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RECURSIVELY REGULAR SUBDIVISIONS AND APPLICATIONS∗

Rafel Jaume† and Günter Rote†

Abstract. We generalize regular subdivisions (polyhedral complexes resulting from the
projection of the lower faces of a polyhedron) introducing the class of recursively regular
subdivisions. Informally, a recursively regular subdivision is a subdivision that can be
obtained by splitting some faces of a regular subdivision by other regular subdivisions (and
continue recursively). We also define the finest regular coarsening and the regularity tree
of a polyhedral complex. We prove that recursively regular subdivisions are not necessarily
connected by flips and that they are acyclic with respect to the in-front relation. We show
that the finest regular coarsening of a subdivision can be efficiently computed, and that
whether a subdivision is recursively regular can be efficiently decided. As an application,
we also extend a theorem known since 1981 on illuminating space by cones and present
connections of recursive regularity to tensegrity theory and graph embedding problems.

1 Introduction

Regular polyhedral complexes appear in a wide variety of situations. The minimization
diagram of a set of linear functions, whose regularity follows almost directly from the def-
inition, is a common instance. Power diagrams are regular complexes as well. It is not
hard to see that an arrangement of hyperplanes is a regular subdivision as well; it is the
projection of the lower envelope of the dual of a zonotope [17]. Yet another remarkable
example is the Delaunay triangulation of a point set.

Regular subdivisions are quite well-understood even in higher dimensions. Although,
as shown by Santos [29], the triangulations of a point set in dimension five and higher
are not always connected via flips, regular triangulations are. Another remarkable result,
which holds in any dimension, is that regular subdivisions contain no cycles in the visibility
relations in the sense of Edelsbrunner [18]. On the other hand, not so much is known
about non-regular subdivisions. Several generalizations of regularity have been studied in
order to better understand them. For instance, the subdivisions induced by the projection
of a polytope onto another polytope, introduced by Billera and Sturmfels [8], have been
extensively studied together with their variants (see, for instance, Pournin [26]). In a
different direction, Takeuchi [30] investigated a subclass of non-regular triangulations which
is related to a strengthening of Edelsbrunner’s acyclicity criterion.
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We will use the notation [n] to refer to the set {1, . . . , n}. The d-dimensional Eu-
clidean space will be denoted by Rd and ‖ · ‖ will denote the Euclidean norm.

1.1 Polyhedral complexes, fans and subdivisions

We assume that the reader is familiar with the notions of polytope, polyhedron, polyhedral
complex, cone and fan (see [15, Chapter 2] for a detailed discussion on this topic). Never-
theless, we state some definitions and notations that differ from the most commonly used
ones in the literature.

The polyhedra in a polyhedral complex will be called faces. The top-dimensional
faces of a pure polyhedral complex are called cells, and the faces of one-dimension lower
walls. The set of cells of a polyhedral complex S will be denoted by cells(S). Given two
complexes S and S ′, we say that S ′ refines S if every face of S ′ is contained in a face of S.
We say that S ′ is a refinement of S and S is a coarsening of S ′.

A polyhedral fan is complete if the union of all its cones is the whole ambient
space. The (unbounded) one-dimensional faces of a polyhedral fan will be called rays.
The restriction of a d-dimensional polyhedral complex S to a polyhedron Q ⊂ Rd is the
polyhedral complex consisting of the faces Q∩F for all faces F ∈ S. We let S|Q denote the
restriction of S to Q.

A polyhedral subdivision (or subdivision, for short) of a finite set of points A ⊂ Rd is
a polyhedral complex whose vertices belong to A and the union of whose cells is the convex
hull of A. Each cell C is then the convex hull of C ∩ A. A subdivision of a finite set V
of vectors is a polyhedral fan whose rays have as directions vectors of V and whose union
is the positive span of V . A triangulation is a subdivision of a point set consisting only of
simplices. The set of subdivisions of a point (or vector) set form a poset with the refinement
relation. Our notion of a subdivision and the refinement relation are simpler than the more
subtle definitions in [15, Section 2.3] or in [29], but the differences are not relevant to our
results.

