
There are not too many Magic Configurations

Eyal Ackerman∗ Kevin Buchin† Christian Knauer† Rom Pinchasi‡

Günter Rote†

February 27, 2007

Abstract

A finite planar point set P is called a magic configuration if there is an assignment of positive
weights to the points of P such that, for every line l determined by P , the sum of the weights
of all points of P on l equals 1. We prove a conjecture of Murty from 1971 and show that a
magic configuration consists either of points in general position, or all points are collinear, with
the possible exception of one point, or they form a special configuration of 7 points.

1 Introduction

Let P be a finite set of points in the plane. P is called a magic configuration if there is an assignment of
positive weights to the points of P such that, for every line l determined by P , the sum of the weights
of all points of P on l equals 1. Figure 1 shows an example of a point set that is a magic configuration.
This special point set (and any projective transformation of it) is called a failed Fano configuration.
We prove a conjecture of Murty [Mu71] saying that apart from failed Fano configurations, every set of
n points that is a magic configuration is either in general position, or contains n−1 collinear points. A
few other remarks on the history of the problem can be found in The Open Problems Project [DMO].

Theorem 1. A magic configurations of cardinality n is either

• a configuration with n − 1 (or n) collinear points, or

• a configuration in general position, that is, with no three points on a line, or

• a configuration with 7 points that up to a projective transformation is depicted in Figure 1.

We will now make some preliminary observations regarding magic configurations. Many of these
observations can be found already in Murty’s paper [Mu71].

Assume that a configuration P of n ≥ 2 points in the plane is magic and that its points are assigned
positive weights that witness the fact that P is magic. Recall that a line determined by P is called
ordinary if it includes precisely two points of P . By the Gallai-Sylvester theorem [Ga44, Sy93], the
points of P must determine an ordinary line unless they are all collinear.

We claim that unless P has n − 1 collinear points, then for every point p ∈ P there is an ordinary
line not passing through p. Assume otherwise. By the theorem of Kelly and Moser [KM58], the set
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Figure 1: Failed Fano configuration

P \{p} determines at least 3
7 (n−1) ordinary lines (see [CS93] for the current best bound on the number

of ordinary lines determined by n points). By our assumption, all these lines must pass through p. It
follows that at most 1

7 (n − 1) points of P \ {p} lie on an ordinary line through p and these are all the
ordinary lines determined by P , contradicting the Kelly-Moser theorem.

It is now easy to see that unless P has n − 1 collinear points, every point through which there is
an ordinary line must be assigned the weight 1

2 . To see this assume that p is such a point and assume
without loss of generality that it is assigned a weight that is greater than 1

2 . (Otherwise look at the
other point on the ordinary line through p.) Let q and r be two points different from p that constitute
an ordinary line in P . One of q and r is assigned a weight greater than or equal to 1

2 . The sum of the
weights assigned to the points on the line through that point and p will be strictly greater than 1, a
contradiction.

Denote by A the set of all points in P through which there is an ordinary line, and assume that P
does not have n − 1 collinear points. Then each point in A is assigned a weight of 1

2 . It follows that
any line through two points in A must be ordinary. Denote by B the set P \ A. Clearly, every point
in B must be assigned a weight that is strictly smaller than 1

2 . Indeed, let b ∈ B and a ∈ A. The line
through a and b cannot be ordinary for otherwise b ∈ A. Therefore it must contain a third point c.
As the weight assigned to a is 1

2 , it follows that the weight assigned to b can be at most 1
2 minus the

weight assigned to c.

Theorem 1 will therefore follow from the following theorem.

Theorem 2. Let A and B be two nonempty sets of distinct points in the Euclidean plane. Assume
that all the ordinary lines determined by A ∪ B are precisely all the lines determined by two points of
A. Assume further that every point in A ∪ B is assigned a positive weight such that the sum of the
weights of all points on any given line determined by A ∪ B is 1. Then the configuration of points
A ∪ B is a failed Fano configuration that is equal, up to a projective transformation, to the one shown
in Figure 1, where A consists of the points whose weight is 1

2 .

Instead of proving Theorem 2 we will prove its dual theorem on the unit sphere S that touches
the plane at the origin. We refer here to the standard duality under which the dual of a point in the
plane is a great circle on S, and the dual of a line is a pair of antipodal points on S. For a point p in
the plane, the dual D(p) is the great circle on S which is the intersection of S with the plane through
the center of S that is perpendicular to the line through p and the center of S (See Figure 2a). For
a line l in the plane, D(l) is the pair of antipodal points that are the intersection points of S and
the line through the center of S that is perpendicular to the plane through l and the center of S (See
Figure 2b). This duality preserves incidence relations in the sense that a point p that is incident to a
line l in the plane is mapped to a great circle D(p) on S that is incident to the two points of D(l).

