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The Geometric Dilation of Three Points
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Abstract

Given three points in the plane, we construct the plane geometric network of smallest
geometric dilation that connects them. The geometric dilation of a plane network is defined
as the maximum dilation (distance along the network divided by Euclidean distance) between
any two points on its edges. We show that the optimum network is either a line segment,
a Steiner tree, or a curve consisting of two straight edges and a segment of a logarithmic
spiral.
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1 Introduction

Urban street systems can be modeled by geometric graphs: streets correspond to (possibly
curved) edges, and intersections are represented by vertices. In a densely populated area,
houses are everywhere along the streets. In this situation, the quality of a street system N can
be measured by its geometric (or: point-to-point) dilation, which is defined as follows.

For any two points a and b of N let dN (a, b) denote the length of a shortest path from a to
b in N . Then,

δN (a, b) :=
dN (a, b)

|ab|
is called the dilation of a and b. It measures the detour one encounters in using N , in order
to get from a to b, instead of traveling straight; here | · | denotes the Euclidean length. The
geometric dilation of N is given by

δ(N) := sup
a6=b points of N

δN (a, b).

The crucial point is that all points a, b of N are considered in this definition, vertices and
interior edge points alike. This is quite different from the standard vertex-to-vertex dilation
(also known as stretch factor or spanning ratio) of geometric graphs where only the vertices
matter, as we shall point out in Section 1.3 below.

1.1 Problem statement

We are given a finite set S of points in the plane. We are interested in a network connecting
them whose geometric dilation is as small as possible. Let

∆(S) := inf{ δ(N) : N is a finite plane geometric network containing S }

denote the smallest possible dilation value for point set S. We call ∆(S) the geometric dilation
of the set S. Three questions arise naturally.

1. How large is ∆(S)?

2. Can we find a network N attaining this value?

3. In what time can such a network N be constructed (or closely be approximated)?

When S consists of two points, the obvious answer is the line segment connecting these two
points. In this paper we are going to answer these questions for point sets S of cardinality 3.
The answer is certainly not easy to guess: The optimum network containing three given points
is either a line segment, a tree with a single vertex of degree 3, or a curve consisting of an arc
of a logarithmic spiral and two straight edges.

1.2 Previous work

The geometric dilation of finite point sets was first studied by Ebbers-Baumann, Grüne, and
Klein [4]. They proved ∆(S) ≤ 1.678 for each finite point set S in the plane. Moreover, they
computed the geometric dilation, and optimum embeddings, for the sets Sn of n points evenly
placed on a circle; see Figure 1. Their results are based on the following facts, whose proofs can
be found in [4].

Proposition 1. 1. If a network N contains a vertex v where two straight edges e1 and e2
meet at some angle α, then two points a1 ∈ e1 and a2 ∈ e2 that are placed at equal distance
and sufficiently close to v have dilation δN (a1, a2) = 1/ sin α

2 . Thus, δ(N) ≥ 1/ sin α
2 . This

result applies also when the two edges meeting at v are smooth curves. In this case, the
angle α is measured between their tangents.

2



71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

2. No tree containing Sn, where n ≥ 5, can have a geometric dilation ≤ π/2.

3. A plane network containing a cycle must have a geometric dilation ≥ π/2, which is attained
by a circle.

∆(S3) =
√

4/3 ≈ 1.1547 ∆(S4) =
√

2 ≈ 1.4142 ∆(Sn) = π/2 ≈ 1.5708 for n ≥ 5

Figure 1: The point sets whose geometric dilation has been known so far.

The lower bound of part 3 has been sharpened by Dumitrescu, Ebbers-Baumann, Grüne,
Klein, and Rote [2]. Using a packing theorem of K. Kuperberg, W. Kuperberg, Matoušek,
and Valtr [9], they proved that there exists a finite point set whose geometric dilation exceeds
(1 + 10−11) · π2 . But until now, the regular sets Sn shown in Figure 1 were the only point sets
whose geometric dilations have been determined exactly.