1.2 Regular subdivisions

Given a point a ∈ Rd and a scalar λ ∈ R we denote by
(
a
λ

)
∈ Rd+1 the tuple (regarded as a

point) resulting from adding the coordinate λ to a.

Definition 1.1. Let A ⊂ Rd be a finite set of points. A subdivision S of A is regular if
there exists a height function ω : A→ R such that each face of S is the projection of a face
in the lower convex hull of

Aω =

{(
a

ω(a)

)
: a ∈ A

}
.

The function ω will be identified with the vector ω ∈ RA. The notation Aω will
be used as a function of a point set A and a height function or vector ω. Given a cell
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C ∈ cells(S), we will also use the notation

Aω|C =

{(
a

ω(a)

)
: a ∈ A ∩ C

}
.

The following proposition indicates that the regularity of a polyhedral subdivision
can be expressed locally. We refer to [15, Chapter 5] for details.

Proposition 1.2. (Folding form [15, Section 5.2]) Let A ⊂ Rd be a finite set of points. A
polyhedral subdivision S of A is regular if there exists a height function ω : A→ R such that
for every cell C ∈ cells(S), the points of Aω|C lie in a hyperplane (coplanarity condition),
and for every wall W = C ∩ D, where C,D ∈ cells(S), the point

(
a

ω(a)

)
lies strictly above

the hyperplane containing Aω|D, for all a ∈ A ∩ (C \D) (local folding condition).

In view of the previous result, it is easy to see that the regularity of a subdivision
is equivalent to the feasibility of a linear program. We sketch the proof of this well-known
fact because we will use the notation later.

Note that the coplanarity condition for a cell C can be translated into a set of
linear homogeneous equations in the heights of its vertices. Indeed, it is enough to choose
a spanning set of vertices B = {b1, . . . , bd+1} of C and require∣∣∣∣∣∣

1 . . . 1 1
b1 . . . bd+1 a

ω(b1) . . . ω(bd+1) ω(a)

∣∣∣∣∣∣ = 0, (1)

for every vertex a ∈ A ∩ (C \B).

By developing the last row of the determinant, it becomes clear that these conditions
are linear equations in the heights of the lifted points. Hence, all coplanarity conditions
together restrict the set of possible height functions ω to a linear subspace of Rn.

Consider now the local folding condition for a wall W = C∩D with C,D ∈ cells(S).
Let {b1, . . . , bd+1} be a spanning set of vertices of D, and let a ∈ A ∩ (C \ D). The local
folding condition for W can be expressed as∣∣∣∣ 1 . . . 1

b1 . . . bd+1

∣∣∣∣
∣∣∣∣∣∣

1 . . . 1 1
b1 . . . bd+1 a

ω(b1) . . . ω(bd+1) ω(a)

∣∣∣∣∣∣ > 0. (2)

By developing the last row of the second determinant, it becomes clear that this condition
is a linear homogeneous strict inequality in the heights of the lifted points. Therefore, the
local folding conditions for the walls of a subdivision S define together a relatively-open
cone in the subspace determined by the coplanarity conditions.

Definition 1.3. The regularity system of a subdivision S is the collection of equations and
inequalities resulting from its coplanarity and local folding conditions. The weak regularity
system of S is the system resulting from the replacement of the strict inequality in (2) with
a weak inequality. The secondary cone of S is the set of solutions of the weak regularity
system.
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The regularity system can be defined for coarsenings of polyhedral complexes, even if
they are not polyhedral complexes (that is, if the “faces” fail to be convex or the tessellation
is not face-to-face). Moreover, the definitions and statements presented here can be easily
translated to the case where the initial object A is a set of vectors instead of points. In
such a case, the cells of the complex are cones forming a polyhedral fan whose 1-faces are
rays with directions taken from A. The local folding (and coplanarity) conditions then lose
the row of ones in the determinants appearing in (1) and (2), and also one column each,
since affine bases must be replaced with linear bases. We will use the term subdivision in
an ambiguous manner to stress this fact and focus on point-set subdivisions in the proofs.