Recall that an ordinary intersection point in an arrangement of curves is an intersection point
through which precisely two curves pass.
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(a) The dual D(p) of a point p is the great circle that is
the intersection of S with the plane through the center
of S that is perpendicular to the line through p and the
center of S.
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through the center of S that is perpendicular to the
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Figure 2: Duality between the plane and the unit sphere

Figure 3: A set of great circles in the exceptional configuration of Theorem 3. Only the front half of
the sphere is shown. One blue circle forms the boundary of the visible half-sphere and is shown as a
whole. The right part shows a corresponding arrangement of lines. The dashed circles/lines form the
set A. Their weight is 1

2 . The solid circles/lines form the set B, and their weight is 1
4 .

Theorem 3. Let A and B be two nonempty sets of distinct great circles on a sphere S. Assume
that all the ordinary intersection points determined by A ∪ B are precisely all the intersection points
determined by A. Assume further that every circle in A ∪ B is assigned a positive weight such that
the sum of the weights of all circles incident to any given intersection point on S is 1. Then the
configuration of circles A ∪ B is the sphere-dual of a failed Fano configuration that is equal, up to a
projective transformation, to the one shown in Figure 1. The set A consists of the circles dual to the
points whose weight is 1

2 .

Figure 3 shows the exceptional configuration of Theorem 3, together with a central projection
through the center of S on a plane that touches S. Under this projection every two antipodal points
on S are projected to the same point in the plane.

2 Proof of Theorem 3

We refer to the circles in A as red circles and to the circles in B as blue circles. In all remaining figures
in this paper the solid lines represent the blue circles, while the dashed lines represent the red circles.

First of all, we can assume that |A| ≥ 3 in Theorem 2, and hence, by duality, also in Theorem 3:
any noncollinear set of points determines at least 3 ordinary lines (see [KM58]), and this would be
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object of B ch(·) ch1(·) ch2(·) ch3(·) ch4(·)
bad crossing point −1 0 0 0 0
good crossing point ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0
bad (but not evil) triangle 0 0 −1/4 ≥ 0 ≥ 0
evil triangle 0 0 −1/4 −1/4 0
0-quadrangle 1 1 ≥ 0 ≥ 0 ≥ 0
1-quadrangle 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0
good 2-quadrangle 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0
bad 2-quadrangle 1 −1 0 0 0
0-pentagon 2 2 ≥ 3/4 ≥ 0 ≥ 0
1-pentagon 2 ≥ 1 ≥ 3/4 ≥ 1/2 ≥ 1/2
2-pentagon 2 ≥ 0 ≥ 0 ≥ 0 ≥ 0
r-(k-gon) , k ≥ 6, r ≤ bk

2c k − 3 ≥ k − 3 − r ≥ 3
4k − 3 − r

2 ≥ 1
2k − 3 ≥ 1

2k − 3 ≥ 0

Table 1: Charge of objects of B before and after Steps 1–4

impossible if |A| ≤ 2.

We consider the arrangement B of the circles in B on the sphere S. Observe that any crossing
point on a circle b ∈ B, even with a circle in A, is a crossing point in B. Indeed, otherwise either it is
an ordinary intersection point on b, or it is an intersection point that is not ordinary of at least two
circles in A, contrary to our assumptions. It follows that |B| ≥ 2, since otherwise there would be no
crossing points in B.

We will use the term ‘triangle’ for a face of B with three edges, the term ‘quadrangle’ for a face
with four edges, etc. There are no faces with only two edges in B. Indeed, otherwise all blue circles
pass through the same two antipodal points p and p′ on the sphere S. As |A| ≥ 3, there is a circle in
A not passing through p, and hence also not through its antipodal point p′. This circle intersects the
circles in B in ordinary intersection points, a contradiction.

