Dissecting a Square into an Odd Number of Triangles of Almost Equal Area

Jean-Philippe Labbé, Günter Rote, Günter M. Ziegler
Freie Universität Berlin
Dissecting a Square into an Odd Number of Triangles of Almost Equal Area

Jean-Philippe Labbé, Günter Rote, Günter M. Ziegler
Freie Universität Berlin

\(n = 9 \) triangles

root-mean-square (RMS) error: 0.0002737

The optimum among dissections with at most 8 nodes.
Dissecting a Square into an Odd Number of Triangles of Almost Equal Area

Jean-Philippe Labbé, Günter Rote, Günter M. Ziegler
Freie Universität Berlin

THEOREM (P. Monsky, 1970)
If n is odd, there is no dissection of the square into n triangles of equal area.
Dissecting a Square into an Odd Number of Triangles of Almost Equal Area

Jean-Philippe Labbé, Günter Rote, Günter M. Ziegler
Freie Universität Berlin

THEOREM (P. Monsky, 1970)
If \(n \) is odd, there is no dissection of the square into \(n \) triangles of equal area.

dissection \(\neq \) triangulation
Measuring Area Deviation

areas a_1, \ldots, a_n, target area $= \frac{1}{n}$

- Root-mean-square error (RMS, standard deviation):

\[
RMS := \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (a_i - \frac{1}{n})^2}
\]

- Range:

\[
\text{range} := \max_{1 \leq i \leq n} a_i - \min_{1 \leq i \leq n} a_i
\]

\[
\frac{\text{range}}{2\sqrt{n}} \leq RMS \leq \text{range}
\]
Lower and Upper Bounds

\[\text{range} \geq \frac{1}{2^{2^{O(n)}}} \text{ (doubly-exponential)} \]

Proof: Gap theorems from real algebraic geometry

A family of dissections for every \(n \) with

\[\text{range} \leq \frac{1}{n^{\log_2 n - 5}} = \frac{1}{2^{\Omega(\log^2 n)}} \text{ (superpolynomial)} \]

Previous results:

- Numerical experiments, exhaustive enumeration for small \(n \) (Katja Mansow, 2003)
- A family of triangulations with range \(\leq 1/n^3 \) (Bernd Schulze, 2011)
Overview

- Introduction: Problem statement and results
- Review of Monsky’s proof (2-adic valuation, Sperner’s lemma)
- Modeling the problem
- Lower bound via a gap theorem
- Numerical experiments
- Systematic construction (Thue-Morse sequence)
- More numerical experiments
- Speculations
Monsky: 3-coloring of the plane

2-adic valuation of \mathbb{R}
\to coloring of $\mathbb{R} \times \mathbb{R}$ with three colors A, B, C

Crucial property:
A rainbow triangle cannot have area 0 or $\frac{1}{n}$ for odd n.
Monsky: 3-coloring of the plane

2-adic valuation of \mathbb{R}
\rightarrow coloring of $\mathbb{R} \times \mathbb{R}$ with three colors A, B, C

Crucial property:
A rainbow triangle cannot have area 0 or $\frac{1}{n}$ for odd n.

Parity argument like for Sperner’s lemma:
If the boundary of a polygon has an odd number of AB-colored edges,
then every dissection has an odd number of rainbow triangles.
Lower Bound: Modeling Collinearity

- Lock at all maximal line segments
Lower Bound: Modeling Collinearity

• Lock at all maximal line segments
Lower Bound: Modeling Collinearity

- Lock at all maximal line segments
- Open them up
- Triangulate them arbitrarily.
 \[\rightarrow\] combinatorial triangulation of a 4-gon, with additional zero-area triangles \(Z\)
Lower Bound: Modeling Collinearity

- Lock at all maximal line segments
- Open them up
- Triangulate them arbitrarily.

