

Polytopes and Plane Graphs with no Long Monotone Paths

Günter Rote Freie Universität Berlin

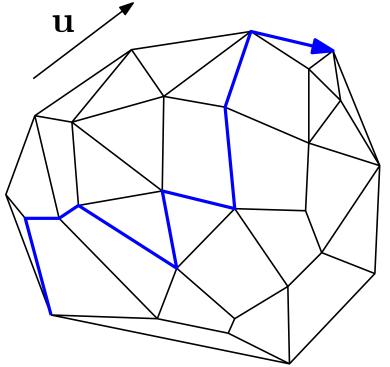
joint work with

Adrian Dumitrescu and Csaba D. Tóth

Monotone Paths on Polytopes

Conjecture: Every 3D convex polytope with n vertices has a monotone path of length $\Omega(\sqrt{n})$ in *some* direction.

[G. Rote, European Workshop on Computational Geometry, Dortmund March 2010]



(Motivation: Partial least-squares matching of point sets.)

 $\langle \mathbf{u}, p_1 \rangle < \langle \mathbf{u}, p_2 \rangle < \langle \mathbf{u}, p_3 \rangle < \cdots$

THEOREM (2012-02-28). There is a family of triangulated polytopes with n vertices, where the longest monotone path has length $O(\log n)$.

Günter Rote, Freie Universität Berlin

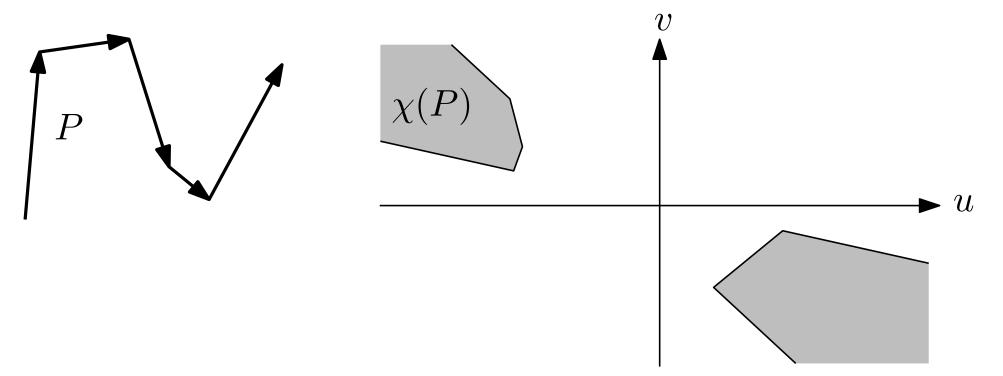
Results on Polytopes

THEOREM (2012-02-28). There is a family of triangulated polytopes with n vertices, where the longest monotone path has length $O(\log n)$. (L.B.: $\Omega(\log n / \log \log n)$)

THEOREM (2011). There is a family of triangulated polytopes with n vertices and bounded degree d, where the longest monotone path has length $O(\log^2 n)$. (L.B.: $\Omega(\log n)$)

THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n + \log n / \log \log n)$ edges. This is tight.

The characteristic region of a path

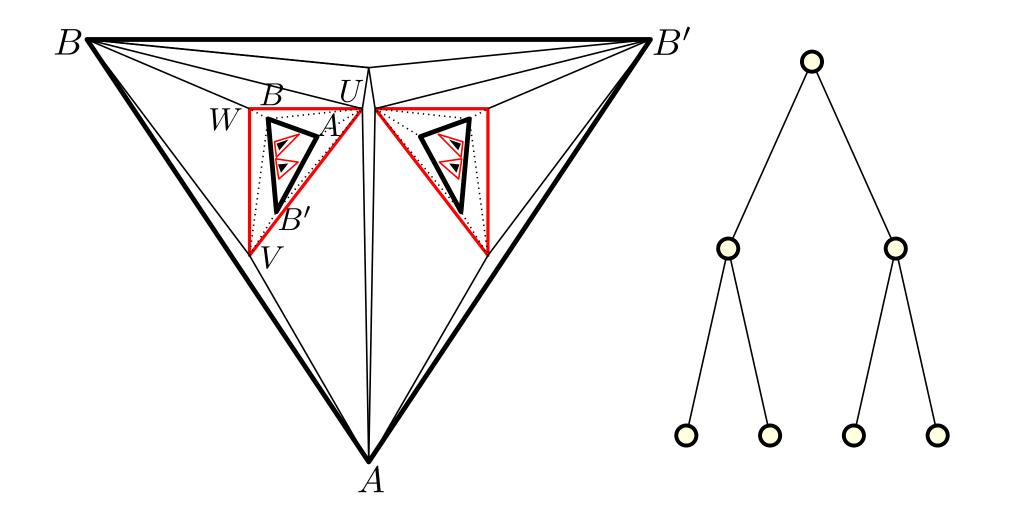


$$\begin{split} \chi(P) = \\ \text{the set of directions } (u,v,1) \text{ for which } P \text{ or its inverse is} \\ \text{a monotone path.} \end{split}$$

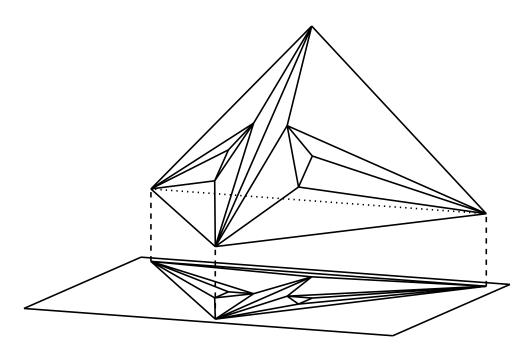
= two intersections of half-planes

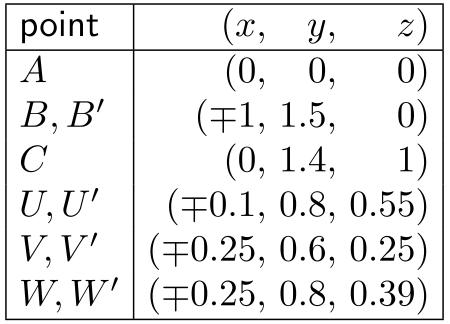
The $O(\log^2 n)$ construction

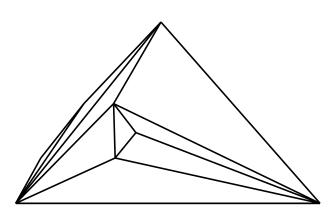
a hierarchical structure:

