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Abstract

We solve the special case of the Euclidean Traveling Salesman Problem where

n�m cities lie on the boundary of the convex hull of all n cities, and the other

m cities lie on a line segment inside this convex hull by an algorithm which

needs O(mn) time and O(n) space.

Keywords: Euclidean Traveling Salesman Problem, shortest path, well-solvable
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2 The Convex-Hull-and-Line TSP

Introduction1

The n-city Euclidean Traveling Salesman Problem is the TSP where each city i is

represented as a point pi = (xi; yi); xi; yi 2 R, in the plane and the distance c(pi; pj)

between any pair of cities i and j is computed according to the Euclidean metric,

i; j = 1; : : : ; n. Papadimitriou [1977] proved the Euclidean TSP to be NP -hard. We

give an O(mn) time and O(n) space algorithm for solving the special case of the

n-city Euclidean TSP where n �m cities lie on the boundary of the convex hull of

the n cities, and the other m cities lie on a line segment inside this convex hull. This

special case of the n-city Euclidean TSP will be called the convex-hull-and-line TSP.

A well-known result with respect to the Euclidean TSP, presumed to be �rst

mentioned explicitly by Flood [1956], states that `in the euclidean plane the minimal

(or optimal) tour does not intersect itself'. An intersection of a tour � is de�ned

as a common point v 62 fp1; : : : ; png that is shared by two (or more) edges of � , or

a common point w 2 fp1; : : : ; png that is shared by three (or more) edges of � . A
proof of Flood's result was given by Quintas and Supnick [1965].

An important consequence of this is the following. Assuming that not all cities
lie on one line, an optimal tour has the property that the cities on the boundary

of the convex hull of the cities are visited in their cyclic order. Note that the case
where all cities lie on two parallel lines corresponds to the case where all cities lie on
the boundary of their convex hull.

Cutler [1980] has given an O(n3) time and O(n2) space dynamic programming

algorithm for solving the so-called 3-line TSP, i. e., the Euclidean TSP where all
points lie on three distinct parallel lines in the plane. Rote [1992] extended the
results of Cutler by considering the N -line TSP, i. e., the Euclidean TSP where all
points lie on N parallel lines in the plane, with N a small integer. He gave a dynamic
programming algorithm which is polynomial for a �xed number of lines. Moreover,

conditions are given such that the algorithm can also be applied in the case that
all points lie on `almost parallel' lines. Real-world problems that can be formulated
as an N -line TSP arise in the manufacturing of printed circuit boards and related
devices. However, because the running time of the algorithm is rather high (the
exponent of the polynomial time bound is the number of lines), the algorithm seems

to be of theoretical interest only.

The special case of the Euclidean TSP considered here is another extension of

the 3-line TSP. It is easy to see that the class of convex-hull-and-line TSPs contains
the 3-line TSP as a special case. Furthermore, we obtain an improvement in both

running time and space requirement. In the �nal section we discuss the extension to
other metrics than the Euclidean metric.

1The revision of this paper started during the visit of R. van Dal to the Dnepropetrovsk Uni-
versity in July{August 1991. Financial support by the Netherlands Organization for Scienti�c
Research (NWO) and by the Japan International Science & Technology Exchange Center (JIS-
TEC) is gratefully acknowledged. This paper is part of the Ph. D. thesis of R. van Dal, `Special
Cases of the Traveling Salesman Problem', Wolters-Noordho� bv, Groningen, The Netherlands.
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1 Properties of optimal solutions

In this section an O(mn) time algorithm is given for the special case of the n-city

Euclidean TSP where n � m cities lie on the boundary of the convex hull of the

n cities, and the other m cities lie on a line segment inside this convex hull (see

Figure 1).

g1 g2 gi gj gm

u1

u2

u3

u5

l4

l3

l2

l1

u4

Figure 1: An instance of the convex-hull-and-line TSP.

The points on the line segment inside the convex hull will be labeled consecu-

tively g1; g2; : : : ; gm. We assume m � 1. The set of points fg1; g2; : : : ; gmg will be
denoted by G. We will also speak of the line through these points as the line G. For
m = 1 we can take any line through g1 as the line G. The points that lie on the
boundary of the convex hull of the cities and above or on the line G will be labeled
consecutively u1; u2; : : : ; up. The points that lie on the boundary of the convex hull

and below the line G will be labeled consecutively l1; l2; : : : ; lq. The set of points
fu1; : : : ; up; l1; : : : ; lqg will be denoted by B.

