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The Degree of Convexity
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Abstract

We measure the degree of convexity of a planar region
by the probability that two randomly chosen points
see each other inside the polygon. We show that, for
a polygonal region with n edges, this measure can
be evaluated in polynomial time as a sum of O(n9)
closed-form expressions.

1 Introduction

A set P is convex if, for every two points u,w ∈ P , the
whole segment uw belongs to P . If P is not convex,
this conclusion will not always be true, and we can get
a quantity for the “degree” or “measure” of convexity
if we take the probability with which it is fulfilled, for
two points u,w selected uniformly at random from P .

More formally, let |P | denote the area of P . Then
the degree of convexity C(P ) is defined as the normal-
ized double area integral

C(P ) :=
1

|P |2

∫

u∈P

∫

w∈P
[uw ⊂ P ] dwdu, (1)

using the bracket notation for the characteristic func-
tion of a logical expression: [uw ⊂ P ] equals 1 if the
condition uw ⊂ P holds and 0 otherwise.

2 Related Work

Stern [4] has been the first to consider the measure
(1), as a simple alternative to another measure he
proposed, the polygonal entropy. He evaluated C(P )
by Monte Carlo estimation. Stern observed that C(P )
can equally be expressed as the normalized average
visible area, i.e., the expected area of the visibility
polygon of a random point, divided by |P |.

Various other definitions have been proposed for
evaluating a measure of “convexity”, primarily in the
pattern recognition community, in addition to mea-
suring “circularity”, “squareness”, “rectangularity”
“elongation” etc.

In principle, one can take any quantity that is
bounded by 1, for which equality holds (among com-
pact sets) for convex sets only. Some very primitive
measures that count the reflex angles, (or sum them
up) fulfill this requirement but they are not very sen-
sitive to the shape of P .
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Zunić and Rosin [5] mention, besides C(P ), the area
of P divided by the area of the convex hull. The
complement of this is called the deficit of convexity
in the textbook [3, p. 35] (p. 23 in the 2008 version).
Instead of the area, one can also look at the perimeter.

Boxer [1] considered yet another measure, the index
of non-convexity, the maximum distance of a pocket
from the corresponding convex hull edge, and related
measures.

3 Properties of the Degree of Convexity

The following basic properties were already estab-
lished by Stern [4].

Clearly, C(P ) is between 0 and 1, and C(P ) = 1 if
P is convex. For a compact set P which is the closure
of its interior, C(P ) = 1 if and only if P is convex.

C(P ) is invariant under affine transformations.

4 Partitioning the Region

Let P be a polygonal region with n boundary edges.
Throughout the paper we will assume general posi-
tion, to keep the discussion simple.

An internal bitangent of P with tangency vertices
x and y (x 6= y) is a line segment ab ⊂ P whose
endpoints a and b lie in the interior of P and which
has the two distinct points x and y in common with
the boundary of P , see Fig. 1a. Then x and y are
necessarily reflex vertices.

We extend the rays from x and y towards the end-
points until they hit the boundary of P , see Fig. 1b–
c. We use these extension rays to partition P , as in
Fig. 1e. We don’t include the segment xy.

We also extend the edges of every reflex vertex, in
order to ensure that all cells of resulting partition Z
are convex as shown in Fig. 1f.

Finally, we will compute the integral in (1) sepa-
rately for each pair of cells A,B of Z, and add up the
results

I(A,B) :=

∫

u∈A

∫

w∈B
[uw ⊂ P ] dwdu (2)

Remark: If we would extend the segments between
any two vertices, like in Fig. 1d, we would get a re-
finement of Z that corresponds to the combinatorially
different visibility polygons of all points in P . [ Q: Is
there an established name for this refined partition? ]
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Figure 1: Partitioning P by extensions of bitangents. (a) a bitangent. (b–c) some extensions of bitangents, and
(e) the arrangement of all extensions. (d) Not all extensions of visibility edges are used (only bitangents). (f)
the final partition Z.

Definition 1 Consider to disjoint open convex re-
gions A,B ⊂ P . Let V1, V2, . . . , Vk be a set of open
segments (i.e., not containing their starting point),
disjoint from A and B (see Fig. 2).