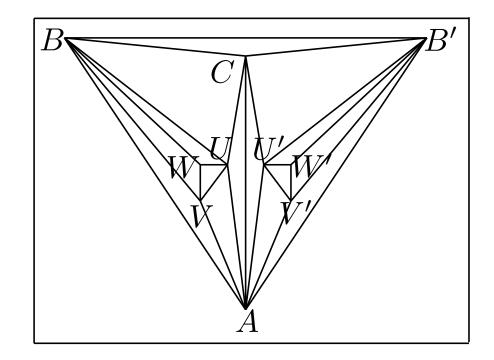


The basic building block Δ

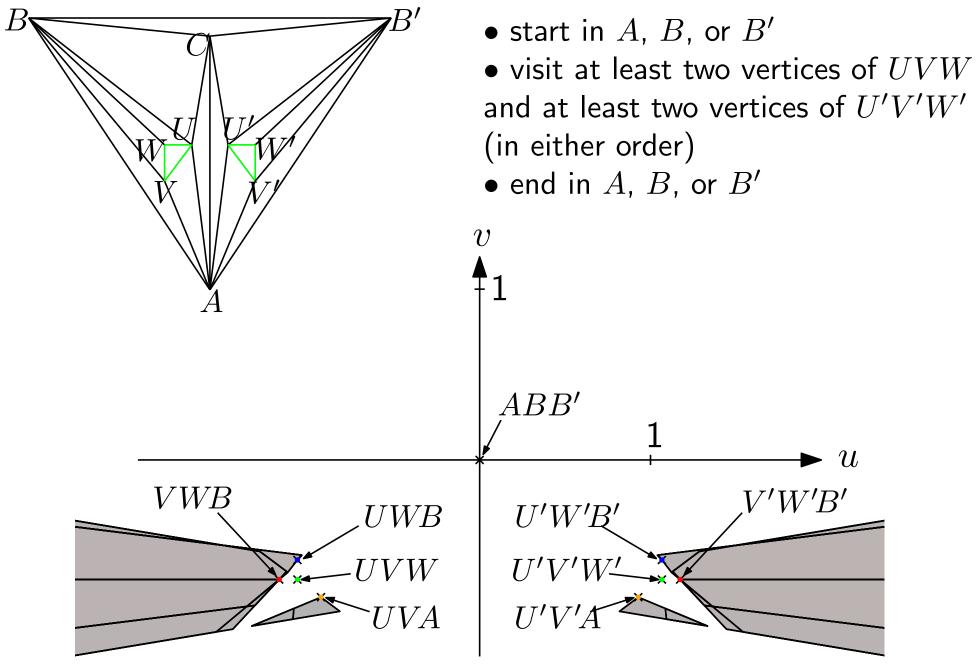




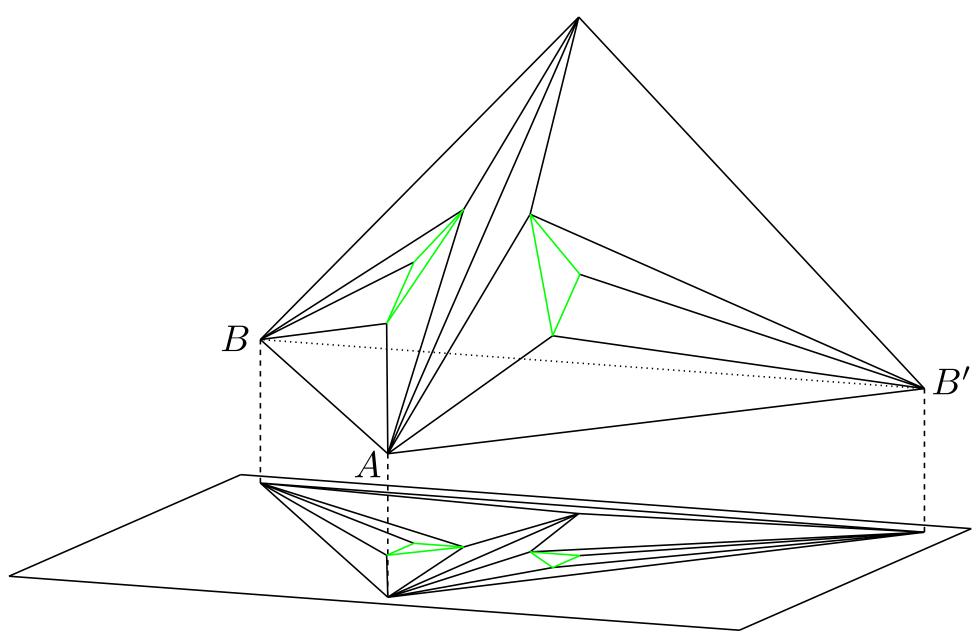




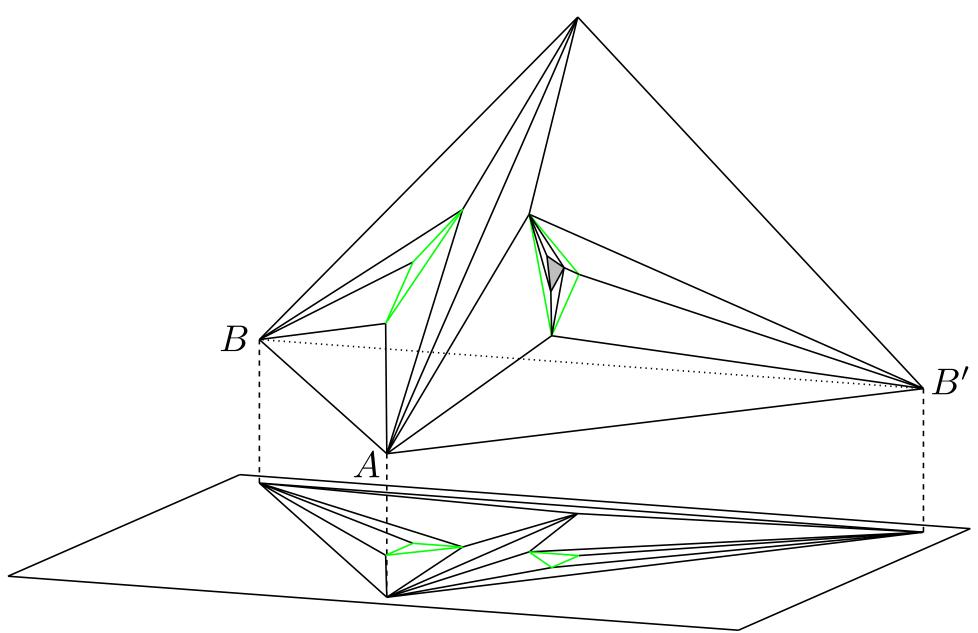
The characteristic region of Δ



Placing the subcells

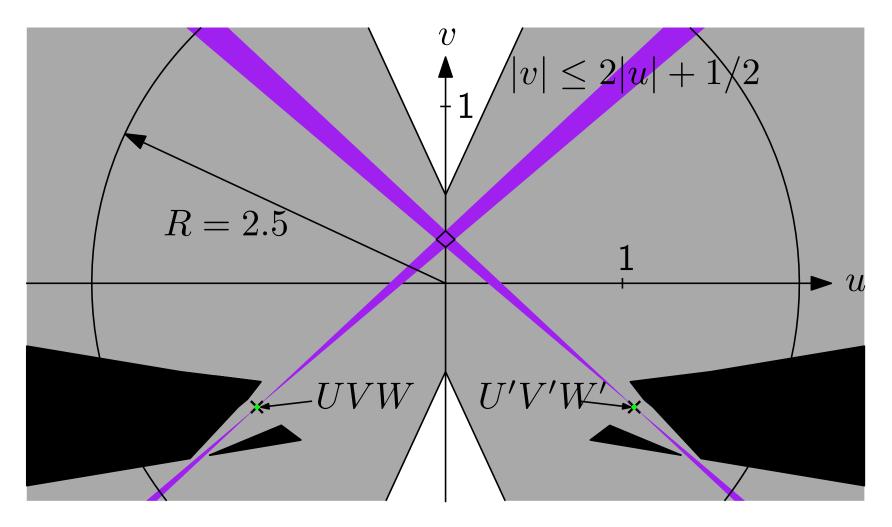


Placing the subcells

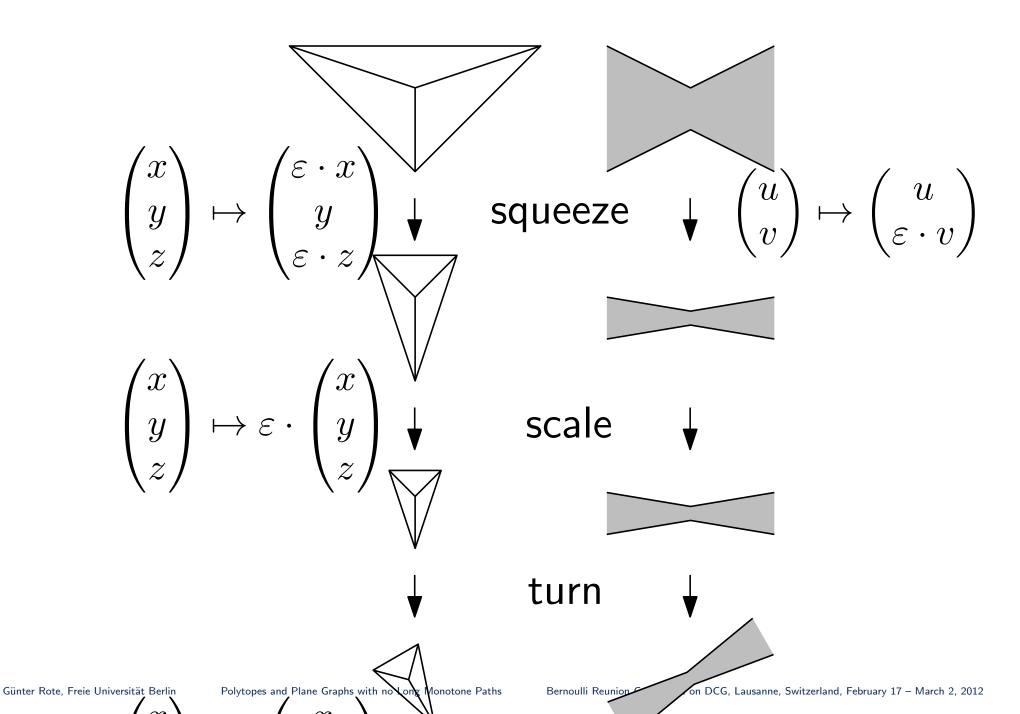


Inductive construction

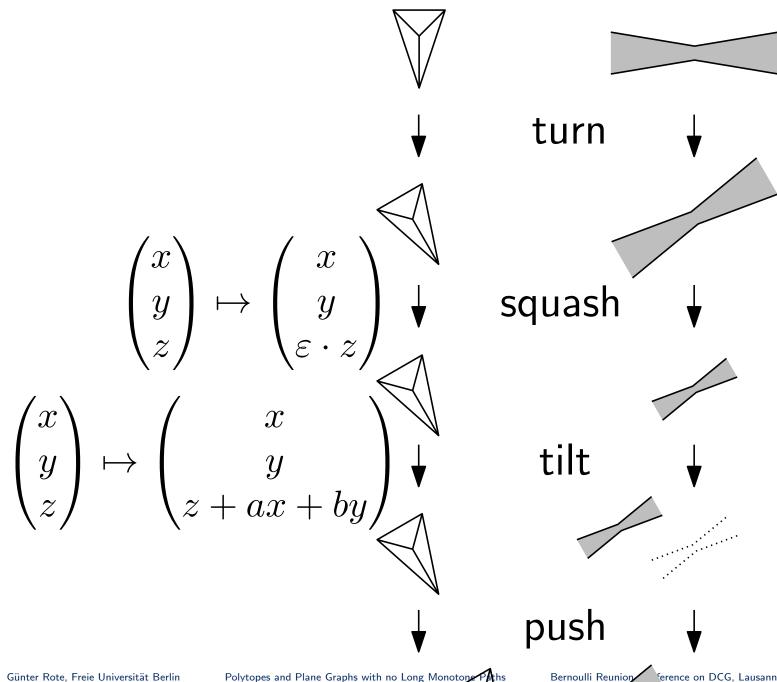
- Characteristic regions: lie in $|v| \le 2|u| + 1/2$