1.3 Related questions

If one is interested in a network of shortest length that connects a given point set S of size n
without using additional points as vertices, one can construct in time O(n log n) the Euclidean
minimum spanning tree of S, cf. [11]. A shorter connecting network is given by the Steiner tree,
which may use additional vertices. If S contains only three points A,B,C that form a triangle
of maximum angle less than 120◦, the point F minimizing the sum of distances to A,B,C lies
inside the triangle and sees each pair of points at angle exactly 120◦. It is called the Fermat–
Torricelli point of S. In this case, the Steiner tree of S is given by the star connecting F to
A,B and C. If the triangle formed by A,B,C has an angle ≥ 120◦ at B, then B minimizes the
sum of distances and the Steiner tree of S is the path from A through B to C.

All additional vertices of a Steiner tree are Fermat-Torricelli points of their three neighbors.
Euclidean Steiner trees are NP-hard to compute, but they can be approximated in polynomial
time [1].

In the context of spanners [6, 10], one usually studies the vertex-to-vertex dilation of ge-
ometric graphs. This approach fits well to railway networks, where access is only possible at
the stations. The same questions posed in Section 1.1 for the geometric dilation have been
investigated for the vertex-to-vertex dilation, too. Clearly, in this context one needs to consider
triangulations only, because the vertex-to-vertex dilation of a plane graph can only decrease by
pulling curved edges taught, or by adding straight edges that do not produce crossings.

It has been shown by Ebbers-Baumann, Grüne, Karpinski, Klein, Knauer, and Lingas [5]
that each finite point set can be embedded into the vertex set of a finite triangulation of dilation
≤ 1.1247. Only very special point sets are embeddable into a triangulation of vertex-to-vertex
dilation equal to 1, and they have been classified by Eppstein [7]. Klein, Kutz, and Penninger [8]
have shown that if S is not one of these special sets then there exists a lower bound η > 1 such
that each triangulation whose vertex set contains S has a vertex-to-vertex dilation at least η.
But up to now, there is no non-special point set for which the exact lowest dilation value is
known. Since all sets S of cardinality ≤ 4 are special, the set S5 is the simplest open example.

3



106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

(a)

A

B

P0

U

C

π−2ρ

ρ

120◦

A

B

C

(b)

∆ =
√

4/3 ≈ 1.1547∆ = 1/ cos ρ

NoptNopt

|AC| = 2|AB| · cos ρ · exp((α− ρ) cot ρ)

α

F

Figure 2: The network of lowest possible geometric dilation that connects three points A,B,C
is (a) a path Nopt(ρ, α), or (b) the Steiner tree. The dashed chords connect point pairs where
the geometric dilation is attained.

1.4 The result

For the geometric dilation, the smallest non-trivial cardinality equals 3. This case will be
completely solved in the present paper by the following result.

Theorem 1. Let S = {A,B,C}.

1. If the points A,B,C are collinear then ∆(S) = 1, realized by a line segment.

2. If the points A,B,C form a proper triangle with edge lengths |AB| ≤ |BC| ≤ |AC|, then
the optimum network has one of the following forms, see Figure 2a–b.

a) It consists of a straight edge AB, followed by another straight edge BP0 of length |AB|
forming an angle 6 ABP0 = 180◦ − 2ρ for an appropriate value ρ with 0 < ρ < 90◦.
This is followed by an arc of a logarithmic spiral connecting P0 with C, which is
defined by the property that it intersects the rays through A at the constant angle ρ.
The value of ρ is determined by these conditions, and it is the solution of the equation

2 cos ρ · exp((α− ρ) cot ρ) = |AC|/|AB|,

where α = 6 BAC. In this case, the dilation ∆(S) is 1/ cos ρ.

b) It is the Steiner tree of A,B,C: a star whose central vertex F is the Fermat–Torricelli
point of S. Every pair of edges forms a 120◦ angle. In this case, the dilation ∆(S)
is 1/ cos 30◦ =

√
4/3 ≈ 1.1547;

The first case is optimal for ρ ≤ 30◦, and the second case is optimal for ρ > 30◦.