We will need one elementary lemma:

Lemma 1. Let p, q, r, and s be four distinct points which form the vertices of a

convex quadrilateral, in the given order. We allow that three points are collinear but

not that all four points are collinear. Then we have

c(p; q) + c(r; s) < c(p; r) + c(q; s):

In other words, the sum of the lengths of the diagonals is greater than the sum of

the lengths of two opposite sides.

Proof. Let v be the intersection point of the diagonals. We get

c(p; r) + c(q; s) = c(p; v) + c(v; r) + c(q; v) + c(v; s) > c(p; q) + c(r; s);
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using the triangle inequality for the triangles pvq and rvs. Since at least one of these

triangles is nondegenerate we obtain a strict inequality.

In fact, it follows from this lemma that an optimal tour does not intersect itself.

As already stated, in an optimal tour the cities in B have to be visited in their

cyclic order, otherwise there is an intersection. Therefore, for each city gi 2 G,
it remains to determine between which two adjacent cities in B it is visited. The

following lemmas give a necessary condition for an optimal tour of the convex-hull-

and-line TSP.

Lemma 2. Let gi; gj 2 G and let v and w be two adjacent cities in B. If in an

optimal tour � both gi and gj are visited between v and w, then all cities on G that

lie between gi and gj are visited between v and w.

Proof. If there is a city between gi and gj that is not visited between v and w, then

� contains an intersection. Therefore, � is not an optimal tour.

As a consequence of this lemma and the fact that the cities in B are visited in their

cyclic order we obtain the following lemma.

Lemma 3. An optimal tour can be obtained by splitting the set of points G into

k + 1 segments

fg1; g2; : : : ; gi1g; fgi1+1; : : : ; gi2g; : : : ; fgik+1; : : : ; gmg;

for 0 � k < m; 0 = i0 < i1 < i2 < � � � < ik < m, and inserting each segment between

two adjacent points in B.

The algorithm to be described will �rst determine for each possible segment fgi; gi+1;
: : : ; gj�1; gjg, 1 � i < j � m, the cheapest possible way to insert it between two
adjacent cities in B, and then it will determine the best way to split fg1; g2; : : : ; gmg
into segments.

In principle, the insertion of a segment fgi; gi+1; : : : ; gj�1; gjg between two ad-

jacent points v and w in B can be done in two ways. However, when v and w

are on the same side of G we can discard one possibility since either the path
v; gi; gi+1; : : : ; gj�1; gj; w or the path v; gj; gj�1; : : : ; gi+1; gi; w intersects itself. In

these cases we say that a segment is inserted in the correct orientation when the in-

sertion does not result in such an intersection. Note that neither the path u1; gi; gi+1;

: : : ; gj�1; gj ; l1 nor the path u1; gj; gj�1; : : : ; gi+1; gi; l1 intersects itself. However, in-

serting a segment between u1 and l1 may also result in an intersection in the tour,
as the following lemma shows.

Lemma 4. For any optimal tour, the segment fgi; gi+1; : : : ; gj�1; gjg cannot be in-

serted between u1 and l1 unless i = 1. Similarly, the segment fgi; gi+1; : : : ; gj�1; gjg
cannot be inserted between up and lq unless j = m.
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Proof. If i > 1, then inserting the segment fgi; gi+1; : : : ; gj�1; gjg between u1 and l1
would separate point g1 from the points right of the chain [u1; gi; gj ; l1] or [u1; gj ; gi; l1],

thereby creating an intersection. Similarly, if j < m then the segment cannot be

inserted between up and lq without introducing an intersection.

Remark. The above lemma corresponds to Cutler's Triangle Theorem with respect

to the 3-line TSP; see Cutler [1980]. The Triangle Theorem states that at least one

of the edges fu1; l1g; fu1; g1g and fl1; g1g is an edge of an optimal tour. Similarly, at

least one of the edges fup; lqg; fup; gmg and flq; gmg is an edge of an optimal tour.