- have no triple intersections
- pairwise intersections lie within $\leq R = 2.5$ of the origin



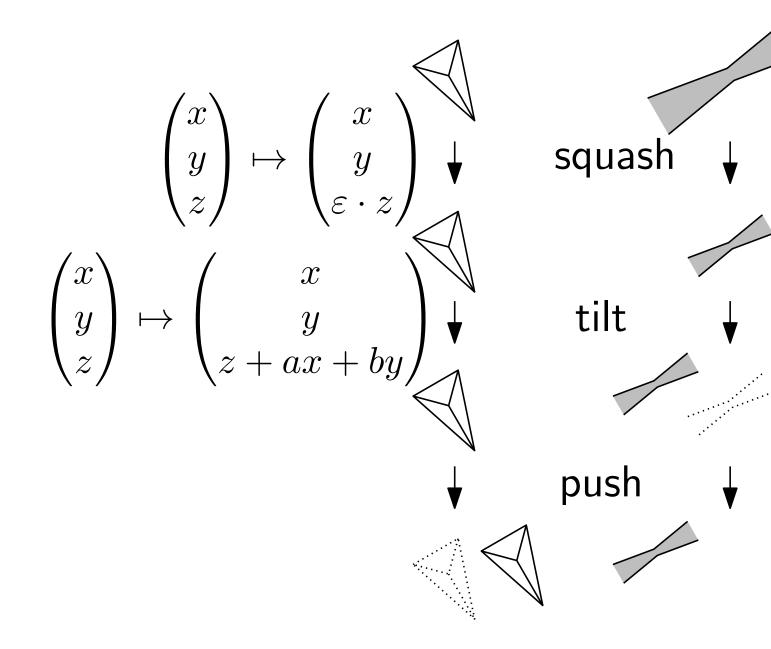
Affine Transformations



Affine Transformations



Affine Transformations

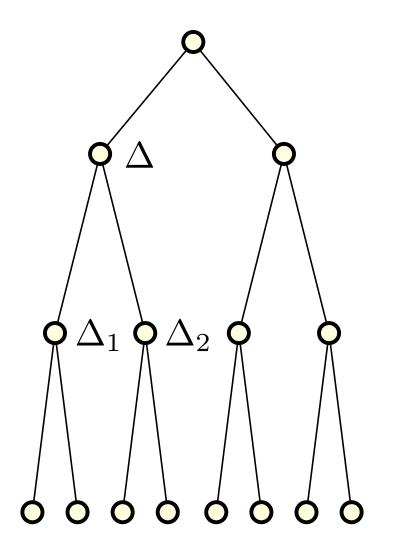


A monotone path P in direction c can visit both children of a node Δ only if

- $\bullet \ c \ {\rm lies} \ {\rm in} \ \chi(\Delta), \ {\rm or}$
- P starts or ends inside Δ .