1.3 The secondary fan and the secondary polytope

Regular subdivisions were first studied by Gelfand, Kapranov and Zelevinsky [21], who
introduced the secondary fan and the secondary polytope. These two objects encode the
combinatorics of the refinement poset of the regular subdivisions of a point set. We next
give the necessary definitions to state this result more precisely.

Definition 1.4. The GKZ-vector α(T ) of a triangulation T of a finite point set A is the
vector α(T ) ∈ RA whose a-th component is∑

C∈cells(T )
C3a

Vol(C).

The convex hull Σ(A) ⊂ RA of all vectors α(T ) over all triangulations T of A is an (n−d−1)-
dimensional polytope called the secondary polytope of A.

Theorem 1.5 (Gelfand, Kapranov and Zelevinsky [21]). The secondary cones of the regu-
lar triangulations of a d-dimensional point set A define an (n−d−1)-dimensional complete
polyhedral fan (called the secondary fan of A). The secondary fan of A is the normal fan
of Σ(A).

As a consequence, the vertices of Σ(A) correspond to regular triangulations of A and
the edges of Σ(A) correspond to flips between regular triangulations. This implies that the
regular triangulations of A are connected in the graph of flips. (There may be additional
flips between two regular triangulations which are not represented as edges of the secondary
polytope [15, p. 234].)

1.4 Edelsbrunner's acyclicity theorem

Another nice (geometrically induced) combinatorial property of regular subdivisions is the
acyclicity in their in-front relation. We state here the definitions we need for later on.

Definition 1.6. Let v be a point in Rd and S, T ⊂ Rd be two disjoint convex sets. We
say that S is in front of T with respect to v if there is an open ray ρ starting at v so that
S0 = ρ ∩ S 6= ∅, T0 = ρ ∩ T 6= ∅ and every point of S0 lies between v and any point of T0.
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This relation is called the in-front relation (from v). It is asymmetric because of
the convexity of S and T . The relation can be defined for a direction as well, when v is
considered to lie at infinity. The definition is similarly extended to polyhedral fans.

Definition 1.7. A polyhedral complex is said to be cyclic from a point v (possibly at
infinity) if the in-front relation from v over the interior of its cells contains a cycle. The
complex is called acyclic if it is not cyclic from any point.

Theorem 1.8 (Acyclicity Theorem [18]). Regular polyhedral complexes are acyclic.

1.5 Our contribution

This article is mainly concerned with recursively regular subdivisions. Intuitively, a poly-
hedral complex S is recursively regular if it is regular, or it has a regular coarsening S ′ such
that for each cell C ∈ cells(S ′), the restriction of S to C is recursively regular. It is easy to
see that this class of subdivisions generalizes regular subdivisions.

We give a characterization of recursively regular subdivisions, which leads to efficient
algorithms for their recognition and provides meaningful structural properties. In order to
do this, we introduce two constructions closely related to recursively regular subdivisions:
the finest regular coarsening and the regularity tree of a polyhedral subdivision (Section 2).
We provide algorithms for the construction of these objects, which have applications in
different areas that we explore.

In addition, we examine some of the combinatorial properties of recursively regular
subdivisions in comparison to regular subdivisions. In particular, we show that, unlike the
regular subdivisions, the recursively regular subdivisions of a point set are not necessarily
connected by bistellar flips. On the other hand, recursively regular subdivisions remain
acyclic in the sense of Definition 1.7.