→ combinatorial triangulation of a 4-gon, with additional zero-area triangles Z
Lower Bound: Modeling Collinearity

- Lock at all maximal line segments
- Open them up
- Triangulate them arbitrarily.
 → combinatorial triangulation of a 4-gon, with additional zero-area triangles Z

Area 0 does not enforce collinearity!
n triangles, areas a_1, \ldots, a_n

ν unknown vertex positions (apart from the 4 fixed corners of the square)
n triangles, areas a_1, \ldots, a_n

v unknown vertex positions (apart from the 4 fixed corners of the square)
n triangles, areas a_1, \ldots, a_n

v unknown vertex positions (apart from the 4 fixed corners of the square)

$$T(\vec{x}) = \sum_{i=1}^{n} (a_i(\vec{x}) - \frac{1}{n})^2, \quad \vec{x} \in \mathbb{R}^{2v}$$

... a degree-4 polynomial, RMS = $\sqrt{T(\vec{x})/n}$
Area Deviation Polynomial

\[n \text{ triangles, areas } a_1, \ldots, a_n \]

\[v \text{ unknown vertex positions (apart from the 4 fixed corners of the square)} \]

\[T(\vec{x}) = \sum_{i=1}^{n} (a_i(\vec{x}) - \frac{1}{n})^2, \quad \vec{x} \in \mathbb{R}^{2v} \]

\[\ldots \text{ a degree-4 polynomial, RMS } = \sqrt{T(\vec{x})/n} \]

\[z \text{ zero-area triangles, areas } b_1, \ldots, b_z \]

\[Z(\vec{x}) = \sum_{j=1}^{z} (b_j(\vec{x}) - 0)^2 \]
Area Deviation Polynomial

\[n \text{ triangles, areas } a_1, \ldots, a_n \]

\[v \text{ unknown vertex positions (apart from the 4 fixed corners of the square)} \]

\[T(\vec{x}) = \sum_{i=1}^{n} (a_i(\vec{x}) - \frac{1}{n})^2, \quad \vec{x} \in \mathbb{R}^{2v} \]

\[\ldots \text{ a degree-4 polynomial, RMS } = \sqrt{T(\vec{x})/n} \]

\[z \text{ zero-area triangles, areas } b_1, \ldots, b_z \]

\[Z(\vec{x}) = \sum_{j=1}^{z} (b_j(\vec{x}) - 0)^2 \]

\[T(\vec{x}) + Z(\vec{x}) \rightarrow \min!, \quad \vec{x} \in \mathbb{R}^{2v} \]
Lower-Bound Argument

\[
\min \{ \text{RMS}^2 \cdot n \mid \text{dissection} \} \\
= \min \{ T(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, \text{ } \vec{x} \text{ is a dissection} \} \\
\geq \min \{ T(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, Z(\vec{x}) = 0 \} \\
\geq \min \{ T(\vec{x}) + Z(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, Z(\vec{x}) = 0 \} \\
\geq \min \{ T(\vec{x}) + Z(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v} \} \\
> 0 \quad \text{(à la Sperner and Monsky)}
\]
Lower-Bound Argument

\[
\min \{ \text{RMS}^2 \cdot n \mid \text{dissection} \} \\
= \min \{ T(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, \text{ \vec{x} is a dissection} \} \\
\geq \min \{ T(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, Z(\vec{x}) = 0 \} \\
\geq \min \{ T(\vec{x}) + Z(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, Z(\vec{x}) = 0 \} \\
\geq \min \{ T(\vec{x}) + Z(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v} \} \\
> 0 \quad \text{(à la Sperner and Monsky)}
\]
Lower-Bound Argument

\[
\min \{ \text{RMS}^2 \cdot n \mid \text{dissection} \} \\
= \min \{ T(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, \ \vec{x} \text{ is a dissection} \} \\
\geq \min \{ T(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, Z(\vec{x}) = 0 \} \\
\geq \min \{ T(\vec{x}) + Z(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v}, Z(\vec{x}) = 0 \} \\
\geq \min \{ T(\vec{x}) + Z(\vec{x}) \mid \vec{x} \in \mathbb{R}^{2v} \} \\
> 0 \quad \text{(`a la Sperner and Monsky)}
\]
Gap Theorems

“An algebraic number $\alpha \neq 0$ cannot be arbitrarily close to 0.”
(depending on the degree and the size of the coefficients)
Gap Theorems