start in A, B, or B'
visit at least two vertices of UVW and at least two vertices of U'V'W' (in either order)

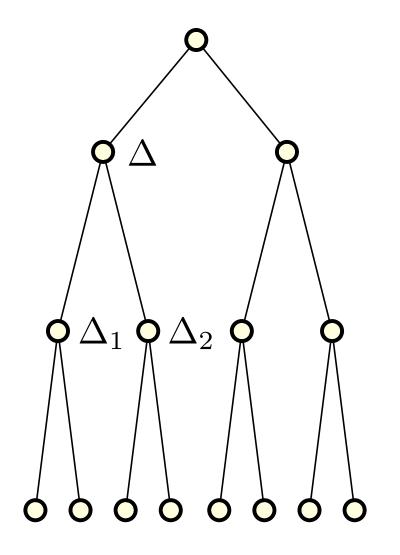
 \bullet end in A, B, or B'



A monotone path P in direction c can visit both children of a node Δ only if

- $\bullet~c~{\rm lies}$ in $\chi(\Delta),~{\rm or}$
- P starts or ends inside Δ .

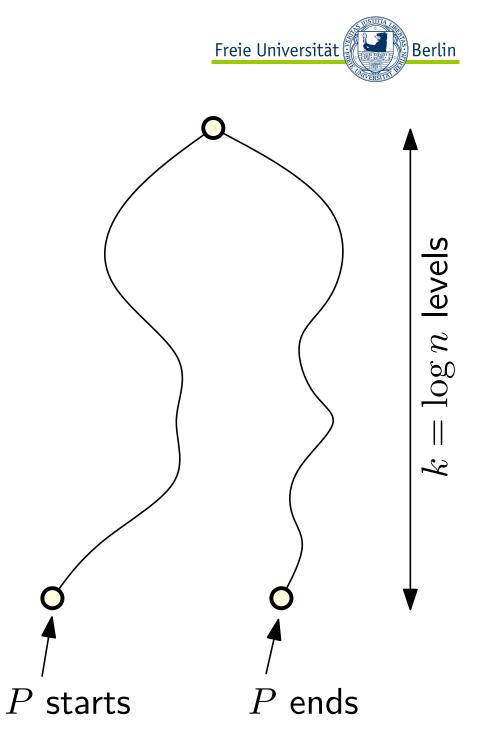
c can lie in at most two characteristic regions.



A monotone path P in direction c can visit both children of a node Δ only if

- $\bullet \ c \ {\rm lies} \ {\rm in} \ \chi(\Delta), \ {\rm or}$
- $\bullet~P$ starts or ends inside $\Delta.$

c can lie in at most two characteristic regions.

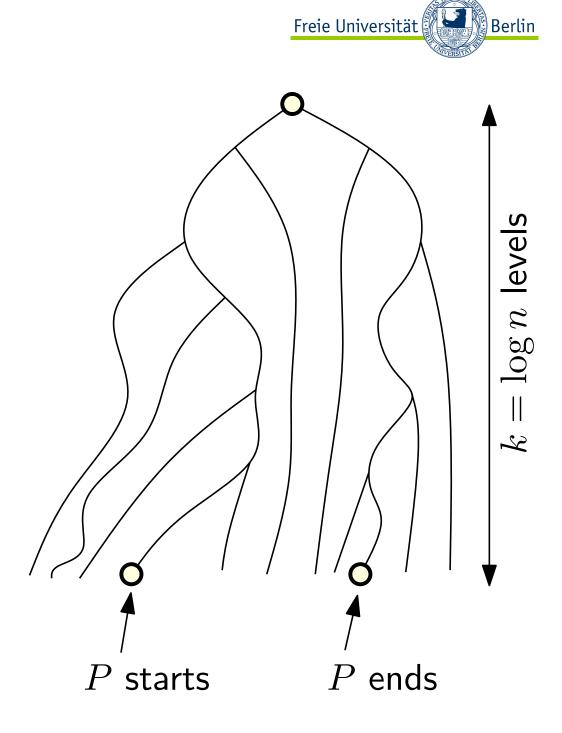


A monotone path P in direction c can visit both children of a node Δ only if

- $\bullet~c~{\rm lies}$ in $\chi(\Delta),~{\rm or}$
- P starts or ends inside Δ .

c can lie in at most two characteristic regions.

2k paths of length k



A monotone path P in direction c can visit both children of a node Δ only if

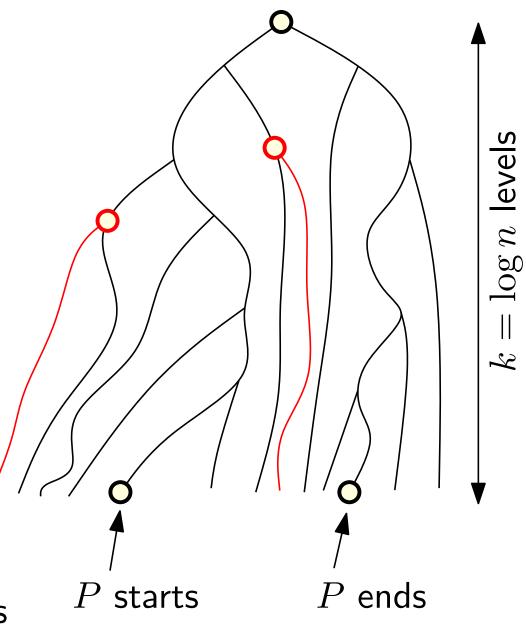
- $\bullet \ c \ {\rm lies} \ {\rm in} \ \chi(\Delta), \ {\rm or}$
- P starts or ends inside Δ .

c can lie in at most two characteristic regions.