Therefore, the cases mentioned in the above lemma have to be excluded. Two adja-

cent points v and w in B will be called admissible for a segment fgi; gi+1; : : : ; gjg; 1 �
i < j � m, if

� v and w lie strictly on the same side of the line G, or if

� fv;wg = fup; lqg and j = m, or if

� fv;wg = fu1; l1g and i = 1.

The cost of inserting the segment fgi+1; gi+2; : : : ; gjg between v and w will be denoted
by

e
v;w

ij = minfc(v; gi+1) + c(gi+1; gj) + c(gj; w)� c(v;w);

c(v; gj) + c(gj ; gi+1) + c(gi+1; w)� c(v;w)g:(1)

The cost of the best possible insertion of the segment fgi+1; gi+2; : : : ; gjg is

dij = minfev;wij j fv;wg is admissible for fgi+1; gi+2; : : : ; gjgg:(2)

The possible splittings of fg1; g2; : : : ; gmg can be associated with paths in an acyclic
digraph D with vertex set f0; 1; : : : ;mg and arcs (i; j) with costs dij for all 0 � i <

j � m.
It is easy to see that if we associate with the arc (i; j) the segment fgi+1; gi+2;

: : : ; gj�1; gjg, then there is a one-to-one correspondence between the splittings of
fg1; g2; : : : ; gmg into segments and the paths inD from 0 tom. For example, the split-

ting ffg1; g2; g3g; fg4; g5g; fg6g; fg7; g8; g9; g10gg corresponds to the path 0; 3; 5; 6; 10.

Moreover, the length of a path 0; i1; i2; : : : , ik;m in D represents the minimal total
costs of inserting the corresponding segments fg1; g2; : : : ; gi1g; fgi1+1; : : : ; gi2g; : : : ;
fgik+1; : : : ; gmg. Evidently, a shortest path from 0 to m in D determines an optimal

tour for the convex-hull-and-line TSP, as the following theorem shows.

Theorem 1. Let � be the initial subtour for a convex-hull-and-line TSP that visits

only the cities on the boundary of the convex hull in their cyclic order. Then a tour

� is optimal if and only if it can be obtained by inserting the points in G into � in

such a way that the corresponding path in the digraph D has shortest length. As a

consequence, the length of an optimal tour is the length of the initial subtour � plus

the length of a shortest path in D.
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Proof. First, we will show that the length of an optimal tour is at least the length

of � plus the length of a shortest path in D. Indeed, by Lemma 3 we only have to

consider tours � that can be obtained by inserting a number of segments into �. The

length of � is equal to the length of � plus the length of the corresponding path in

D, and we are done.

Next, we will show that this lower bound is actually attained. To that pur-

pose, we construct for any shortest path 0=i0; i1; : : : ; ik; ik+1=m in D a tour � with

corresponding length. For j = 1; : : : ; k + 1, let the minimal cost of insertion of the

segment fgij�1+1; : : : ; gijg be between vj and wj. A tour of length equal to the length

of � plus the length of the shortest path in D is obtained if we insert each segment

fgij�1+1; : : : ; gijg between vj and wj, j = 1; : : : ; k + 1, in the correct orientation.

Unless two segments have to be inserted between the same pair of points we obtain

a tour with corresponding length. Therefore, we have to show that such a conict

cannot arise.

If vj and wj lie strictly on di�erent sides of the line G, the only arcs in D whose

corresponding segments might be inserted between vj and wj are the arcs starting
in 0 (or the arcs ending in m), and a shortest path contains only one such arc.