The Steiner tree does not always have a degree-3 vertex, and the point F with the claimed
properties might not exist, but if ρ > 30◦, then this is guaranteed.

In case 2.a), when the network is a path, we denote it by Nopt = Nopt(ρ, α), leaving the
dependence on A,B,C implicit. Nopt(ρ, α) is defined for the range of parameters 0 < ρ < 90◦

and ρ ≤ α ≤ 180◦. In this network, the geometric dilation ∆ = 1/ cos ρ is attained by all pairs
of points on the two straight edges that have the same distance from B, and between A and
every point U on the spiral.

Figure 3 shows a classification of the points C in the plane according to the minimum dilation
of a network that is formed with two fixed points A,B, according to Theorem 1. The graphic
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is symmetric both with respect to the line AB and the symmetry axis of A and B. The shaded
region is the area where the Steiner tree with a degree-3 vertex is the optimum.

Roughly, one can say that the geometric dilation of A,B,C is close to 1 if either the triangle
ABC has an angle close to 180◦, or two of the points have a small distance and the third point
is very far. We mention without proof that the optimum network is unique if the point set
{A,B,C} has no symmetries. This follows from our arguments. Some triples of points with a
mirror symmetry have two different optimum networks.

A

B √
4/3 ≈ 1.1547

1.14

1.12

1.10
1.08

B

Figure 3: The minimum dilation of two fixed points A,B together with a variable point C. If
C lies in the shaded area, the dilation is

√
4/3, and the optimal network is the Steiner tree

of A,B,C. The level curves of dilation 1.14, 1.12, 1.10, 1.08 are also shown. The dotted lines
are the boundaries where the order of the lengths |AC|, |BC|, and |AB| changes. A small
rectangular region around B is enlarged in the inset. The situation to the left of the line AB is
symmetric.

1.5 Overview of the proof

The rest of the paper is devoted to the proof of Theorem 1. We first sketch the main idea of
the argument.

The optimal network can either be a path or a more complicated network. If it is not a path,
then it has a vertex of degree ≥ 3, and by Proposition 1.1, the geometric dilation is at least√

4/3. Now, a geometric dilation of ≤
√

4/3 can always be achieved by taking the Steiner tree.
If it contains a Fermat-Torricelli point that sees each pair of A,B,C at angle 120◦, its dilation
is exactly

√
4/3, and if it is a path leading through a vertex of angle ≥ 120◦, the dilation can

only be smaller.
In summary, we know that the optimum geometric dilation is ≤

√
4/3, and if we want to

go below this threshold, we have to look only among path networks.
In Section 2, we show that the geometric dilation of Nopt(ρ, α) is indeed equal to 1/ cos ρ. In

Section 3 we claim that Nopt is the best path that visits three points X,Y, Z in the given order
(Lemma 4). To prove optimality, we construct a forbidden region R that cannot be entered by
any path of given geometric dilation that starts from X and passes through Y (Section 6). We
prove this fact by a polygonal discretization of R (Sections 8–9).
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2 The Dilation of the Best Path

We now prove that the spiral curve Nopt(ρ, α) has indeed the claimed dilation 1/ cos ρ. We
recall the constraint that 0 < ρ < 90◦, and that the curve sweeps at most an angular range of
180◦ around A, i. e., α = 6 BAC ≤ 180◦. In particular, the curve does not wind several times
around A. Other than that, we impose no restriction on the parameters in this section. We
thus include cases that do not arise in Theorem 1 because the endpoint C is closer to A than
to B or because ρ > 30◦.

Proposition 2. The spiral path Nopt(ρ, α) lies on the boundary of its convex hull.

