f \ge T$

does not mean "greater integral"

We perform a series of Cut-and-Splits, cutting at $1 - \delta, 1 - 2\delta, \dots, 1 - N\delta$ for some CONSTANTS $\delta > 0$ and integer *N*.

We perform a series of Cut-and-Splits, cutting at $1 - \delta, 1 - 2\delta, \dots, 1 - N\delta$ for some CONSTANTS $\delta > 0$ and integer N.

At the end of the process the integral of Right Child grows above $T = 2 - \epsilon$ and hence the process stops.

We perform a series of Cut-and-Splits, cutting at $1 - \delta, 1 - 2\delta, \ldots, 1 - N\delta$ for some CONSTANTS $\delta > 0$ and integer N.

At the end of the process the integral of Right Child grows above $T = 2 - \epsilon$ and hence the process stops.

 $T = 2 - \epsilon$ is the limit of the simple Cut-and-Split.
$$v_1 := (x_0, x_1, \dots, x_k)$$

(《聞》 《문》 《문》 - 문

э

I = ▶

- ∢ ≣ ▶

3 N 3

3 N 3

3 N 3

$$v_{1} := (x_{0}, x_{1}, \dots, x_{k})$$
Payoff
Lemma
$$v_{2}$$
Payoff
$$v_{2}$$
Payoff
$$v_{3}$$

$$f_{left}(x) = \begin{cases} 2^{r}f(x) & x \in [0, v) \\ 0 & x \in [v, 1] \end{cases}$$

$$f_{right}(x) = \begin{cases} \frac{2^{r}}{2^{r}-1}f(x+v) & x \in [0, 1-v) \\ 1 & x \in [1-v, 1] \end{cases}$$

回 と く ヨ と く ヨ と …

æ

$$v_{1} := (x_{0}, x_{1}, \dots, x_{k})$$
Payoff
Payoff
Lemma
$$v_{2}$$
Payoff
$$v_{3}$$

$$f_{left}(x) = \begin{cases} 2^{r}f(x) & x \in [0, v) \\ 0 & x \in [v, 1] \end{cases}$$

$$f_{right}(x) = \begin{cases} \frac{2^{r}}{2^{r}-1}f(x+v) & x \in [0, 1-v) \\ 1 & x \in [1-v, 1] \end{cases}$$
Payoff: $2^{r} \int_{0}^{v} f \ge T$
should be better than parent

How to analyse?

Look at Right Child $f_{right}(x)$ after "time" $t \iff F(t,x)$ (after t/δ infinitesimally small cuts of length δ) F(0,x) = 1 for all $x \in [0,1]$ F(t,1) = 1 for all $t \ge 0$

• • = • • = •

э

How to analyse?

Look at Right Child $f_{right}(x)$ after "time" $t \iff F(t,x)$ (after t/δ infinitesimally small cuts of length δ) F(0,x) = 1 for all $x \in [0,1]$ F(t,1) = 1 for all $t \ge 0$

WANT to pay off:

$$\int_0^1 F_{left}(t,x) dx \approx 2^r \delta F(t,0) \ge T$$

So let $r \approx \log_2 \frac{T}{\delta F(t,0)}$

• • = • • = •

How to analyse?

Look at Right Child $f_{right}(x)$ after "time" $t \rightsquigarrow F(t,x)$ (after t/δ infinitesimally small cuts of length δ) F(0,x) = 1 for all $x \in [0,1]$ F(t,1) = 1 for all $t \ge 0$ WANT to pay off:

 $\int_0^1 F_{left}(t,x) dx \approx 2^r \delta F(t,0) \geq T$

So let $r \approx \log_2 \frac{T}{\delta F(t,0)}$ **THEN**:

$$F_{right}(t,x) \approx F(t,x) \cdot \frac{2^r}{2^r - 1} \approx F(t,x) \left(1 + \frac{\delta F(t,0)}{T}\right)$$