• We say that visibility between A and B is deter-
mined by the segments V1, V2, . . . if the following
holds: two points u ∈ A and w ∈ B can see each
other iff the segment uw doesn’t intersect any of
the segments V1, V2, . . .. We refer to these seg-
ments as blocking segments.

• We say that a set of blocking segments is mutu-
ally exclusive if no segment uw for u ∈ A and
w ∈ B can intersect more than one of the block-
ing segments.

If we have mutually exclusive blocking segments,
we can consider them independently from each other
and evaluate the integral (2) as follows

I(A,B) =

∫

u∈A

∫

w∈B

(
1− [uw ∩ V1 6= ∅]−

− [uw ∩ V2 6= ∅]− · · ·
)
dwdu

= |A| · |B| −
k∑

i=1

∫

u∈A

∫

w∈B

[uw ∩ Vi 6= ∅] dwdu

Lemma 1 Let P be a polygonal region, possibly with
holes. Consider two cells A,B of the partition Z, con-
sidered as open sets. Then there are three possibili-
ties.

1. All points of A see all points of B.

2. No point from the interior of A sees a point from
the interior of B.

3. Visibility between A and B is determined
by some mutually exclusive blocking segments
V1, . . . , Vk.

For the case of a simple polygon, we can have at most
two blocking segments (one blocking from the left and

one from the right, when looking from A towards B).
If P has h holes, there can be at most h additional
blocking segments.

Proof. Suppose that A and B are separated by a
vertical line, as in Fig. 2, so that, for a segment uw
from A to B, it makes sense to speak of “above uw”
or “below uw”.

If u ∈ A and w ∈ B move, the segment uw will
sometimes be contained in P (we call it a free seg-
ment in this case), and sometimes it will intersect the
boundary of P . (Otherwise, we are in Case 1 or 2 and
we are done.) When a free segment hits the bound-
ary of P , it will do so at a reflex vertex r of P . We
call such a vertex r a blocking corner, and it is a top
blocking corner or a bottom blocking corner, when the
direction into which uw can freely move is above r or
below r. Fig. 2 shows a top blocking corner r. We
can rotate uw around r while maintaining u ∈ A and
w ∈ B. The extremes of this rotation are segments
where uw becomes tangent to A or B. If, during
this rotation, uw would hit another obstacle vertex r′

before hitting the extreme directions we would have
an extension ray for the bitangent rr′ that would cut
through A and B, a contradiction to the assumption
that A and B are cells of Z. Thus, we can state:
No segment from A to B goes through two blocking
corners.

As a consequence, the blocking corners can be lin-
early ordered from bottom to top: Choose an arbi-
trary free segment through each blocking corner. For
two corners r and r′ with respective segments uw
and u′w′ through them, r lies above u′w′ iff r′ lies
below uw. Thus, we get a (consistent) linear order
(cf. Fig. 3a). In this order, top corners and bottom
corners must alternate We create the blocking seg-
ments Vi by matching each top blocking corner with
the bottom blocking corner immediately below it.

If a bottom corner r at the very top remains un-
matched, we attach a sufficiently long upward vertical
segment (or effectively, an infinite ray) to r, as shown
for segment V1 in Fig. 2. Similarly, at the bottom,
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Figure 2: Visibility between two (hypothetical) regions A and B in a polygon with six holes is determined by
the mutually exclusive blocking segments V1, V2, V3, V4.

we attach a downward ray to an unmatched bottom
corner (segment V4 in Fig. 2).

The resulting segments determine the visibility be-
tween A and B. �
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Figure 3: (a) An inconsistent order between block-
ing vertices cannot happen. (b) Replacing a blocking
segment rs by two unbounded blocking rays

Cases 1 and 2 can of course be considered as special
cases of Case 3, but they are easy to deal with directly.
As mentioned above, in Case 3 the calculation can
be reduced to considering the blocking probability of
single blocking segments: For such a single blocking
segment V = rs, we have to integrate over the point
pairs (u,w) ∈ A×B for which uw∩V 6= ∅. This can be
further reduced to two integrations over unbounded
vertical blocking rays rr′ and ss′, as shown in Fig. 3b.
For the integrand, we have

[uw ∩ V 6= ∅] = [uw ∩ rr′ 6= ∅] + [uw ∩ ss′ 6= ∅]− 1

For an integral of the form

∫

u∈A

∫

w∈B
[uw ∩ rr′ 6= ∅] dwdu

we simply have to test whether uw passes above or
below the point r.