"An algebraic number $\alpha \neq 0$ cannot be arbitarily close to 0."
(depending on the degree and the size of the coefficients)

The DMM bound ("Davenport–Mahler–Mignotte")
[Emiris–Mourrain–Tsigaridas, 2010]

- polynomial $f(\vec{x})$ of degree d in k variables
- integer coefficients with $\leq \tau$ bits
- $f(x) > 0$ on the unit simplex in \mathbb{R}^k

$\Rightarrow \min\{ f(x) \mid x \in \text{unit simplex} \} \geq m_{\text{DMM}}$

$$\frac{1}{m_{\text{DMM}}} = 2^{d(d-1)(k-1)}((d \log_2 k + \tau + 1)(k+1) + (k^2 + 3k + 1) \log_2 d + d + 2k + 1) \times 2^{(k^2 + k) \log_2 \sqrt{d}}$$
Gap Theorems

"An algebraic number $\alpha \neq 0$ cannot be arbitrarily close to 0."
(depending on the degree and the size of the coefficients)

The DMM bound ("Davenport–Mahler–Mignotte")

[Emiris–Mourrain–Tsigaridas, 2010]

• polynomial $f(\vec{x})$ of degree d in k variables
• integer coefficients with $\leq \tau$ bits
• $f(x) > 0$ on the unit simplex in \mathbb{R}^k

$$\implies \min \{ f(x) \mid x \in \text{unit simplex} \} \geq m_{\text{DMM}}$$

$$\frac{1}{m_{\text{DMM}}} = 2^{d(d-1)(k-1)} \left((d \log_2 k + \tau + 1)(k+1) + (k^2 + 3k + 1) \log_2 d + d + 2k + 1 \right) \times 2^{k^2 + k} \log_2 \sqrt{d}$$

THEOREM: If the unit square is dissected into an odd number n of triangles, the range of areas is at least $1/2^{2^{\Omega(n)}}$.
Computer Experiments

1. Generate all combinatorial types of triangulations/dissections
 \[\text{plantri by Brinkmann and McKay} \]

2a. [Katja Mansow 2003] for triangulations:
 Minimize the range numerically
 \[\text{minmax command of MATLAB} \]

2b. For dissections: Minimize the squared error (RMS):
 Find critical points of \(T(\vec{x}) + \lambda Z(\vec{x}) \).
 \(\rightarrow \) system of polynomial equations
 \[\text{Bertini of Bates, Hauenstein, Sommese, Wampler} \]
Computer Experiments

\(n = 3, \text{ RMS } = 0.11786, \text{ range } = 0.25 \)
Computer Experiments

$n = 5$, RMS = 0.01030

← the best triangulation found by Mansow: range = 0.0225
Computer Experiments

$n = 7$, $\text{RMS} = 0.000778$

the RMS-optimal solutions with at most 8 vertices:

the best triangulation found by Mansow:

range $= 0.0031$
Computer Experiments

\[n = 9, \text{RMS} = 0.000274 \]
the RMS-optimal solution with at most 8 vertices:

best triangulation found by Mansow:
9 vertices, range = 0.00014 !

Günter Rote, Freie Universität Berlin
Dissecting a square into an odd number of triangles of almost equal area
Discrete Geometry Fest, Budapest, May 15–19, 2017
A Systematic Construction

\[
(0, 1) \quad \ldots \quad (1, 1 - \frac{2}{n}) \quad (1, 0)
\]

range = \(O(1/n^3) \)
A Systematic Construction

\[\begin{align*}
(0, 1) & \quad (1, 1) \\
(1, 1 - \frac{2}{n}) & \quad (0, 0) \\
(1, 0) &
\end{align*} \]

\[n \equiv 1 \pmod{4} \]

\[\text{range} = O\left(\frac{1}{n^5}\right) \]

A Systematic Construction

\[n - 2^{\lfloor \log_2 n \rfloor} - 1 \text{ filler triangles} \]

\[2^{\lfloor \log_2 n \rfloor} \text{ triangles} \]

use the Thue-Morse sequence \(s_1 s_2 s_3 \ldots = +--+-++---++----+++--+-++---++----+++--+-\ldots \)