As the main application, we address the problem of finding (or deciding whether
it exists) a one-to-one assignment of a set of floodlights to a set of points such that the
floodlights cover the space when translated to the assigned points (Section 3). The given
floodlights are assumed to be the cells of a complete polyhedral fan. We say that the fan
is universal if the floodlights can cover the space regardless of the given point set. We
prove that recursively regular fans are indeed universal, and that having a cycle in visibility
is sufficient yet not necessary for a fan to be non-universal. It remains open to give a
characterization of universal fans.

We also examine two related graph-theoretic problems. The first one is concerned
with straight line-segment embeddings of digraphs on point sets subject to certain direc-
tional constraints on the arcs (Section 4.1). We show that a big family of digraphs (together
with the direction constraints) can be embedded in any given point set, whereas some non-
trivial digraphs (with constraints) cannot be embedded in some types of point sets. The
second deals with rigidity of tensegrity frameworks (Section 4.2). Specifically, we show how
to detect the redundant (useless, in a sense) cables from a spider web.
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2 The �nest regular coarsening and the regularity tree

In this section, we study the finest regular coarsening of a subdivision, which we will use
afterwards to define the regularity tree. Finally, we will introduce the class of recursively
regular subdivisions and analyze some of its properties.

Roughly speaking, the finest regular coarsening of a subdivision is the finest among
all coarsenings of the subdivision that are regular. One should note that it is not obvious
whether this object is well-defined. We show first that this is indeed the case. We do it by
observing that merging two cells of a subdivision corresponds to converting a local folding
condition into a coplanarity condition. Furthermore, this transformation can be done by
simply replacing the strict inequality by an equation with the same coefficients. In other
words, we are looking for the smallest set of inequalities we need to “relax” in order to make
a given system compatible.

Checking whether a subdivision is regular leads to a system of strict inequalities of
the form

Mx > 0
x ∈ Rn.

for some matrix M ∈ Rm×n with row vectors s1, . . . , sm ∈ Rn. If this system has no solu-
tions, we will want to relax some of the strict inequalities to weak inequalities. In general,
the problem of relaxing the smallest number of inequalities that makes an infeasible system
feasible is difficult. However, in our case, where all constraints are homogeneous, these
inequalities are easy to find: they are the equality set E(M) of the system of inequalities
Mx ≥ 0.

Definition 2.1. Let M ∈ Rm×n be a matrix with row vectors s1, . . . , sm ∈ Rn. The system
of M , denoted by S(M), is the system

S(M) :

{
Mx > 0

x ∈ Rn.
(3)

The equality set E(M) of S(M) is

E(M) := {i ∈ [m] | 〈si, x〉 = 0 for all x ∈ P}.
The smallest (compatible) relaxation of S(M) is the system

〈si, x〉 = 0, for all i ∈ E(M)
〈si, x〉 > 0, for all i ∈ [m] \ E(M)
x ∈ Rn.

Clearly, if i ∈ E(M), then we cannot fulfill 〈si, x〉 > 0, even if we relax all the other
inequalities into weak inequalities. On the other hand, there is a solution x∗ which satisfies
all constraints 〈si, x〉 > 0 with i ∈ [m] \ E: By definition, there is for each i ∈ [m] \ E a
solution x(i) of Mx(i) ≥ 0 with

〈
si, x

(i)
〉
> 0. We then set x∗ to the sum of these solutions

x(i).

These observations directly lead to the following folklore statement, which we state
for reference.
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Proposition 2.2. Let M ∈ Rm×n. The equality set E(M) of the system S(M) can be
computed by solving m linear programs in n variables and m constraints.

Proof. We simply maximize, for each i ∈ [m], the objective function 〈si, x〉 over the poly-
hedron P . The maximum is 0 if and only if i belongs to E(M).

In practice, one can try to speed up the procedure by maximizing the sum of several
terms 〈si, x〉: those which have not yet been excluded from E(M). This gives the chance
of identifying more elements at a time that cannot belong to E(M), and thus it poten-
tially reduces the number of linear programming problems. To avoid having to deal with
unbounded problems, one can add some additional inhomogeneous constraints.

