Polytopes and Plane Graphs with no Long Monotone Paths

Günter Rote

Freie Universität Berlin joint work with
Adrian Dumitrescu and Csaba D. Tóth

Monotone Paths on Polytopes

Conjecture: Every 3D convex polytope with n vertices has a monotone path of length $\Omega(\sqrt{n})$ in some direction.
[G. Rote, European Workshop on Computational Geometry, Dortmund March 2010]

(Motivation: Partial least-squares matching of point sets.)

$$
\left\langle\mathbf{u}, p_{1}\right\rangle<\left\langle\mathbf{u}, p_{2}\right\rangle<\left\langle\mathbf{u}, p_{3}\right\rangle<\cdots
$$

THEOREM (2012-02-28). There is a family of triangulated polytopes with n vertices, where the longest monotone path has length $O(\log n)$.

Results on Polytopes

THEOREM (2012-02-28). There is a family of triangulated polytopes with n vertices, where the longest monotone path has length $O(\log n)$. (L.B.: $\Omega(\log n / \log \log n))$

THEOREM (2011). There is a family of triangulated polytopes with n vertices and bounded degree d, where the longest monotone path has length $O\left(\log ^{2} n\right)$. (L.B.: $\Omega(\log n)$)

THEOREM (Chazelle, Edelsbrunner, Guibas 1989).
Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with
$\geq \Omega\left(\log _{d} n+\log n / \log \log n\right)$ edges. This is tight.

The characteristic region of a path

$\chi(P)=$
the set of directions $(u, v, 1)$ for which P or its inverse is a monotone path.
$=$ two intersections of half-planes

The $O\left(\log ^{2} n\right)$ construction

a hierarchical structure:

The basic building block Δ

$\left.\begin{array}{|l|rr|}\hline \text { point } & (x, & y, \\ \hline A & (0, & 0, \\ \hline\end{array}\right)$

The characteristic region of Δ

- start in A, B, or B^{\prime}
- visit at least two vertices of $U V W$ and at least two vertices of $U^{\prime} V^{\prime} W^{\prime}$ (in either order)
- end in A, B, or B^{\prime}

Placing the subcells

Placing the subcells

Inductive construction

Characteristic regions: • lie in $|v| \leq 2|u|+1 / 2$

- have no triple intersections
- pairwise intersections lie within $\leq R=2.5$ of the origin

Affine Transformations

turn

Affine Transformations

Affine Transformations

The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.
- start in A, B, or B^{\prime}
- visit at least two vertices of $U V W$ and at least two vertices of $U^{\prime} V^{\prime} W^{\prime}$ (in either order)
- end in A, B, or B^{\prime}

The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.
c can lie in at most two characteristic regions.

The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.
c can lie in at most two characteristic regions.

The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.
c can lie in at most two characteristic regions.
$2 k$ paths of length k

The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.
c can lie in at most two characteristic regions.
$2 k$ paths of length k plus 2 paths of length k
$\rightarrow O\left(k^{2}\right)$ nodes
$\rightarrow O\left(k^{2}\right)=O\left(\log ^{2} n\right)$ vertices

The Construction for $O(\log n)$

Results on Convex Planar Subdivisions

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction. (This is best possible; Chazelle, Edelsbrunner, Guibas 1989.)

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega\left(\log \frac{n}{k} / \log \log \frac{n}{k}\right)$ edges that is monotone in some direction.
This bound is best possible.
THEOREM (Chazelle, Edelsbrunner, Guibas 1989).
Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega\left(\log _{d} n+\log n / \log \log n\right)$ edges. This is tight.

Polyhiedral Subdivisions

A polyhedral subdivision is a projection of a convex piecewise linear surface.

Polyhedral Subdivisions

A polyhedral subdivision is a projection of a convex piecewise linear surface.

Polyhiedral Subdivisions

A polyhedral subdivision is a projection of a convex piecewise linear surface.

Polyhiedral Subdivisions

A polyhedral subdivision is a projection of a convex piecewise linear surface.

n vertices
$\Theta(n)$ edges
$\Theta(n)$ faces

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

$$
R(\varphi):=
$$ the rightmost monotone path in direction φ

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

$$
R(\varphi):=
$$ the rightmost monotone path in direction φ

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

$$
R(\varphi):=
$$ the rightmost monotone path in direction φ

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

$R(\varphi):=$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ^{\prime}.