THEOREM:

\[\text{range} \leq \frac{8n^2}{n^{\log_2 n}} (1 + O\left(\frac{\log n}{n}\right)) \]
Estimating the error

\[\frac{1}{n} \]

\[\frac{2}{n} \]

\[a_1, a_2, \ldots, a_i, a_{i+1}, \ldots, a_{n-1} \]

\[O \]
Estimating the error

\[\frac{1}{n} \]

\[\frac{2}{n} \]

\[a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_i \quad a_{i+1} \quad a_{n-1} \]

\[O \]
Estimating the error

\[\prod_{i=1}^{n-1} \left(\frac{1 - iU}{1 - (i - 1)U} \right)^{s_i} \approx 1, \quad U := \frac{4}{n^2} \]
Estimating the error

\[
\begin{align*}
W &:= \sum_{i=1}^{n-1} s_i \ln \frac{1 - iU}{1 - (i-1)U} \approx 0 \\
U &:= \frac{4}{n^2} \\
\prod_{i=1}^{n-1} \left(\frac{1 - iU}{1 - (i - 1)U} \right)^{s_i} &\approx 1,
\end{align*}
\]
Estimating the error

\[W := \sum_{i=1}^{n-1} s_i \ln \frac{1 - iU}{1 - (i - 1)U} \approx 0 \]

\[\sum_{i=1}^{n-1} s_i \ln \frac{1 - iU \pm \varepsilon}{1 - (i - 1)U \pm \varepsilon} \neq 0 \]

\[W \text{ small} \rightarrow \varepsilon \text{ small.} \implies \text{Concentrate on small } W! \]

\[\sum_{i=1}^{n-1} s_i \ln(1 - iU) \]

\[= \sum_{i=1}^{n-1} s_i \left(-iU - \frac{i^2}{2}U^2 - \frac{i^3}{3}U^3 - \cdots \right) \]

Try to cancel the first powers of \(U \)
Annihilate Powers

\[
1^0 - 2^0 - 3^0 + 4^0 - 5^0 + 6^0 + 7^0 - 8^0 - 9^0 + 10^0 + 11^0 - 12^0 + 13^0 - 14^0 - 15^0 + 16^0 = \\
1 - 2 - 3 + 4 - 5 + 6 + 7 - 8 - 9 + 10 + 11 - 12 + 13 - 14 - 15 + 16 = \\
1^2 - 2^2 - 3^2 + 4^2 - 5^2 + 6^2 + 7^2 - 8^2 - 9^2 + 10^2 + 11^2 - 12^2 + 13^2 - 14^2 - 15^2 + 16^2 = \\
1^3 - 2^3 - 3^3 + 4^3 - 5^3 + 6^3 + 7^3 - 8^3 - 9^3 + 10^3 + 11^3 - 12^3 + 13^3 - 14^3 - 15^3 + 16^3 = \\
1^4 - 2^4 - 3^4 + 4^4 - 5^4 + 6^4 + 7^4 - 8^4 - 9^4 + 10^4 + 11^4 - 12^4 + 13^4 - 14^4 - 15^4 + 16^4 = \\
\]

Theorem (E. Prouhet 1851)

If \(f \) is a polynomial of degree \(< k \) then

\[
\sum_{i=1}^{2^k} s_i \cdot f(i) = 0,
\]

for the Thue-Morse sequence \(s_1, s_2, s_3, \ldots \).
Upper bound

THEOREM:
For every n, there is a dissection with

$$\text{range} \leq \frac{8n^2}{n \log_2 n} \cdot (1 + O\left(\frac{\log n}{n}\right))$$
Systematic is not Always Best