Two faces in B are called adjacent if they share an edge. Similarly, two edges in B are called
adjacent, if they are incident to the same crossing point. A great circle s ∈ B and a face f of B are
called adjacent, if s includes an edge of f . We begin by assigning a charge ch(·) to the faces and
vertices of the arrangement B: The charge of a face with k edges is k−3, while the charge of a crossing
point of k blue circles is k − 3. For every k ≥ 3 denote by fk the number of faces in B with k edges,
and by tk the number of crossing points of exactly k blue circles. It follows from Euler’s formula that∑

k(k − 3)fk +
∑

k(k − 3)tk + 6 = 0. Therefore, the overall charge is −6.

Our plan is to redistribute the charges (discharge) in four steps, such that finally every face and
crossing point in B will have a nonnegative charge. Then it will follow that the total charge is nonneg-
ative, hence a contradiction. For each i = 1, 2, 3, 4 we will denote by chi(·) the charge of an object (a
face in B or a crossing point of blue circles) after the i-th step. For convenience, Table 1 summarizes
the charges of selected objects from B through the four steps of discharging.

The only elements whose initial charge is negative are crossing points through which there are
precisely two blue circles. We call such a crossing point bad.

The following lemma and the subsequent claim will be useful throughout the analysis of the dis-
charging steps.

Lemma 1. Let A and B as in Theorem 3. Assume that there is a blue circle s with only three pairs of
antipodal vertices. If two of these points (and their antipodals) have precisely two blue circles passing
through them, then A ∪ B is the sphere-dual of a failed Fano configuration.

Proof. Let x1, x2, x3 and their antipodal vertices x′
1, x

′
2, x

′
3 be the vertices on s. Since every red circle

must intersect s in a distinct pair of vertices, it follows that |A| = 3, and there are three red circles
r1, r2, r3 passing through y1, y2, y3, respectively, see Figure 4.
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Figure 4: A blue circle with only three vertices leads to the dual of a failed Fano configuration.
.

Suppose x2 and x3 are vertices that are incident to precisely two blue circles each, and let s2 and
s3 denote the blue circles (different from s) passing through x2 and x3,

We claim that there are at most four blue circles in B. Indeed, all additional blue circles s4, . . . , sk

must cross s at x1 (and x′
1). The circles r1, s, s4, s5, . . . , sk all go through x1, and hence they cross s2 at

distinct points. There are at most three points where they can cross s2 at intersection points that are
not ordinary: x2; the intersection point of s2 and s3; and the intersection point of s2 and r3. If more
than three circles go through x1, at least one of them would have to cross s2 at an ordinary intersection
point. Since there are no ordinary intersection points on blue circles, it follows that |B| = k ≤ 4. On
the other hand, since at least two blue circles must pass through x1, we know that there is at least a
fourth blue circle s4, and hence |B| = 4.

If s4 would go through the intersection of s2 and s3, this would mean that s4 contains exactly four
crossing points in B. Since the circles in A cross s4 only at vertices of B, and |A| = 3, there must be
two circles of A crossing s4 at the same point, which is impossible.

It follows that no three of the four circles of B are concurrent. There is only one combinatorial
type of arrangement B with this property, which is shown in Figure 3. Now it can be directly seen by
inspection that there is only one way to extend this arrangement B of four blue circles by three red
circles such that the red-blue crossings occur only at the vertices of B, and at most one red circle passes
through each vertex of B. Hence, A ∪ B must be the sphere-dual of a failed Fano configuration.

We can now easily derive the following claim.

Claim 1. Assume that there is a quadrangle d in B such that there are precisely two blue circles through
every vertex of d, and d is adjacent to two triangles at two of its opposite edges, see Figure 5. Then
A ∪ B is the sphere-dual of a failed Fano configuration.

Proof. Let t1 and t2 denote the two triangles adjacent to d at two of its opposite edges. Let s1, s2, s3.
and s4 denote the four blue circles that include the edges of d in counterclockwise order so that s1 and
s3 separate d from t1 and t2, respectively. Let x1, x2, x3, and x4 denote the four vertices of d listed in
counterclockwise order so that x1 is the intersection point of s1 and s2. Since s1 and s2 are the only
blue circles through x1 and s4 and s1 are the only blue circles through x4, it follows that s2 and s4

meet at a vertex of t1 that we denote by x5. Similarly, s2 and s4 meet at a vertex of t2 that we denote
by x′

5. x5 and x′
5 are therefore two antipodal points on the sphere S. Therefore, x1, x2, x5 and their

antipodal points on S are the only intersection points on s2. Since there are precisely two blue circles
through x1 and through x2, Lemma 1 applies, and the proof is complete.