Proof. We assume without loss of generality that the triangle ABC is oriented clockwise, and
Nopt winds clockwise around A. It is also possible that the angle 6 ABC = 0◦; in this case, we
also assume that Nopt winds clockwise around A, covering a 180◦ angle.

We now move the point U on Nopt from P0 to C. As the tangent direction keeps a constant
angle with the direction AU , the tangent direction turns clockwise, and hence the curve is
convex. When U = P0, the tangent coincides with the edge BP0. Therefore the convex hull
includes the segments AB, BP0, and AC, and the whole curve lies on the boundary of its convex
hull.

Proposition 3. The geometric dilation of the spiral path Nopt(ρ, α) is 1/ cos ρ.

We need the following auxiliary lemma:

Lemma 1. Let S = S(t) be a piecewise differentiable curve parameterized by t, and let S(t0),
S(t1), S(t2) for t0 ≤ t1 < t2 be points on S, and let ρ be some angle with 0◦ < ρ < 90◦. Assume
that

• t0 = t1, or δS(S(t0), S(t1)) ≤ 1/ cos ρ.

• For all t ∈ [t1, t2], the angle 6
(
S′(t),

−−−−−−→
S(t0)S(t)

)
between the right derivative S′(t) and the

vector
−−−−−−→
S(t0)S(t) is ≤ ρ.

Then δS(S(t0), S(t2)) ≤ 1/ cos ρ.
If equality holds in both assumptions, then δS(S(t0), S(t2)) = 1/ cos ρ.

Proof. Assume without loss of generality that S is parameterized by arc length. Then

d

dt
|S(t0)S(t)| = cos 6

(
S′(t),

−−−−−−→
S(t0)S(t)

)
≥ cos ρ.

By integration, we get

|S(t0)S(t2)| = |S(t0)S(t1)|+
∫ t2

t=t1

d
dt |S(t0)S(t)| dt ≥ |S(t0)S(t1)|+ (t2 − t1) cos ρ, (1)

while the distance dS along the path S grows in accordance with t:

dS(S(t0), S(t2)) = dS(S(t0), S(t1)) + (t2 − t1) (2)

Comparing (1) with (2), the assumption |S(t0)S(t1)| ≥ cos ρ · dS(S(t0), S(t1)) gives |S(t0)S(t2)| ≥
cos ρ · dS(S(t0), S(t2)). The equality case is analogous.

We can now justify the remark after Theorem 1 about the pairs where the dilation is attained,
see the dashed chords in Figure 2a: The dilation between A and P0 is 1/ cos ρ; and the angle
between the ray AU and the tangent at U is ρ, thus, the assumption of Lemma 1 are fulfilled
with equality.
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Proof of Proposition 3. We have to show that the dilation between any two points is not larger
than 1/ cos ρ. If both points lie on the two arms ABP0, this is elementary, cf. Proposition 1.1.
Otherwise, it is sufficient to consider the dilation between an arbitrary point V and C, where
C can in fact be any point on the spiral part of Nopt. If V lies on the path ABP0, we ap-
ply the lemma with Nopt(t0) = V , Nopt(t1) = P0, and Nopt(t2) = C. The first assumption,
δ(Nopt(t0), Nopt(t1)) ≤ 1/ cos ρ, has already been established because P0 is still on the path
ABP0. Moreover, the angle between V U and the curve is less than ρ, because the chord V U
lies in the wedge between the chord AU and the tangent at U .

If V lies on the spiral, we apply the lemma with Nopt(t0) = Nopt(t1) = V and Nopt(t2) = C.
The argument about the bounded angle remains valid.

3 The Smallest Dilation of a Path

Lemma 2. The minimum dilation of a path that visits three distinct points X,Y, Z in this order
is determined as follows.

• Assume |XY | ≤ |Y Z|, by swapping X and Z if necessary.

• Let t := |XZ|/|XY |, and ξ := 6 Y XZ ≤ 180◦.

• If ξ = 0◦, then the optimum dilation is 1, and it is obtained by the line segment XZ.