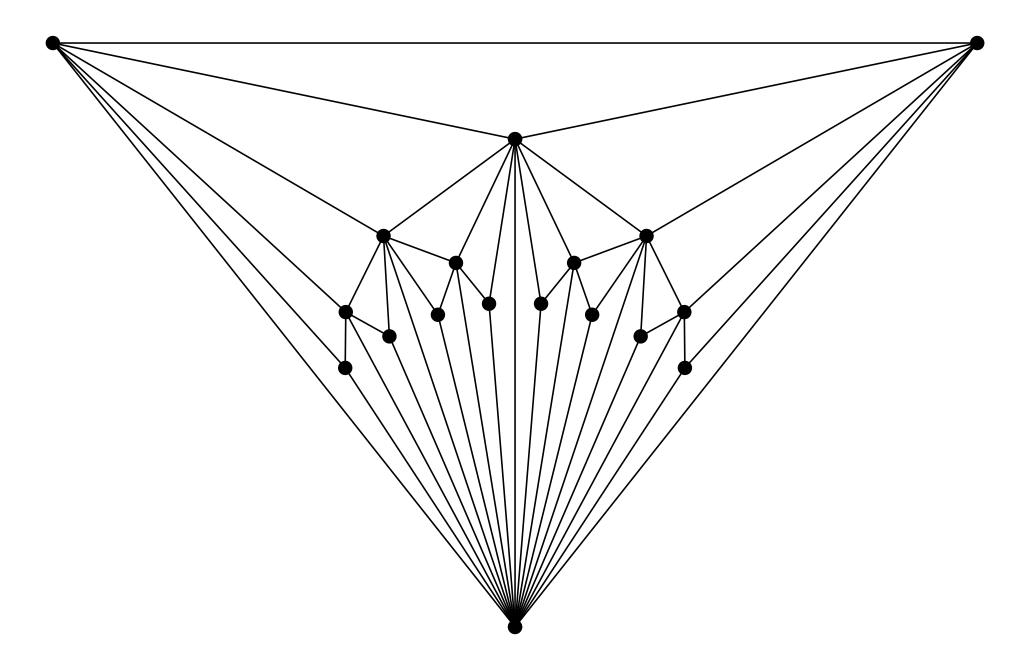
 $2k \ {\rm paths} \ {\rm of} \ {\rm length} \ k \ {\rm plus} \ 2 \ {\rm paths} \ {\rm of} \ {\rm length} \ k \ {\rm length} \ {\rm length} \ k \ {\rm length} \ k \ {\rm length} \ {\rm length} \ k \ {\rm length} \ k \ {\rm length} \ k \ {\rm length} \ {\rm$

$$ightarrow O(k^2) \text{ nodes}$$

 $ightarrow O(k^2) = O(\log^2 n) \text{ vertices}$



The Construction for $O(\log n)$



Results on Convex Planar Subdivisions

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega(\log_d n)$ edges that is monotone in *some* direction. (This is best possible; Chazelle, Edelsbrunner, Guibas 1989.)

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in *some* direction.

This bound is best possible.

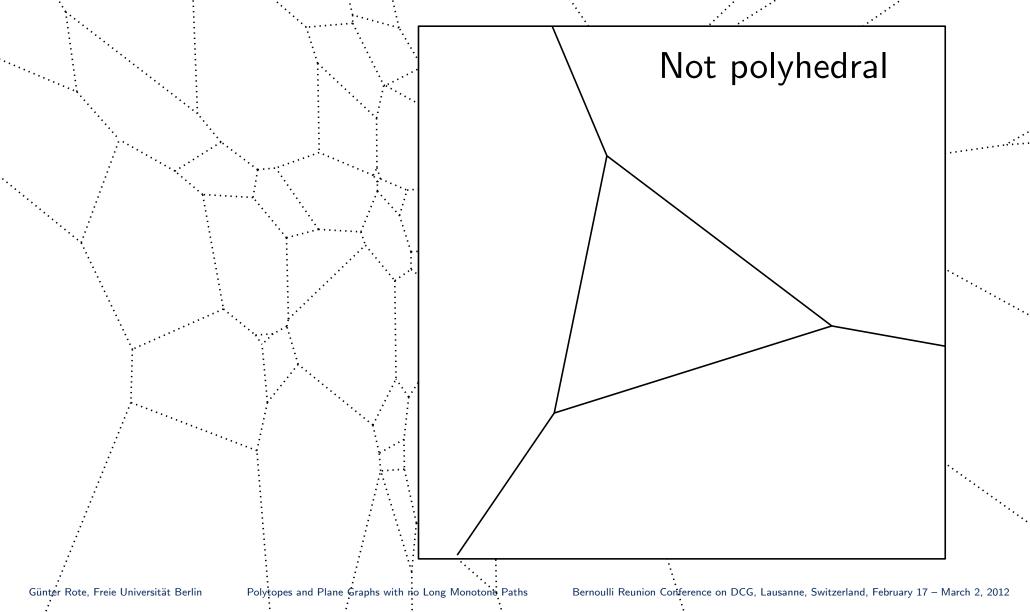
THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every *polyhedral* subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n + \log n / \log \log n)$ edges. This is tight.