We proceed by describing the four discharging steps and analyzing their effect on the charges of
the faces and intersection points of B.
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Figure 6: The discharging steps 1–3

Step 1 [charging bad crossing points]: Let C denote the arrangement of all circles in A∪B. Since
we assume that no ordinary intersection point in C lies on a blue circle and that every pair of red
circles cross at an ordinary point in C, it follows that through each bad crossing point p in B there is
precisely one red circle r. Let f1 and f2 be the two faces in B that are incident to p and are crossed
by r (see Figure 6a). Then, we transfer 1/2 units of charge from each of f1 and f2 to p.

After Step 1 every crossing point of blue circles has a nonnegative charge. Let us now examine the
remaining charge at the faces of the arrangement B. A red circle can cross the boundary of a face
in B only at its vertices, for otherwise we would have either an ordinary intersection point of C on a
blue circle, or an intersection point of two (or more) red circles that is not ordinary in C. Thus, every
red circle that crosses a face f in B induces, in fact, a red diagonal in f . A face f with m such red
diagonals loses at most m units of charge in Step 1. We use an integer before the name of a face in
B to denote the number of its red diagonals. For example, a 2-hexagon is a face with six edges in B
that has two red diagonals. Since triangles cannot have a (red) diagonal, we refer to them simply as
‘triangles’ instead of 0-triangles. Thus, triangles do not lose charge in Step 1. More generally, a k-gon
can have at most bk

2 c red diagonals. Pentagons may have at most two red diagonals, and thus they
remain with a nonnegative charge as well. The only elements whose charge might be negative after
Step 1 are 2-quadrangles, as their charge might be −1, in case they are incident to four bad crossing
points.

A crossing point x of circles from B is called good, if there is a (necessarily one) red circle through
x and at least 3 blue circles through x. We call a 2-quadrangle good, if it is incident to a good crossing
point. We call a 2-quadrangle that is not incident to any good crossing point a bad 2-quadrangle.

Claim 2. Any good 2-quadrangle is incident to at least two good crossing points.

Proof. Assume to the contrary that d is a good 2-quadrangle that is incident to precisely one good
crossing point x. Let s1, s2, s3, and s4 denote the four circles in B that constitute the edges of d
in counterclockwise order so that s1 and s4 are incident to x. As x is a good crossing point, there is
another blue circle through x that we denote by s0. (See Figure 7.) By our assumption, all the crossing
points that are incident to d, with the exception of x, are incident to precisely two blue circles and one
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Figure 7: A good 2-quadrangle cannot be incident to exactly one good crossing point.

red circle.

Let W (s) denote the weight assigned to a circle s. As we observed, for every s ∈ A we have
W (s) = 1/2, and for every s ∈ B, 0 < W (s) < 1/2. Considering the crossing point of s1 and s2, we
see that W (s1) + W (s2) = 1/2. Similarly, considering the crossing point of s2 and s3, we see that
W (s2) + W (s3) = 1/2, and therefore W (s1) = W (s3). Considering the crossing point of s3 and s4, we
see that W (s3) + W (s4) = 1/2. Therefore, W (s1) + W (s4) = W (s3) + W (s4) = 1/2. But this is a
contradiction because considering the circles through x we see that W (s1)+W (s4) ≤ 1/2−W (s0) < 1/2.
(This is actually the only place in the proof of Theorem 3 where the assumption on the weights is
used.)

As a corollary of Claim 2, we conclude that after Step 1 every good 2-quadrangle has a nonnegative
charge, as it is incident to at most two bad crossing points. We still have to take care of the bad
2-quadrangles. This will be done in the next step.

Step 2 [charging bad 2-quadrangles]: In this step every bad 2-quadrangle compensates for its
charge shortage by taking 1/4 units of charge from each of its four neighboring faces. That is, let f
be a face in B adjacent to a bad 2-quadrangle d, then d takes the 1/4 units of charge from the charge
of f (see Figure 6b). Note that in such a case f does not have red diagonals at the vertices of the edge
common to f and d.

It is easy to check, by considering the different possibilities for f , that the only elements that might
have a negative charge after Step 2 are triangles adjacent to bad 2-quadrangles. (We refer the reader
to the proof of Claim 4 below for a detailed argument for the case of k-gons with k ≥ 5.) We call a
triangle that is adjacent to a bad 2-quadrangle a bad triangle.

Claim 3. A triangle can share an edge with at most one bad 2-quadrangle, unless A∪B is the sphere-
dual of a failed Fano configuration.