5 A Single Blocking Ray

Let us consider the integral
∫

u∈A

∫

w∈B
[uw ∩ V 6= ∅] dwdu (3)

for a single blocking segment V extending from r
downward to infinity, see Fig. 4a. We draw a line from

L R

(a)

(b)

(c)

VA B

r

Figure 4: Two cells A and B with a single blocking
segment V .

each vertex through r. These lines decompose the
problem into double wedges between adjacent lines.
Sectors of A and B which are not in the same double-
wedge are blocked by V either completely or not at
all, and their contribution to (3) is easy to compute.
We are left with the situation of regions in two wedges
like in Fig. 4b, where each boundary edge extends be-
tween the two rays of the wedge. On each side, we
can express the region as a difference of two triangles
that involve the apex r, as in Fig. 4c. Doing this on
each side, the evaluation of the integral for a single
double-wedge is reduced to four integrals over trian-
gular regions L and R as in Fig. 4c.

6 The Basic Integral

It is now convenient to revert to a probabilistic in-
terpretation of these integrals. The integral (3), for
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A = L and B = R, equals |L| · |R| times the proba-
bility that a random point u ∈ L and a random point
w ∈ R form a counterclockwise triangle with r. To
evaluate this probability, we make our life easier by
transforming the situation to the standard situation
shown in Fig. 5. First of all, the problem is invariant
under affine transformations. So we assume that the
apex r is at the origin O and the left triangle L is
bounded by the lines of slope 0 and 1 and the line
x = −1. Scaling the right triangle R from the origin
does not change the probability of a positive orienta-
tion for the random triangle uwO. This we can scale
R so that the lower corner lies at

(
1
0

)
. Then the upper

corner lies on the line y = x of slope 1 at some point(
a
a

)
, for a > 0. There is only one free parameter, a.

O =
(
0
0

)

y = sx

(
a
a

)

(−1
−1

)

(−1
0

)

(
1
0

)

(
t
st

)

L

R

u

Figure 5: After transforming the problem to the stan-
dard situation, for which we evaluate the integral

The area L is 1/2 and the area of R is a/2. If we
take a random point u ∈ L, the slope s of the line uO
is uniformly distributed in [0, 1]. (This follows from
the fact that the probability that the slope is smaller
than s is the area of the shaded region on the left,
divided by 1/2, which equals s.) Thus, the probability
of blocking is the expected value of the region in the
triangle on the right side below the line y = sx of slope
s, when s chosen uniformly at random, divided by the
area a/2 of the whole triangle R. This region, which
is shaded in Fig. 5, is a triangle with vertices O,

(
1
0

)
,

and
(
t
st

)
, where t can be evaluated as t = a

a+s−as > 0.

The area of this triangle is st
2 = 1

2 ·
as

a+s−as , and hence
the desired probability is

Q(a) :=
1

a

∫ 1

s=0

as

a + s− as
ds =

∫ 1

s=0

s

a + s− as
ds

=

[
s

1− a
− a

(1− a)2
ln((1− a)s + a)

]1

s=0

=
1− a + a ln a

(1− a)2
(4)

The above derivation assumes a 6= 1. For the sym-
metric situation (a = 1) we get Q(1) = 1

2 . The for-
mula (4) is numerically unstable near a = 1. Near
a = 1 we might therefore resort to the power series

expansion

Q(a) =

∞∑

i=0

(1− a)i

(i + 1)(i + 2)

= 1
2 + 1−a

6 + (1−a)2
12 + (1−a)3

20 + (1−a)4
30 + · · ·

= 1
2 −

ln a
6 + (ln a)3

180 −
(ln a)5

5040 + (ln a)7

151200 − · · ·

7 Complexity and Runtime Analysis

Suppose that P has h holes, and the boundary of
P consists of n edges. Then P has at most n ver-
tices. Let nR be the number of reflex vertices. Let
nB = O(n2