Freie Universität

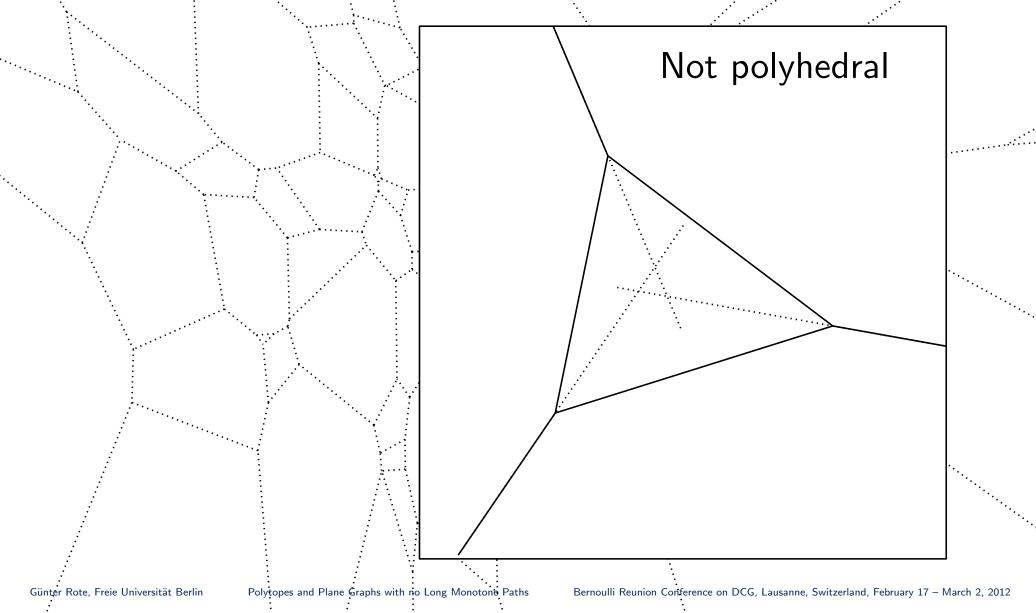
Berlin

Freie Universität

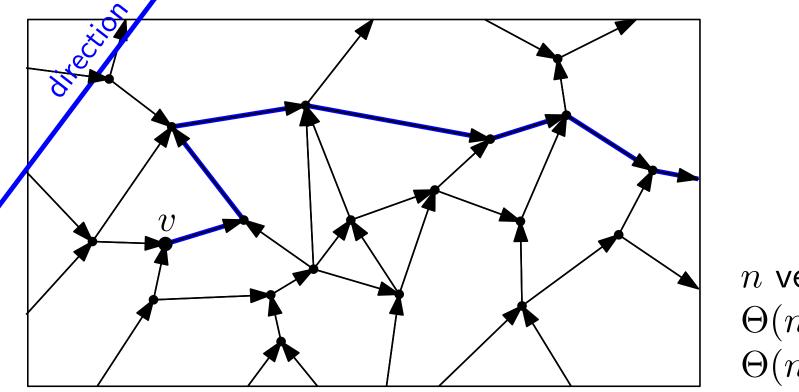
Freie Universität



Freie Universität

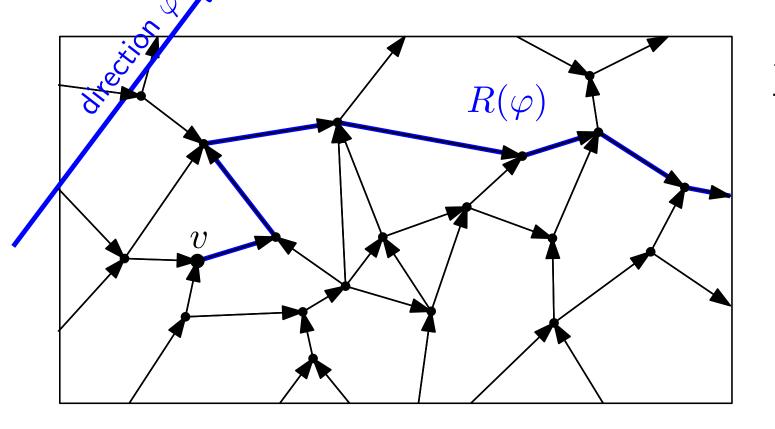


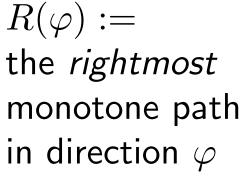
Freie Universität



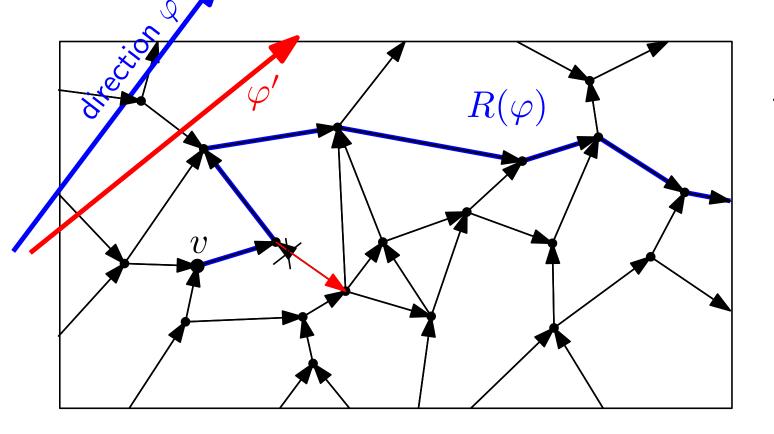
 $\begin{array}{l} n \ \text{vertices} \\ \Theta(n) \ \text{edges} \\ \Theta(n) \ \text{faces} \end{array}$

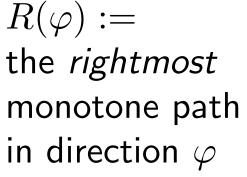
Berlin



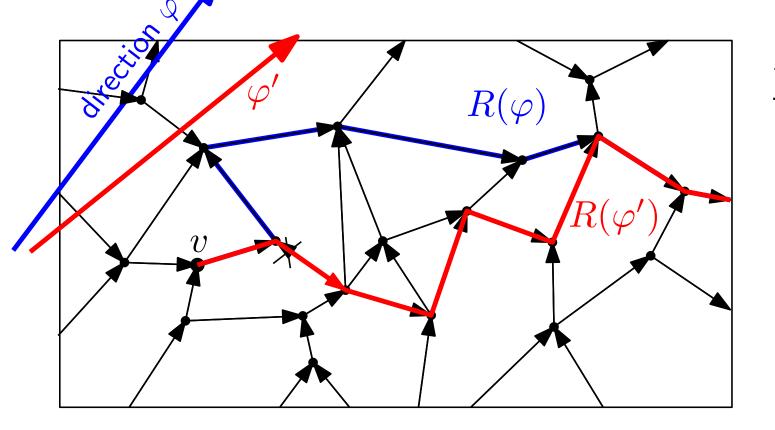


Berlin



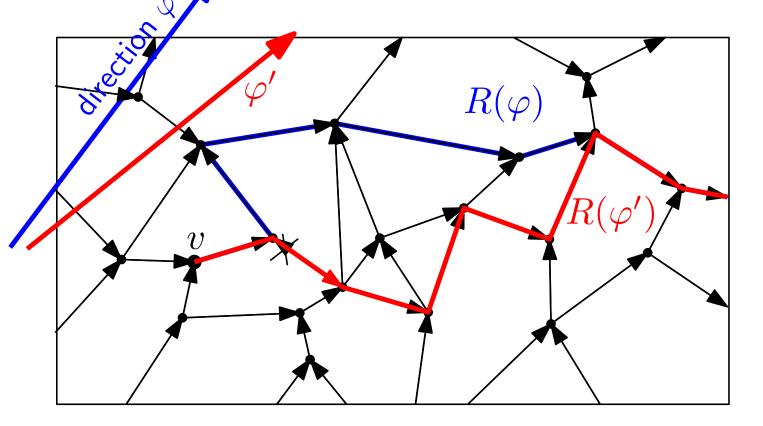


Berlin



 $\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}$

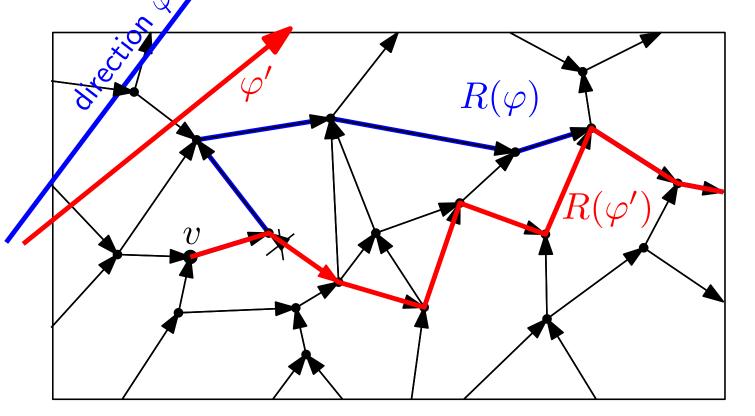
Berlin



```
\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}
```

🖗 Berlin

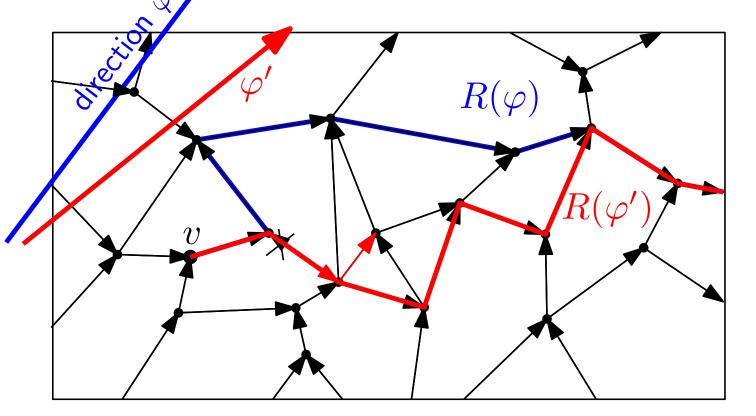
• $R(\varphi)$ is still monotone in direction φ' .