Proof. Let t be a triangle adjacent to two bad 2-quadrangles d1 and d2. Let s1, s2, and s3 denote
the three blue circles that constitute the triangle t, such that s1 and s2 separate t from d1 and d2,
respectively (see Figure 8). The red circle r through the intersection point of s1 and s2 crosses s3 at a
vertex x1 of d1 and at a vertex x2 of d2, which are therefore antipodal points on the sphere S. Since
there are precisely two blue circles through each vertex of t on s3, we can apply Lemma 1 to s3 and
conclude that A ∪ B is the sphere-dual of a failed Fano configuration.

It follows that the only negative charges are now the charges of −1/4 at the bad triangles.

Step 3 [charging some of the bad triangles]: In this step we use the excess charge that exists at
faces with at least five edges to charge part of the bad triangles.

Let f be a face in B with k edges, where k ≥ 5. Let t be a bad triangle adjacent to a bad 2-
quadrangle d. We transfer 1/4 units of charge from f to t, if f and t share a vertex and f shares an
edge with d (see Figure 6c).
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Figure 8: A bad triangle cannot be adjacent to two bad quadrangles.

Before continuing to the last step, we show that after Step 3, every face f with at least five edges
remains with a nonnegative charge.

Claim 4. Let f be a face with k edges, where k ≥ 5. Then after Step 3, f has a nonnegative charge.

Proof. Let r be the number of red diagonals of f . Assume first that k ≥ 6. After Step 1, the charge of
f is at least k − 3− r. f has exactly k − 2r vertices that are not incident to a red diagonal, and hence
at most k − 2r edges none of whose vertices is incident to a red diagonal of f . It follows that f may
be adjacent to at most k − 2r (bad) 2-quadrangles. Therefore, the charge of f after Step 2 is at least
k − 3− r − k−2r

4 . As f may contribute 1/4 units of charge to at most k − 2r bad triangles, the charge
of f after Step 3 is at least k − 3 − r − k−2r

2 = k
2 − 3 ≥ 0.

It remains to consider the case where f is a pentagon. If f is a 2-pentagon, then f cannot be
adjacent to any (bad) 2-quadrangle. Therefore, Step 2 as well as Step 3 do not affect the charge of f
and it remains at least 0, as it is after Step 1. If f is a 1-pentagon, then after Step 1 the charge of f
is at least 1. f may be adjacent to at most one 2-quadrangle. Therefore, after Step 2 the charge of
f is at least 3/4. f contributes 1/4 units of charge in Step 3 to at most one bad triangle and hence
remains with a charge of at least 1/2 after Step 3.

Finally, if f is a 0-pentagon, then after Step 1 the charge of f is 2. Observe that if f shares two
adjacent edges e1 and e2 with bad 2-quadrangles d1 and d2, respectively, then the common vertex of e1

and e2 cannot be a vertex of a bad triangle t. Indeed, otherwise t is adjacent to two bad 2-quadrangles,
which contradicts Claim 3, unless A ∪ B is the sphere-dual of a failed Fano configuration. From this
observation it follows that if f is adjacent to five bad 2-quadrangles, then it does not share a vertex
with any bad triangle and hence the charge of f after Step 3 is 3/4. If f shares a vertex with five
bad triangles, then it may be adjacent to at most two bad 2-quadrangles (in fact one could show that
even that is not possible) and hence the charge of f after Step 3 is at least 1/4. In all other cases
f is adjacent to at most four bad 2-quadrangles and shares a vertex with at most four bad triangles
and hence the charge of f after Step 3 is at least 0. (This last argument is far from being tight, yet it
suffices for our needs.)

Therefore, after Step 3, the only objects with a negative charge are those bad triangles who did not
receive 1/4 units of charge in Step 3. We call those triangles evil.

Step 4 [charging evil triangles]: After Step 3 of discharging, the only elements without the desired
charge are evil triangles, as they have −1/4 units of charge each. We will use the excess charge that
exists at the 0-quadrangles to move 1/4 units of charge to every evil triangle.

For every 0-quadrangle q, consider the set E of edges of q that are not edges of bad 2-quadrangles.
Then the charge of q after Step 3 is |E|/4. For every e ∈ E let `e ∈ B be the great circle that includes e.
We call the pair (`e, q) a helping pair and we designate 1/4 unit from the charge of q to the pair (`e, q).