If ξ > 0◦, there is a unique angle ρ with 0 < ρ < 90◦ and ρ ≤ ξ such that

2 cos ρ · exp((ξ − ρ) cot ρ) = t. (3)

The optimum dilation is 1/ cos ρ, and it is obtained by the curve Nopt(ρ, ξ).

It is clear where the function in (3)

f(ρ, ξ) := 2 cos ρ · exp((ξ − ρ) cot ρ),

comes from, see Figure 2a, which uses the notations A,B,C, α instead of X,Y, Z, ξ. The dis-
tance |XP0| is |XY | · 2 cos ρ. This length is multiplied by the distance gain exp((ξ − ρ) cot ρ)
of the logarithmic spiral over an angle range of ξ − ρ, and hence f(ρ, ξ) should be equal to
|XZ|/|XY | = t.

We have already seen in Proposition 3 that the path Nopt has the claimed geometric dilation.
The proof that there is no better path will be given in Section 6. We will first justify the claim
that their is always a unique angle ρ that satisfies (3), by studying the monotonicity properties
of the involved functions.

4 Monotonicity

The function f(ρ, ξ) is defined on the domain 0◦ < ρ ≤ 90◦, 0◦ < ξ ≤ 180◦, restricted by the
constraint ρ ≤ ξ. In order to justify the claim that Eq. (3), f(ρ, ξ) = t, has a unique solution,
we describe the monotonicity properties and the range of f :

Proposition 4. 1. The function f(ρ, ξ) is strictly decreasing in ρ.

2. f(ρ, ξ) is strictly increasing in ξ.

3. For each fixed value ξ ∈ (0, 90◦), the function f(ρ, ξ), regarded as a function of ρ, is an
order-reversing bijection from the interval (0◦, ξ] onto [2 cos ξ,∞).

For ξ ∈ [90◦, 180◦), the function f(ρ, ξ) is an order-reversing bijection from the interval
(0◦, 90◦] onto [0,∞).
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Proof. The first claim is easy to see, because all three terms where ρ occurs — cos ρ, ξ− ρ, and
cot ρ — are strictly decreasing in ρ, and these terms are combined by monotone operations.
The second claim is obvious. The third claim follows by evaluating f at the endpoints of the
range.

By Proposition 4.1, the equation f(ρ, ξ) = t has at most one solution ρ. To show that a
solution exists, by Proposition 4.3, it is sufficient to show that

t = |XZ|/|XY | ≥ 2 cos ξ (4)

if ξ < 90◦. Consider the triangle XY Z, see Figure 4. By assumption, |XY | ≤ |Y Z|, and thus

X

Y

ξ

Z

Q

ζ

Figure 4: The triangle XY Z

the angle ζ at Z is at most ξ. In our case, this implies that both angles ζ and ξ are acute, and
the foot Q of the height through Y lies on the side XZ. We know that |ZQ| ≥ |XQ|, because
|ZY | ≥ |XY |. Therefore, |XZ| = |XQ|+ |ZQ| ≥ 2|XQ|. Since |XQ| = |XY | cos ξ, the relation
(4) follows.

We have thus justified the claim of Lemma 2 that there exist a unique ρ satisfying (3).
Let us define H(ξ, t) as the optimum dilation according to Lemma 2, as a function of ξ and

t, where 0 < ξ ≤ 180◦ and t is constrained by (4) and t > 0◦. This function has the following
monotonicity properties:

Lemma 3. The function H(ξ, t) is strictly increasing in ξ. It is strictly decreasing in t.

Proof. The optimum dilation equals H(ξ, t) = 1/ cos ρ, where ρ is the solution of f(ρ, ξ) = t.
Since the transformation ρ 7→ 1/ cos ρ is strictly monotone for 0 ≤ ρ ≤ 90◦, it is sufficient to
establish the monotonicity properties for ρ.