<table>
<thead>
<tr>
<th>n</th>
<th>optimal sign sequence s</th>
<th>$\varepsilon = \pm \text{range}/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3^*</td>
<td>++</td>
<td>-0.16667</td>
</tr>
<tr>
<td>5^*</td>
<td>+++</td>
<td>$+0.01250$</td>
</tr>
<tr>
<td>7</td>
<td>++++</td>
<td>-0.00010248</td>
</tr>
<tr>
<td>9^*</td>
<td>++++++++</td>
<td>-0.00016360</td>
</tr>
<tr>
<td>11</td>
<td>++++++++</td>
<td>-4.1201×10^{-6}</td>
</tr>
<tr>
<td>13</td>
<td>++++++++</td>
<td>$+5.9928 \times 10^{-6}$</td>
</tr>
<tr>
<td>15</td>
<td>++++++++</td>
<td>-5.2871×10^{-7}</td>
</tr>
<tr>
<td>17^*</td>
<td>++++++++</td>
<td>-3.4708×10^{-8}</td>
</tr>
<tr>
<td>19</td>
<td>++++++++</td>
<td>$+4.2052 \times 10^{-8}$</td>
</tr>
<tr>
<td>21</td>
<td>++++++++</td>
<td>-5.5778×10^{-9}</td>
</tr>
<tr>
<td>23</td>
<td>++++++++</td>
<td>$+3.5359 \times 10^{-9}$</td>
</tr>
<tr>
<td>25</td>
<td>++++++++</td>
<td>-7.457×10^{-10}</td>
</tr>
<tr>
<td>27</td>
<td>++++++++</td>
<td>-1.266×10^{-10}</td>
</tr>
<tr>
<td>29</td>
<td>++++++++</td>
<td>$+9.026 \times 10^{-12}$</td>
</tr>
<tr>
<td>31</td>
<td>++++++++</td>
<td>$+2.446 \times 10^{-12}$</td>
</tr>
<tr>
<td>33^*</td>
<td>++++++++</td>
<td>-1.423×10^{-12}</td>
</tr>
<tr>
<td>35</td>
<td>++++++++</td>
<td>$+1.777 \times 10^{-13}$</td>
</tr>
<tr>
<td>37</td>
<td>++++++++</td>
<td>$+1.199 \times 10^{-14}$</td>
</tr>
</tbody>
</table>
Systematic is not Always Best

Example: \(n = 33 \)

Best sequence:

\[
+\ldots-\ldots+-\ldots+\ldots++++
\]

\(\varepsilon = -1.4232 \times 10^{-12} \)

Thue-Morse:

\[
+\ldots-\ldots+-\ldots+\ldots++++
\]

\(\varepsilon = 1.0615 \times 10^{-10} \)

Guarantee from theorem:

\(|\varepsilon| \leq 6.6565 \times 10^{-5} \)
Heuristic Explanation

\[W := \sum_{i=1}^{n-1} s_i \cdot \ln \frac{1 - iU}{1 - (i - 1)U} \approx 0 \]

RANDOM \(s_i = \pm 1 \)

\(W \): approximately Gaussian with \(\mu = 0 \) and \(\sigma \approx U \sqrt{n} \sim n^{-3/2} \).

Take \(N = 2^{n-1} \) random samples from this distribution.
Heuristic Explanation

\[W := \sum_{i=1}^{n-1} s_i \cdot \ln \frac{1 - iU}{1 - (i - 1)U} \approx 0 \]

RANDOM \(s_i = \pm 1 \)

\(W \): approximately Gaussian with \(\mu = 0 \) and \(\sigma \approx U \sqrt{n} \sim n^{-3/2} \).

Take \(N = 2^{n-1} \) random samples from this distribution.

Near \(x = 0 \), these samples are like a Poisson distribution with density
\[\lambda = N \cdot f(0) \sim 2^n / n^{3/2} \]

\[\rightarrow \text{Smallest absolute value} = 1/2\lambda \sim n^{3/2} / 2^n \]
Triangulations?

So far: Ideas for systematic computer experiments.
No general analysis.
The Tarry-Escott Problem

\[\sum_{i=1}^{2^k} s_i \cdot i^d = 0, \text{ for } d = 0, 1, \ldots, k - 1 \]

Can you annihilate the first k powers with a SHORTER sign sequence?

The Tarry-Escott Problem: Find two distinct sets of integers $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n such that

\[\alpha_1^d + \cdots + \alpha_n^d = \beta_1^d + \cdots + \beta_n^d, \text{ for all } d = 0, 1, 2, \ldots, k - 1 \]

Try to make n as small as possible.