Now consider two segments fgi1+1; gi1+2; : : : ; gj1g and fgi2+1; gi2+2; : : : ; gj2g with
i1 + 1 � j1 < i2 + 1 � j2, that are to be inserted between two adjacent points in B
which both lie on the same side of the line G, say, between uk and uk+1. (The proof

of the case lk and lk+1 is similar.) We will prove that the arcs (i1; j1) and (i2; j2)
cannot both be arcs of a shortest path from 0 to m in D because the cost of the arc
(i1; j2) is less than the total cost of the arcs (i1; j1) and (i2; j2):

c(uk; gi1+1) + c(gi1+1; gj1) + c(gj1 ; uk+1)� c(uk; uk+1) +

+ c(uk; gi2+1) + c(gi2+1; gj2) + c(gj2 ; uk+1)� c(uk; uk+1)

> c(uk; gi1+1) + c(gi1+1; gj2) + c(gj2 ; uk+1)� c(uk; uk+1):

If we cancel the common terms c(uk; gi1+1); c(gj2 ; uk+1) and c(uk; uk+1) and subtract
the equation

c(gi1+1; gj1) + c(gj1 ; gi2+1) + c(gi2+1; gj2) = c(gi1+1; gj2);

we get the equivalent inequality

c(gj1 ; uk+1) + c(uk; gi2+1) > c(gj1 ; gi2+1) + c(uk; uk+1);

which follows from Lemma 1 applied to the quadrangle gj1gi2+1uk+1uk.

2 The algorithm

Now we are ready to present our algorithm. In the �rst phase we compute the cost

of a shortest path of the acyclic digraph by a dynamic programming recursion, and

in the second phase we use this path to construct an optimal tour.
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ALGORITHM (convex-hull-and-line TSP)

PHASE 1:

f0 := 0; (* fj is the length of a shortest path from 0 to j. *)

for j := 1 to m do

compute dij for i = 0; 1; : : : ; j � 1;

fj := minf fi + dij j i = 0; 1; : : : ; j � 1 g;

pj := argmin fj; (* pj is the predecessor of j on *)

(* the shortest path from 0 to j. *)

endfor;

(* The length of an optimal tour is fm + c(�). *)

PHASE 2:

j := m;

repeat

i := pj;

Determine fv; wg admissible for fgi+1; gi+2; : : : ; gjg

such that dij = e
v;w

ij
;

Insert the segment fgi+1; gi+2; : : : ; gjg between v and w

in the correct orientation;

j := i;

until j = 0;

Let us �rst discuss how to compute the values dij . The cost of inserting the segment
fgi+1; gi+2; : : : ; gjg between u1 and l1 (or up and lq) can be computed in constant
time, if that insertion is admissible. We will show that, for a �xed value of j, and for
all i, 0 � i < j, the cost of inserting the segment fgi+1; gi+2; : : : ; gjg between uk and

uk+1; k = 1; : : : ; p� 1, (between lk and lk+1; k = 1; : : : ; q � 1, respectively) can be
computed in O(n) time. This means that in one iteration of the �rst phase, all the
values dij , for a �xed j, can be computed in O(n) time, and thus the whole iteration
takes O(n) time. This leads to a time complexity of O(mn) for phase 1.

Let A = (aik)0�i<j; 1�k<p be the j � (p � 1) matrix with entries

aik = c(uk; gi+1) + c(gi+1; gj) + c(gj; uk+1)� c(uk; uk+1):

Clearly, our problem will be solved if we determine the minimum in each row of
the matrix. Let j(i) be the index of the leftmost column containing the minimum

value in row i of A. A is called monotone if i1 < i2 implies that j(i1) � j(i2). A is

totally monotone if every submatrix of A is monotone, or equivalently, if ai1k2 < ai1k1
implies ai2k2 < ai2k1 for i1 < i2 and k1 < k2. Aggarwal et al. [1987] have shown

that all row minima can be computed in O(j + p) time if the matrix A is totally

monotone. To prove that A = (aik) is totally monotone, we show that A has even a
stronger property, the so-called Monge property:

ai1k1 + ai2k2 � ai1k2 + ai2k1 , for i1 < i2 and k1 < k2.
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Substituting the de�nition of aik and canceling common terms leads to the equivalent

inequality

c(uk1; gi1+1) + c(uk2; gi2+1) � c(uk2 ; gi1+1) + c(uk1; gi2+1);

which follows from Lemma 1 applied to the quadrangle uk1gi1+1gi2+1uk2 , see Figure 2.

i1+1 i2+1 jg g g

k1

k1+1 k2

k2+1u u

u u

Figure 2: Illustration of the proof.

Finally, we only need to store the values dij for a �xed j for the current iteration,
and hence the �rst phase needs only O(n) space.