We have seen in Proposition 4 that f(ρ, ξ) is strictly decreasing in ρ. Thus, the monotone
decreasing dependence of ρ on t follows directly.

On the other hand, f(ρ, ξ) is strictly increasing in ξ. Thus, if we increase ξ and thereby
make f(ρ, ξ) larger, this has to be compensated by an increase of ρ in order to maintain the
relation f(ρ, ξ) = t when t is fixed. This means that ρ has to increase as ξ increases.

5 Proof of the Main Theorem

Before giving the proof of Lemma 2, we show how it implies Theorem 1. The case when the
points are collinear is trivial, and we know that the dilation is

√
4/3 unless the best network is

a path. We only have to figure out the order in which the path should connect the three points
A,B,C.

We denote the angles of the triangle ABC at A,B,C by α, β, γ, and the opposite sides by
a = |BC|, b = |AC|, and c = |AB|. By the conventions of Theorem 1,

c ≤ a ≤ b and γ ≤ α ≤ β,

8
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277

278

α

β γ

A

B
C

c

b

a

Figure 5: A general triangle ABC

see Figure 5. We have three choices for the order. For easy use, we summarize the essence of
Lemma 2: The optimum dilation of a path visiting three points X–Y –Z in the given order is
H(ξ, |XZ|/x), where x is the length of the shorter of the two arms Y X and Y Z, and ξ is the
angle in the triangle XY Z at the endpoint of that arm (and |XZ| is the distance between the
endpoints). Thus, when we compare the three possibilities of visiting the three points, we get
the following dilations:

A–B–C : H(α, b/c)
B–A–C : H(β, a/c)
B–C–A : H(β, c/a)

The monotonicity properties of H in Lemma 3 give H(α, b/c) ≤ H(β, a/c) ≤ H(β, c/a), and
thus the first possibility is the best. This concludes the proof of Theorem 1.

6 The Forbidden Region

In this section, we assume that Y lies vertically above X, and ρ is an angle in the interval
(0◦, 90◦). The forbidden region R = R(ρ) is defined as follows, see Figure 6. We look at the

ρ

ρ

X

Y

ϕ

Zs(ϕ)

R(ρ)

ρ

Nopt(ρ, 180
◦)

N

Q

P0

Figure 6: The forbidden region R(ρ) and a hypothetical path N that will be discussed in
Section 9.

path Nopt(ρ, 180◦) that makes a clockwise turn around X until it hits the line XY below X.
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Then R = R(ρ) is the heart-shaped region that bounded by the segment XP0 and the spiral
part of this curve, together with the mirror image at the vertical axis XY .

The points Z on the logarithmic spiral that forms the boundary of R can be specified by
parameterizing the radius |XZ| by the angle ϕ = 6 Y XZ − ρ:

|XZ| = s(ϕ) := |XP0| · exp(ϕ cot ρ) = |XY | · f(ρ, 6 Y XZ) (5)

Here is our main lemma about the forbidden region:

Lemma 4. A path of geometric dilation ≤ 1
cos ρ that starts in X and passes through Y can

afterwards not enter the interior of the region R(ρ).

The proof will be given, after some preparations, in Section 9. We show how the lemma
implies the optimality of the path Nopt(ρ, α) (Lemma 2): The point Z lies on the boundary
of R(ρ) by construction. A path with a smaller dilation would have to avoid the region R(ρ′)
for some ρ′ < ρ. The distance from X to the boundary of R along the ray XZ is given
by s(ϕ) = |XY | · f(ρ, 6 Y XZ) according to (5), and we have seen in Proposition 4.1 that
f(ρ, 6 Y XZ) increases strictly as ρ decreases. The wedge of opening angle 2ρ around XY with
is cut out from the top of R also becomes smaller as ρ decreases. Therefore, Z lies in the interior
of R(ρ′). This means that a path with smaller dilation than 1/ cos ρ cannot reach Z, and this
concludes the proof of Lemma 2.