 $\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}$

🛿 Berlin

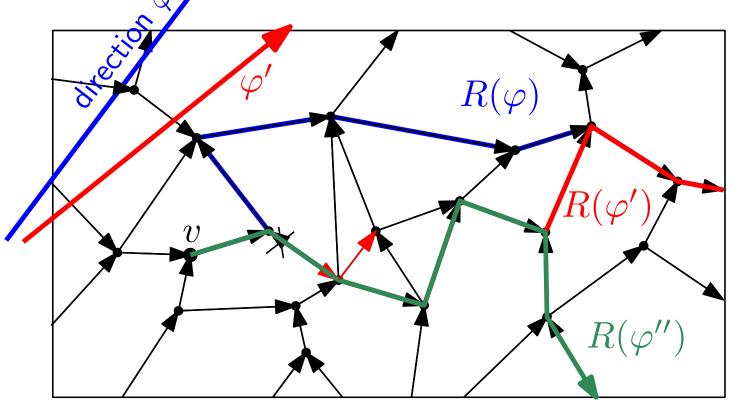
- $R(\varphi)$ is still monotone in direction φ' .
- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').



 $\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}$

🛿 Berlin

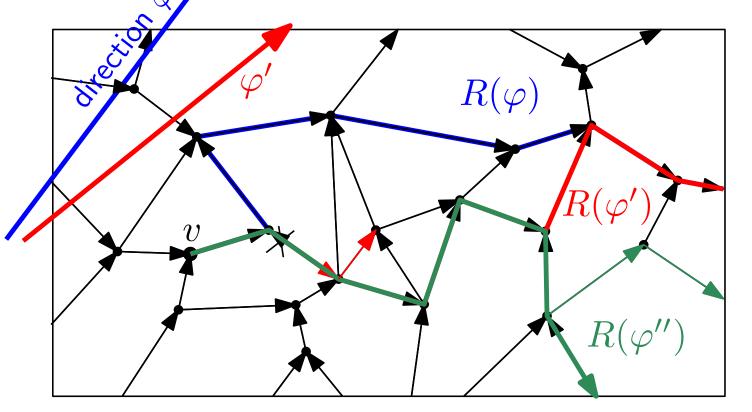
- $R(\varphi)$ is still monotone in direction φ' .
- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').



 $\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}$

Berlin

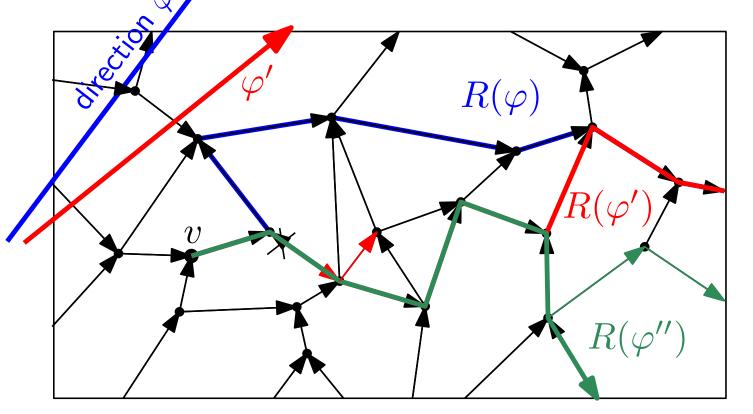
- $R(\varphi)$ is still monotone in direction φ' .
- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').



 $\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}$

Berlin

- $R(\varphi)$ is still monotone in direction φ' .
- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').

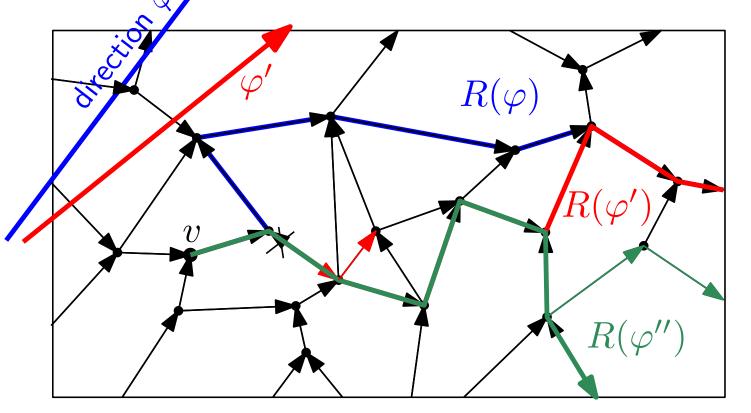


 $\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}$

Berlin

• $R(\varphi)$ is still monotone in direction φ' .

- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').
- \rightarrow a directed graph in which v can reach every vertex by a monotone path.

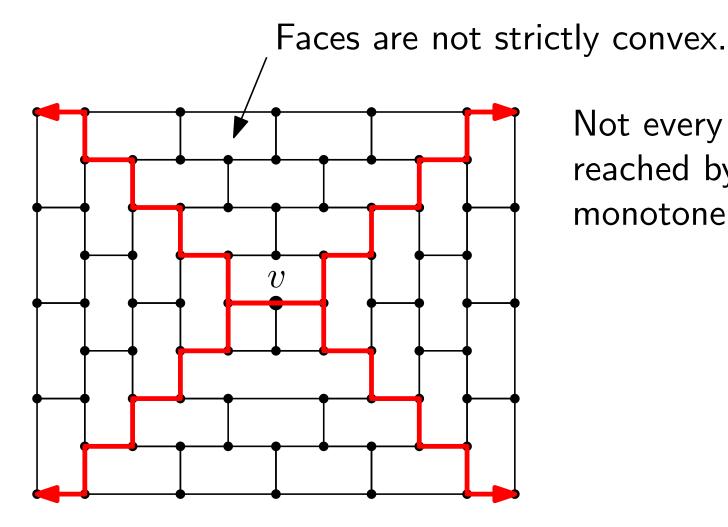


 $\begin{array}{l} R(\varphi):=\\ \text{the } \textit{rightmost}\\ \text{monotone path}\\ \text{in direction } \varphi \end{array}$