The search for an admissible pair fv;wg in phase 2 can be carried out in O(n)
time, by just using the de�nition of dij, equation (2). The loop has to be repeated for
each arc of the shortest path, i. e., at most m times, and therefore phase 2 also needs
only O(mn) time and O(n) space. As a conclusion we have the following theorem.

Theorem 2. The convex-hull-and-line TSP, i. e., the n-city Euclidean TSP where

n �m cities lie on the boundary of the convex hull of the n cities and the other m

cities lie on a line segment inside the convex hull, can be solved in O(mn) time and

O(n) space.

1 (0:177; 0:177) 11 (1:000; 0:032)

2 (0:355; 0:355) 12 (1:000; 0:268)

3 (0:381; 0:381) 13 (1:000; 0:681)

4 (0:457; 0:457) 14 (1:000; 0:822)

5 (0:632; 0:632) 15 (1:000; 0:992)

6 (0:789; 0:789) 16 (0:993; 0:993)

7 (0:164; 0:000) 17 (0:794; 1:000)

8 (0:171; 0:000) 18 (0:057; 1:000)

9 (0:387; 0:000) 19 (0:000; 1:000)

10 (0:409; 0:000) 20 (0:000; 0:329)

Table 1: Coordinates of points.

Example. Consider the n = 20 points whose coordinates are given in Table 1.

The m = 6 points on the line segment inside the convex hull of the 20 points are
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1; 2; 3; 4; 5, and 6. The initial subtour is (7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20).

A shortest path from 0 to 6 in the network is 0,1,6, and the length of this path is

0:0432 + 0:7983 = 0:8415. This means that in order to obtain an optimal tour we

have to insert point 1 and segment f2; 3; 4; 5; 6g into the initial subtour. Point 1 is

inserted between 7 and 20 and segment f2; 3; 4; 5; 6g is inserted between 17 and 18.

So, an optimal tour is

(1; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 6; 5; 4; 3; 2; 18; 19; 20)

and the length of this tour is 4.6772. (see Figure 3). �

1

2
3

4

5

6

7 8 9 10
11

12

13

14

16171819

20

15

Figure 3: An instance of the convex-hull-and-line TSP and its solution.

3 Other metrics

We have formulated our algorithm and the proof in terms of the Euclidean metric

in the plane. Let us discuss how the result can be extended to other metrics. We
have used properties of the underlying metric in Lemma 1 and its consequence, the

intersection-free property of the optimal solution. Beside the triangle inequality, the
proof of Lemma 1 uses the following

Linearity property:

If the point v lies between p and r on the segment pr, then

c(p; r) = c(p; v) + c(v; r):
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This relation is true for all metrics that come from a norm, for example the L1

(Manhattan) metric and the L1 metric.

The linearity property was also used implicitly in assuming that the segment

gigj \contains" all cities that lie between gi and gj , i. e., c(gi; gj) = c(gi; gi+1) +

c(gi+1; gi+2) + � � � + c(gj�1; gj). This assumption was for example used in the proof

of Lemma 2, in the de�nition of insertion costs ev;wij (1) and aik, and in the proof of

Theorem 1.

It is clear that the convex-hull-and-line TSP needs some property which links the

metric with the geometric structure of the plane, in particular with convexity and

with lines. So let us assume that we are given a metric with the linearity property.

If equality can hold in the triangle inequality c(p; v) + c(v; r) � c(p; r) even for a

point v that does not lie on the segment pr, then Lemma 1 still holds, except that

the strict inequality cannot be maintained. (This occurs for example in the case of

the L1 and L1 metrics.) The other arguments in the paper also go through, but

some of the conclusions must be weakened. For example, we cannot claim that every

optimal solution looks as described in Lemma 2, but only that there exists such an
optimal solution. Thus, Theorem 1 gives only a su�cient condition for an optimal

solution and not a characterization, i. e., \if and only if" has to be replaced by \if".
Still, the algorithm is guaranteed to �nd an optimal solution if we simply compute
costs according to the given metric. Let us summarize this:

Theorem 3. The algorithm solves the convex-hull-and-line TSP inO(mn) time and

O(n) space for any metric c(p; q) which ful�lls the linearity property. In particular,

this holds for every metric that is induced by a norm.
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