7 Dilation with a Varying Endpoint on a Ray

We will use the following simple observation:

Lemma 5. Let S be a path that consists of some fixed curve C from A to P , followed by the
straight segment PQ to a variable third point Q moving on a ray ~r through A that makes an
angle 0 < α < 180◦ with AP , see Figure 7. Then the geometric dilation δS(A,Q) between A
and Q decreases strictly from ∞ to 1 as Q moves away from A along ~r.

A

P

Q

α

S

t

C

~r

Figure 7: The dilation δS(A,Q) decreases as Q moves away from A.

Proof. With the fixed angle α = 6 QAP > 0◦, and the variable distance t = |AQ|, we apply the
cosine law and the substitution u = |AP |/t to express the dilation:

δS(A,Q(t)) =
|C|+

√
|AP |2 − 2t|AP | cosα+ t2

t
=
|C|
|AP |

· u+
√
u2 − 2u cosα+ 1

The derivative with respect to u is

|C|
|AP |

+
2u− 2 cosα

2
√
u2 − 2u cosα+ 1

=
|C|
|AP |

±
√
u2 − 2u cosα+ cos2 α√
u2 − 2u cosα+ 1

> 1 + (−1) = 0.

Thus the dilation is strictly increasing in u, and strictly decreasing as a function of t. The
limiting values for t→ 0 and t→∞ are straightforward.

10
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8 A Polygonal Forbidden Region

In the remainder of the paper, we denote the threshold on the dilation by

∆ := 1/ cos ρ.

We approach the proof of Lemma 4 by discretizing the boundary of the forbidden shape and
approximating it from inside. We construct a polygonal path XY P0P1P2 . . . winding clockwise
around X. We will then show that its diagonals XPi cannot be intersected by any path N of
geometric dilation ≤ ∆; see Figure 8. In the limit, this path will converge to the boundary of
the region R(ρ).

X

Y

P̄0

P3
P4

P0

P1

P2

ρ

ρ

ρ

α

α
α

π−ρ−α

Q

α

P̄1

Figure 8: Discretization of the forbidden region, and a dotted path from X via Y to a point Q
on the segment XP4.

The path starts with an isosceles triangle XY P0 with angle ρ at X and P0. Let α > 0 denote
a small angle that will later converge to 0. We add a sequence of similar triangles XPiPi+1

with angle α at X and angle ρ at Pi+1. This can be continued as long as the total accumulated
angle Y XPi+1 around X does not exceed 180◦. We also construct a symmetric path through
points P̄i that winds counterclockwise around X.

We denote the polygonal path XY P0P1P2 . . . Pi by Ci. As a special case, C−1 denotes just
the edge XY , and accordingly, we set Pi−1 := Y .

Lemma 6. δCi(X,Pi) ≥ ∆ for i = 0, 1, 2, . . ..

Proof. We have to show
|Ci| ≥ ∆|XPi| (6)

for all i. We use induction on i. For the path C0 = XY P0, this is elementary.
For the inductive step with i ≥ 1, we first establish the inequality

|Pi−1Pi| ≥ ∆(|XPi| − |XPi−1|). (7)

The three lengths in this relation are the three sides of the triangle XPi−1Pi, and hence we can
use the sine law to express their ratios in terms of the angles, cf. the triangle XP2P3 in Figure 8:

sinα ≥ ∆(sin(180◦ − α− ρ)− sin ρ),

11
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or
sinα ≥ 1

cos ρ(sin(α+ ρ)− sin ρ).

This is expands to
sinα cos ρ ≥ sinα cos ρ+ sin ρ cosα− sin ρ,

which is easily checked to be true. Now we can prove (6), using the induction hypothesis (6)
for i− 1 and (7):

|Ci| = |Ci−1|+ |Pi−1Pi| ≥ ∆|XPi−1|+ ∆(|XPi| − |XPi−1|) = ∆|XPi|

The “forbidden” character of the construction is expressed in the following statement:

Lemma 7. A path N of geometric dilation ≤ ∆ = 1
cos ρ that starts in X and passes through Y

can afterwards not reach any point Q on the open segments XPi or XP̄i, for i ≥ 0.