That is $F(t + \delta, x - \delta) \approx F(t, x) \left(1 + \frac{\delta F(t, 0)}{T}\right)$

$$F_s(t+\delta) \approx F_s(t)\left(1+rac{\delta F(t,0)}{T}\right)$$

$$F_{s}(t+\delta) \approx F_{s}(t) \left(1 + \frac{\delta F(t,0)}{T}\right)$$
$$F'_{s}(t) \approx \frac{F_{s}(t+\delta) - F_{s}(t)}{\delta} \approx F_{s}(t) \frac{F(t,0)}{T}$$

$$F_{s}(t+\delta) \approx F_{s}(t)\left(1+\frac{\delta F(t,0)}{T}\right)$$
$$F'_{s}(t) \approx \frac{F_{s}(t+\delta)-F_{s}(t)}{\delta} \approx F_{s}(t)\frac{F(t,0)}{T}$$
$$\int_{s-1}^{s} \frac{F'_{s}(t)}{F_{s}(t)}dt \approx \frac{1}{T}\int_{s-1}^{s} F(t,0)dt$$

$$F_{s}(t+\delta) \approx F_{s}(t) \left(1 + \frac{\delta F(t,0)}{T}\right)$$

$$F'_{s}(t) \approx \frac{F_{s}(t+\delta) - F_{s}(t)}{\delta} \approx F_{s}(t) \frac{F(t,0)}{T}$$

$$\int_{s-1}^{s} \frac{F'_{s}(t)}{F_{s}(t)} dt \approx \frac{1}{T} \int_{s-1}^{s} F(t,0) dt$$

$$\ln F_{s}(s) - \ln F_{s}(s-1) \gtrsim \frac{F(s-1,0)}{T}$$

$$F_{s}(t+\delta) \approx F_{s}(t) \left(1 + \frac{\delta F(t,0)}{T}\right)$$

$$F'_{s}(t) \approx \frac{F_{s}(t+\delta) - F_{s}(t)}{\delta} \approx F_{s}(t) \frac{F(t,0)}{T}$$

$$\int_{s-1}^{s} \frac{F'_{s}(t)}{F_{s}(t)} dt \approx \frac{1}{T} \int_{s-1}^{s} F(t,0) dt$$

$$\ln F_{s}(s) - \ln F_{s}(s-1) \gtrsim \frac{F(s-1,0)}{T}$$

$$\ln F(s,0) \gtrsim \frac{F(s-1,0)}{T}$$

From the previous page: $F(t + \delta, x - \delta) \approx F(t, x) \left(1 + \frac{\delta F(t, 0)}{T}\right)$ For some time *s*, introduce $F_s(t) := F(t, s - t)$. Rewritten, for any $s - 1 \le t \le s$:

$$F_{s}(t+\delta) \approx F_{s}(t) \left(1 + \frac{\delta F(t,0)}{T}\right)$$

$$F'_{s}(t) \approx \frac{F_{s}(t+\delta) - F_{s}(t)}{\delta} \approx F_{s}(t) \frac{F(t,0)}{T}$$

$$\int_{s-1}^{s} \frac{F'_{s}(t)}{F_{s}(t)} dt \approx \frac{1}{T} \int_{s-1}^{s} F(t,0) dt$$

$$\ln F_{s}(s) - \ln F_{s}(s-1) \gtrsim \frac{F(s-1,0)}{T}$$

$$\ln F(s,0) \gtrsim \frac{F(s-1,0)}{T}$$

If F(s, 0) converged to a finite limit *a*, we would have $T \ge \frac{a}{\ln a} \ge e$. So $\int_0^1 F(s, x) dx \approx F(s, 0) \to \infty$ and the right child pays off. \Box **Def.** Let D(k) be the largest integer such that for every k-uniform hypergraph (X, \mathcal{F}) with $\Delta(\mathcal{F}) \leq D(k)$ Breaker has a winning strategy.

Def. Let D(k) be the largest integer such that for every k-uniform hypergraph (X, \mathcal{F}) with $\Delta(\mathcal{F}) \leq D(k)$ Breaker has a winning strategy. **Neighborhood Conjecture** There is an $\epsilon > 0$ such that $D(k) > (1 + \epsilon)^k$. **Def.** Let D(k) be the largest integer such that for every k-uniform hypergraph (X, \mathcal{F}) with $\Delta(\mathcal{F}) \leq D(k)$ Breaker has a winning strategy.

Neighborhood Conjecture There is an $\epsilon > 0$ such that $D(k) > (1 + \epsilon)^k$. More modest goal: D(k) > 0.51k

Tibor Szabó Construction and Applications of (k, d)-trees

Def. Let D(k) be the largest integer such that for every k-uniform hypergraph (X, \mathcal{F}) with $\Delta(\mathcal{F}) \leq D(k)$ Breaker has a winning strategy.

Neighborhood Conjecture There is an $\epsilon > 0$ such that $D(k) > (1 + \epsilon)^k$.

More modest goal: D(k) > 0.51k

It is still possible that some $\epsilon = \epsilon(k) \rightarrow 1$ could be chosen.