R) be the number of interior bitangents.
The partition Z is generated by 2nB + 2nR segments,
and hence its complexity is nZ = O((nB+nR)2+n) =
O(n4

R + n) = O(n4). For each of the n2
Z = O(n8)

pairs of regions A,B we have to evaluate the inte-
gral I(A,B) and sum up the results. There might be
2 + h blocking segments, which are reduced to 2 + 2h
blocking rays, accounting for a factor of O(1+h). the
decomposition in Fig. 4a incurs an overhead propor-
tional to the complexity of A plus B; in total, this is
still O(n2

Z) = O(n8). Thus, the total number of inte-
grals (3) that we have to compute is O(n2

Z(1 + h)) =
O((nB + nR)4 + n2)(1 + h) = O(n8

R + n2)(1 + h) =
O(n8(1 + h)) = O(n9).

Algorithmically, we proceed as follows. The nB

bitangents and extension rays can be computed in
O(nRn log n) time by a circular sweep arount each
reflex vertex. The partition Z can be computed in
O(nZ log n) time by a plane sweep.

We pick one of the O(nZ) regions A and compute
the visible region from some arbitrary point u ∈ A,
in O(n log n) time. All the potential lower and upper
blocking points are now known, including their sorted
order around u. For every region B, we can now select
the blocking points that lie between A and B (in the
convex hull of A ∪ B). By processing them in sorted
order, we can identify the blocking segments. This
takes O(n) time per pair A,B.

As mentioned above, the overhead from the decom-
position into wedges (Fig. 4a) does not add up to more
than O(n2

Z) = O(n8). Thus, for the overall running
time, we get O((nRn+nZ) log n+nZn log n+n2

Zn) =
O(n((nB + nR)4 + n2)) = O(n(n8

R + n2)) = O(n9). If
P is a simple polygon, some simplifications should be
possible.

8 A Simplified Partition

We believe that is is not necessary to make the cells
of the partition convex as in Fig. 1f. The partition
as shown in Fig. 1e should have the essential prop-
erties that are necessary for the algorithm. In this
case, among other things, one needs to deal with self-
blocking within one non-convex cell. But this is not
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difficult since the different dentures (or pockets) of
a cell are “mutually exclusive”. This might reduce
the running time in particular examples, but it does
not affect the asymptotic worst-case running time in
terms of n.

An alternative, and probably faster approch to
computing C(P ) might be based on the interpreta-
tion as the expected value of the visibility region of a
random point u ∈ P .

9 Other Convexity Measures

Stern [4] defined the polygonal entropy as the expected
value of |V (u)| ln 1

|V (u)| , where V (u) denotes the vis-

ibility region of a random point u ∈ P , apart from
some additive and multiplicative normalization terms
which are intended to ensure that the polygonal en-
tropy ranges between 0 and 1. (By contrast, C(P ) is
the expected value of |V (u)|/|P |.) The idea behind
this definition is to consider a random variable p ∈ P
whose density is proportional to |V (p)|. For a con-
vex set, |V (p)| has a constant value, and therefore the
random variable is uniform on P and has the max-
imum possible (differential) entropy among random
variables on P . The article [4] makes an erroneous as-
sumption about the differential entropy being always
nonnegative, and therefore one would need a different
normalization than the paper proposes.

It is not clear how the polygonal entropy can be
evaluated, or even how it can be approximated by
Monte Carlo simulation. It would be interesting to
find the distribution of the random quantity |V (u)|.

Another interesting measure would be the average
“detour” of the geodesic path between u and w within
P (either the quotient over the Euclidean distance, or
the difference, suitably normalized). With quotients,
this looks very hard, but computing the excess might
be within reach, although I don’t even know whether
the average Euclidean distance in a polygon can be
computed in closed form. Taking squared distances
might be a way out: the average squared distance is
just the variance.

The definition (1) extends to higher dimensions, but
the computation of this integral seems to be much
harder.
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