Proof. Consider a path N that reaches a point Q on the open segment XPi. We first consider
the possibility that N reaches Q by winding clockwise around X. We assume by induction that
path N must avoid the interior of the segments XP0, XP1, . . . , XPi−1, after passing through
Y . The shortest path that avoids these segments is the path Ci−1 from X to Pi−1 plus the
segment Pi−1Q. (Note that this statement holds also for i = 0.)

According to Lemma 5, the dilation between the endpoints is strictly decreasing as Q moves
from X to Pi along XPi. When Q reaches Pi, we have the path Ci, where the dilation is already
≥ ∆ by Lemma 6. Thus, a path to Q cannot have dilation ≤ ∆.

We still have to consider the possibility that N reaches Q by winding counterclockwise
around X. By induction, N must then avoid the interior of the segments XP̄0, XP̄1, . . . ,
XP̄i−1 after passing through Y , and the above argument proves that N cannot intersect the
segment XP̄i at an interior point. The shortest possible counterclockwise path that avoids these
segments is the path C̄i followed by some path from P̄i to Q. This path is even longer than Ci
and its endpoint Q is closer to X than Pi. Thus, such a path also has dilation > ∆.

9 Proof that the Forbidden Region Cannot be Entered

In order to prove Lemma 4, we apply Lemma 7 to show that a curve N of dilation ≤ ∆ that
starts in X cannot reach a point Q in the interior of R(ρ) after going through Y . Without loss
of generality, assume that Q lies in the right half of R(ρ), see Figure 6. Let ϕ := 6 Y XQ − ρ.
We construct the polygonal forbidden region with α = ϕ

n . Then, by construction, the point Pn
lies on the ray XQ. We will show that

lim
n→∞

|XPn| = |XP0| · exp(ϕ cot ρ) (8)

This expression is equal to the distance s(ϕ) from X to the boundary of R(ρ) along the ray XQ,
according to (5), and this means that, for large enough n, the segment XPn will cover the point
Q in its interior. By Lemma 7, this implies that N cannot reach Q, thus proving Lemma 4.

In order to show (8), we write |XPn| as follows, using the sine law in the triangles XPi−1Pi:

|XPn| = |XP0|
n∏
i=1

|XPi|
|XPi−1|

= |XP0|
(

sin(α+ ρ)

sin ρ

)n
,

We are therefore done if we can show that

lim
n→∞

(
sin(ϕn + ρ)

sin ρ

)n
= exp(ϕ cot ρ)

12
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The limit expression is of the form (an)n, with a sequence (an) that converges to 1. Writing an
in the form an = 1 + bn/n and using that lim(1 + bn/n)n = exp lim bn, we obtain the formula

lim
n→∞

(an)n = exp
(

lim
n→∞

n(an − 1)
)
,

if the latter limit exists. By this formula, it is sufficient to show that

lim
n→∞

n ·
(

sin(ϕn + ρ)

sin ρ
− 1

)
= ϕ cot ρ. (9)

We expand and simplify this expression:

n ·
(

sin(ϕn + ρ)

sin ρ
− 1

)
= n ·

(
sin ϕ

n cos ρ+ cos ϕn sin ρ

sin ρ
− 1

)
= n sin ϕ

n · cot ρ+ n · (cos ϕn − 1)

The term n sin ϕ
n converges to ϕ. The second term vanishes in the limit because cos ϕn =

1−O( 1
n2 ). This establishes (9) and concludes the proof of Lemma 4.

10 Conclusions

We have constructed planar embeddings of minimum geometric dilation for all point sets of
size 3. An obvious challenge is to extend this result to larger point sets. With respect to
applications, it would also be interesting to find an upper bound to the total edge length of a
plane network that attains, or approximates, the minimum dilation for a given point set.
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