For any evil triangle t, let d be the bad 2-quadrangle adjacent to it, and let ` ∈ B be the great
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Figure 9: Evil pairs

circle that separates t and d. We call the pair (`, d) an evil pair. We will show that there are at least
as many helping pairs as there are evil pairs. Thus we will successfully charge each evil triangle with
1/4 units of charge taken of the excess charge at the 0-quadrangles after Step 3.

Define a bipartite graph H whose vertices are the evil pairs and the helping pairs. Let (`, d) be an
evil pair, let t be the evil triangle adjacent to d and `, and let f and f ′ be the two faces in B, other than
t, that are adjacent to both ` and d (see Figure 9). Let e and e′ be the edges of f and f ′, respectively,
on `. Since t is evil, f and f ′ can be either triangles or 0-quadrangles. Moreover, the edges e and e′

cannot be edges of bad 2-quadrangles, as d is the only bad 2-quadrangle adjacent to t. Each of (`, f)
and (`, f ′) is a helping pair, assuming f or f ′, respectively, are not triangles. If f is not a triangle,
we connect (`, d) in H to the helping pair (`, f). Similarly, if f ′ is not a triangle, we connect (`, d)
in H to the helping pair (`, f ′). Observe that if both f and f ′ are triangles, then by Claim 1, A ∪ B
is the sphere-dual of a failed Fano configuration. Therefore, we may assume that the degree in H of
every evil pair is either 1 or 2. The degree in H of every helping pair is at most 2, because a helping
pair (`, q) may be connected only to evil pairs (`′, d) such that ` = `′ and d is adjacent to q. It follows
that the connected components of H that include evil pairs are either paths alternating between evil
pairs and helping pairs, or theoretically, even cycles alternating between evil pairs and helping pairs.
Therefore, in order to show that there are at least as many helping pairs as there are evil pairs, it is
enough to show that no connected component in H is a path both of whose end vertices are evil pairs.

Indeed, assume to the contrary that there is such a connected component in H . Let its vertices be
(`, d1), (`, q1), . . . , (`, qk−1), (`, dk), so that for every 1 ≤ i ≤ k − 1, (`, qi) is a helping pair connected
to both (`, di) and (`, di+1). It follows that there is a great circle `′ ∈ B that includes all edges of
d1, . . . , dk and q1, . . . , qk−1 that are opposite to those included in `.

Since the degree in H of (`, d1) is 1, the face in B, other than q1, adjacent to both `, `′, and to d1

must be a triangle which we denote by q0. Similarly, the face in B, other than qk−1, adjacent to both
`, `′, and to dk must be a triangle which we denote by qk. Observe that ` and `′ meet at a vertex of q0

and at a vertex of qk (see Figure 10).

We claim that the only triangles in B adjacent to `′ are q0, qk, and of course their antipodal triangles
on the sphere S. This is because for every 0 ≤ i ≤ k, the face adjacent to `′ that shares an edge with
qi cannot be a triangle as it admits a red diagonal at least at one of its vertices. And moreover, we
may assume that for every 1 ≤ i ≤ k, the face adjacent to `′ that shares an edge with di is not a
triangle. Indeed, otherwise by Claim 1, A ∪ B is the sphere-dual of a failed Fano configuration (recall
that there is an evil triangle adjacent to di on the other side of `). This is a contradiction to a theorem
of Levi [Le26] saying that in any nontrivial arrangement of lines in the real projective plane, every
line must be adjacent to at least 3 triangular faces. (Here, we apply Levi’s theorem after identifying
antipodal points on the sphere S and thus reducing the great circles in A ∪ B to a set of lines in the
projective plane.) See [Fe04, § 5.4] and [Gr72] for very short proofs of Levi’s theorem.

We conclude that after Step 4, all the faces in the arrangement B have a nonnegative charge, and
the same holds for every crossing point in B. Thus, the overall charge is nonnegative, contradicting
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Figure 10: A connected component in H both of whose endpoints are evil pairs

the fact the the total charge in the beginning was −6.

3 Notes and Concluding Remarks

Additional general position assumptions. If the arrangement B is in general position in the
sense that no three blue circles from B pass through the same point, then Theorem 3 and hence also
its dual, Theorem 2, can be strengthened as follows, leaving the proof almost as is. This theorem does
not mention any weights, and it omits the requirement that the lines determined by A are ordinary.

Theorem 4. Let A and B be two nonempty disjoint sets of points in the plane such that B is in
general position. Assume that no line determined by A and no ordinary line in A ∪ B passes through
a point of B. Then A ∪ B is, up to a projective transformation, the configuration in Figure 1.