🖗 Berlin

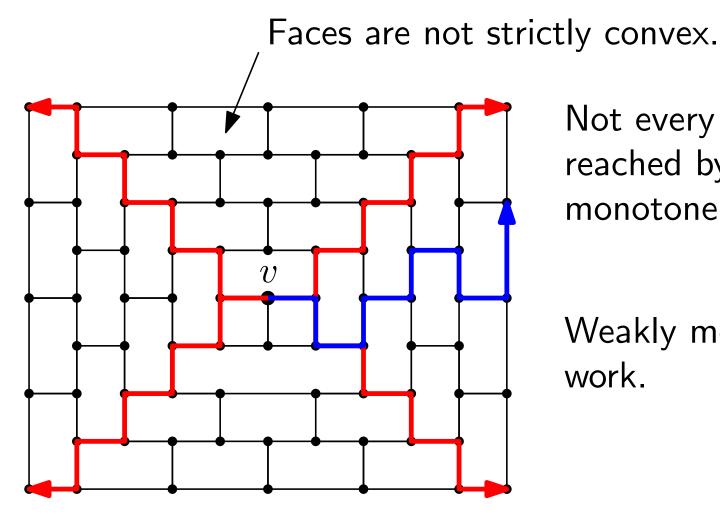
- $R(\varphi)$ is still monotone in direction φ' .
- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').
- \rightarrow a directed graph in which v can reach every vertex by a monotone path.
- degree $\leq d \implies \text{longest path} \geq \log_d n$. QED

Degenerate Situations



Not every vertex can be reached by a strictly monotone path.

Degenerate Situations



Not every vertex can be reached by a strictly monotone path.

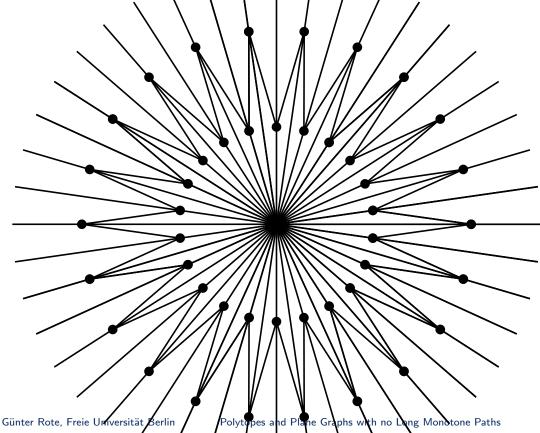
Weakly monotone paths work.

Tightness

THEOREM. Every convex subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n)$ edges.

For $d \approx n$, this is tight, even for triangulations.

(The longest monotone path is bounded by a constant.)

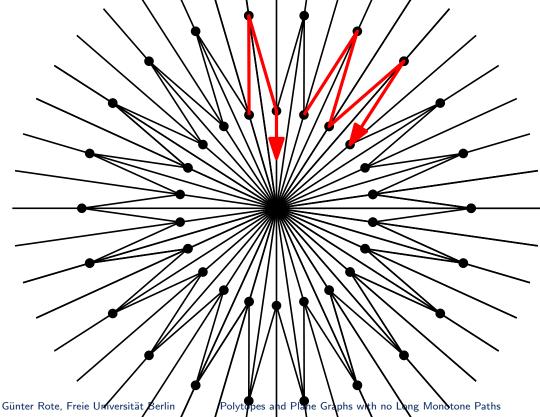


Tightness

THEOREM. Every convex subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n)$ edges.

For $d \approx n$, this is tight, even for triangulations.

(The longest monotone path is bounded by a constant.)



Tightness

THEOREM. Every convex subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n)$ edges.

For $d \approx n$, this is tight, even for triangulations. (The longest monotone path is bounded by a constant.)

8 edges.

What happens if the number of unbounded edges is bounded by a constant (say, 3)?

Few Unbounded Faces

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in *some* direction.

This bound is best possible.

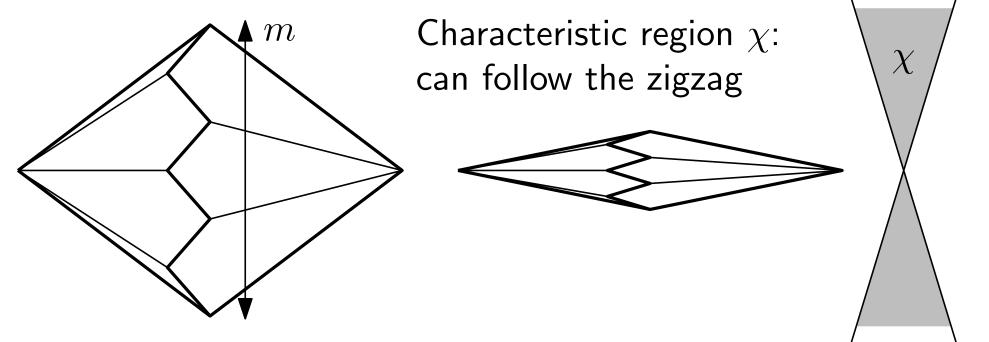
Few Unbounded Faces

small

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in *some* direction.

This bound is best possible.

Upper-bound construction for k constant. $m:=2\log n/\log\log n,\ m^m>n.$



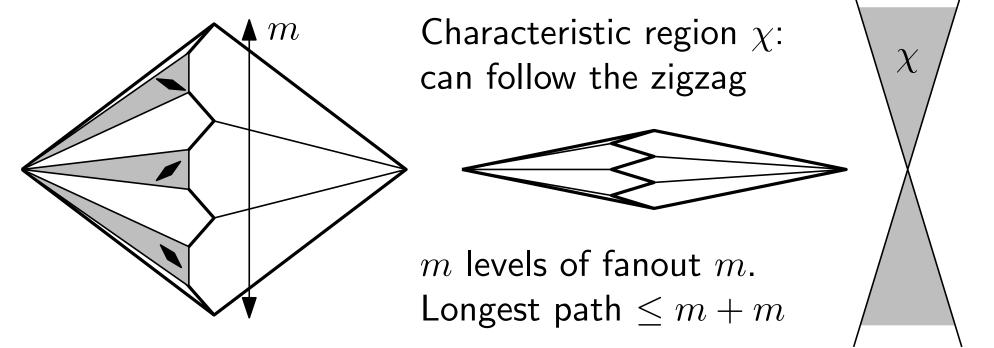
Few Unbounded Faces

small

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in *some* direction.

This bound is best possible.

Upper-bound construction for k constant. $m := 2\log n / \log \log n$, $m^m > n$.



Monotone Face Chains

Freie Universität

THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n + \log n / \log \log n)$ edges. This is tight.

THEOREM. Every polyhedral subdivision of the plane with n vertices and face degree $\leq d$ contains a monotone face sequence with $\geq \Omega(\log_d n + \log n / \log \log n)$ faces. This is tight. The bound holds even for *convex* subdivisions.

(by duality)

Monotone Face Chains

THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every *polyhedral* subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n + \log n / \log \log n)$ edges. This is tight.

(by duality)

THEOREM. Every polyhedral subdivision of the plane with n vertices and face degree $\leq d$ contains a monotone face sequence with $\geq \Omega(\log_d n + \log n / \log \log n)$ faces. This is tight. The bound holds even for *convex* subdivisions.