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

Monotone Paths in Convex Subdivisions freie Universitit (1) Berin

$R(\varphi):=$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ^{\prime}.
- The region between $R(\varphi)$ and $R\left(\varphi^{\prime}\right)$ can be connected to v by monotone paths (in direction φ^{\prime}).

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

Monotone Paths in Convex Subdivisions freie Universitit (1) Berin

$$
R(\varphi):=
$$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ^{\prime}.
- The region between $R(\varphi)$ and $R\left(\varphi^{\prime}\right)$ can be connected to v by monotone paths (in direction φ^{\prime}).

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

Monotone Paths in Convex Subdivisions freie Universitit (1) Berin

$$
R(\varphi):=
$$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ^{\prime}.
- The region between $R(\varphi)$ and $R\left(\varphi^{\prime}\right)$ can be connected to v by monotone paths (in direction φ^{\prime}).

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

Monotone Paths in Convex Subdivisions freie Univeritite 4 Berin

$R(\varphi):=$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ^{\prime}.
- The region between $R(\varphi)$ and $R\left(\varphi^{\prime}\right)$ can be connected to v by monotone paths (in direction φ^{\prime}).

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega\left(\log _{d} n\right)$ edges that is monotone in some direction.

$R(\varphi):=$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ^{\prime}.
- The region between $R(\varphi)$ and $R\left(\varphi^{\prime}\right)$ can be connected to v by monotone paths (in direction φ^{\prime}).
\rightarrow a directed graph in which v can reach every vertex by a monotone path.

$R(\varphi):=$ the rightmost monotone path in direction φ
- $R(\varphi)$ is still monotone in direction φ^{\prime}.
- The region between $R(\varphi)$ and $R\left(\varphi^{\prime}\right)$ can be connected to v by monotone paths (in direction φ^{\prime}).
\rightarrow a directed graph in which v can reach every vertex by a monotone path.
- degree $\leq d \Longrightarrow$ longest path $\geq \log _{d} n$. QED

Degenerate Situations

Not every vertex can be reached by a strictly monotone path.

Degenerate Situations

Not every vertex can be reached by a strictly monotone path.

Weakly monotone paths work.

THEOREM. Every convex subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega\left(\log _{d} n\right)$ edges.
For $d \approx n$, this is tight, even for triangulations.
(The longest monotone path is bounded by a constant.)

THEOREM. Every convex subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega\left(\log _{d} n\right)$ edges.
For $d \approx n$, this is tight, even for triangulations.
(The longest monotone path is bounded by a constant.)

THEOREM. Every convex subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega\left(\log _{d} n\right)$ edges.
For $d \approx n$, this is tight, even for triangulations.
(The longest monotone path is bounded by a constant.)

8 edges.

What happens if the number of unbounded edges is bounded by a constant (say, 3)?

Few Unbounded Faces

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega\left(\log \frac{n}{k} / \log \log \frac{n}{k}\right)$ edges that is monotone in some direction.
This bound is best possible.

Few Unbounded Faces

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega\left(\log \frac{n}{k} / \log \log \frac{n}{k}\right)$ edges that is monotone in some direction.
This bound is best possible.
Upper-bound construction for k constant. $m:=2 \log n / \log \log n, m^{m}>n$.

Few Unbounded Faces

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega\left(\log \frac{n}{k} / \log \log \frac{n}{k}\right)$ edges that is monotone in some direction.
This bound is best possible.
Upper-bound construction for k constant. $m:=2 \log n / \log \log n, m^{m}>n$.

Characteristic region χ : can follow the zigzag

m levels of fanout m.
Longest path $\leq m+m$

Monotone Face Chains

THEOREM (Chazelle, Edelsbrunner, Guibàs 1989).
Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with
$\geq \Omega\left(\log _{d} n+\log n / \log \log n\right)$ edges. This is tight.
(by dụality)

THEOREM. Every polyhedral subdivision of the plane with n vertices and face degree $\leq d$ contains a monotone face sequence with $\geq \Omega\left(\log _{d} n+\log n / \log \log n\right)$ faces.
This is tight. The bound holds even for convex subdivisions.

Monotone Face Chains

THEOREM (Chazelle, Edelsbrunner, Guibas 1989).
Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with
$\geq \Omega\left(\log _{d} n+\log n / \log \log n\right)$ edges. This is tight.
(by duality)

THEOREM. Every polyhedral subdivision of the plane with n vertices and face degree $\leq d$ contains a monotone face sequence with $\geq \Omega\left(\log _{d} n+\log n / \log \log n\right)$ faces. This is tight. The bound holds even for convex subdivisions.

Monotone Face Chains