Let us see why the proof of Theorem 3 establishes Theorem 4, and the added assumptions of
Theorem 3 are not needed: the point weights played their first role in defining the sets A and B and
thereby transforming Theorem 1 into Theorem 2 (and its equivalent dual formulation of Theorem 3).
Besides this, the only place where the weights are used is the proof of Claim 2. However, if the circles
in B are in general position, then there are no good crossing points in B, and Claim 2 is vacuously
true.

In Theorem 4 we allow more than two points of A to be collinear as long as they are not collinear with
a point of B. Indeed, in the proof of Theorem 3 we never use the assumption that every intersection
point determined by A is an ordinary intersection point with respect to A ∪ B, but only that no
intersection point determined by circles from A lies on a circle from B.

Proving Theorem 4 for the case where B is not required to be in general position would imply
the following conjecture1. Recall that an ordinary point in a point configuration P is a point x ∈ P
through which there is an ordinary line.

Conjecture 1. Let G = (V, E) be the Sylvester graph of a finite set of points P . That is, V = { p ∈
P | p is an ordinary point in P } and E = { (p1, p2) | p1 and p2 determine an ordinary line in P }.
Then G is a complete (nonempty) graph if and only if no three points in P are collinear, or P is a
failed Fano configuration.

Geometrically induced matchings. We would like to note a corollary of Theorem 4. It is well
known that the set of edges of a complete graph on 2n vertices can be partitioned into (necessarily

1This conjecture is attributed to Sylvester by Smyth [Sm89, Conjecture C].
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2n − 1) edge-disjoint perfect matchings. A nice way to realize such a partitioning is to think about
the vertices of K2n as the vertices of a regular (2n − 1)-gon plus its center. Then each of the 2n − 1
directions of the edges of the (2n− 1)-gon induces a perfect matching in which two points are matched
if the straight line they determine is parallel to the direction we choose, plus matching the center with
the remaining point. These 2n − 1 perfect matchings are edge-disjoint.

Now let G be a complete geometric graph on 2n vertices in general position in the plane. We call
a matching in G geometrically induced, if the lines containing the edges of the matching go through
a common point, which is then called the center of the matching. The question is, whether we can
partition the set of edges of a complete geometric graph G on 2n vertices in general position in the
plane into edge-disjoint geometrically induced perfect matchings. By Theorem 4, this is impossible
unless n = 1 or n = 2. Indeed, assume it is possible and let B be the set of 2n vertices of G, and let
A be the set of all centers of the geometrically induced perfect matchings. Then A and B satisfy the
assumptions in Theorem 4.

It is an interesting open question to determine the maximum possible number of edge-disjoint geo-
metrically induced perfect matchings of a complete geometric graph on 2n vertices in general position
in the plane. It seems natural to conjecture that the answer should be n+1. This number is attained for
the set of vertices of a regular 2n-gon in the plane when n is even. Here observe that the geometrically
induced perfect matchings whose centers are the points at infinity that correspond to the n directions
of the edges of the regular 2n-gon plus the center of the 2n-gon, are all pairwise edge-disjoint.

Weakly magic configurations. One can weaken the notion of a magic configuration and omit the
restriction of the weights assigned to the points being positive. In this case there seems to be a much
larger variety of magic configurations, and yet not every configuration is magic. In this context it is
interesting to note that given that a configuration is magic (even in the weak sense), it is very easy
to assign the right weight xi (and in a unique way) to each point pi, just as a function of the number
kj of lines determined by the point set that pass through each point pj. To this end let p1, . . . , pn

denote the points of a magic configuration P . Let Y =
∑n

i=1 xi be the total weight. There are ki

lines determined by P that pass through pi. The sum of the weights assigned to the points of P on
each of these lines is 1. It follows that Y = ki − xi(ki − 1). Therefore, xi = ki−Y

ki−1 . From the equation

Y =
∑n

j=1 xj =
∑n

j=1
kj−Y
kj−1 , we can express Y as

Y =

∑n
j=1

kj

kj−1

1 +
∑n

j=1
1

kj−1

, and hence, xi =
1

ki − 1


ki −

∑n
j=1

kj

kj−1

1 +
∑n

j=1
1

kj−1


 .

In particular, if ki = kj , then xi = xj . It is now clear that the weight assignment is unique, if exists.
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