There is an alternative approach to compute E(M) via the dual problem, which
successively identifies elements that must be included in E(M) [24, 25].

2.1 The �nest regular coarsening of a subdivision

The algebra developed above will make it very easy to show that there exists a (well-defined)
finest regular coarsening of a polyhedral subdivision. We next introduce some additional
terminology concerning coarsenings.

Given two coarsenings S1 and S2 of S, we say that S1 is finer than S2 if S2 is
a coarsening of S1. A coarsening is proper if it has strictly fewer cells than the original
subdivision. The trivial coarsening is the one that merges all cells into a single one.

Using the definitions in [15, Section 2.3], the refinement relation induces a partial
order on the set subdivisions. Furthermore, the restriction of this partial order to regular
subdivisions is a lattice. This lattice is isomorphic to the face lattice of the secondary
polytope of the point set. However, as far as we know, not much work has been done
concerning coarsenings of non-regular subdivisions. The finest regular coarsening goes in
that direction, and permits to map every non-regular subdivision to a regular one which is,
in a specific sense, most similar to it.

Definition 2.3. The finest regular coarsening of a subdivision S of a point set A is the
subdivision obtained by the projection of the lower hull of Aω0 , where ω0 is a solution of
the smallest relaxation of the regularity system of S.

The next theorem justifies the name in this definition.

Theorem 2.4. Let S be a polyhedral subdivision, and S0 be its finest regular coarsening.
Then, S0 is a regular coarsening of S, and all regular coarsenings of S are coarsenings of S0.

Proof. Let C and D be two adjacent cells of S and consider the local folding condition
associated to them. Observe that replacing the inequality sign in Equation (2) by an
equality sign, one gets an equation equivalent to Equation (1) for a spanning vertex set of
D and a vertex a ∈ A ∩ (C \D). This equation, together with the coplanarity conditions
for C and D, forces all vertices in A ∩ (C ∪ D) to be lifted into a hyperplane. Thus, the
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new system is equivalent to the regularity system of the polyhedral complex resulting from
merging the cells C and D in S.

That is, a solution to a relaxation of the regularity system of S corresponds to a
regular coarsening of S. In addition, the more inequalities are strictly satisfied, the finer the
coarsening is. Hence, S0 is a coarsening of S, it is regular and it is the finest one satisfying
these conditions.

2.2 Relation to the secondary polytope

The finest regular coarsening of subdivision of a finite point set A can also be characterized
in terms of the secondary polytope Σ(A). Considering the definitions of subdivision and
refinement used in [15, Section 2.3], the faces of Σ(A) correspond to regular subdivisions
of A, and inclusion between faces corresponds to coarsening between subdivisions. The
vertices of Σ(A) are the GKZ-vectors of the regular triangulations of A. Non-regular tri-
angulations have GKZ-vectors that are not vertices of Σ(A), and moreover, the function
α mapping non-regular triangulations to their GKZ-vectors may not be injective [15, Sec-
tion 5.2]. Nevertheless, even in the non-regular case, the normal cone of α(T ) in Σ(A)
(which is then not full-dimensional) is isomorphic to the secondary cone of T [21]. It is
then not surprising that the finest regular coarsening of a triangulation T corresponds to
the subdivision associated to the smallest face of Σ(A) containing α(T ).

The secondary cone can be defined also for general subdivisions (not only for tri-
angulations), see [15, Section 5.2]. This cone is contained in the linear subspace L of the
height-functions space defined by the coplanarity conditions. Of course, the cone is also
contained in the affine hull H of the secondary fan, which is (n−d− 1)-dimensional. Then,
a subdivision is regular if and only if its secondary cone is full-dimensional in L ∩ H. In
accordance with Definition 2.3, the finest regular coarsening of a subdivision S is the subdi-
vision induced by any height function in the relative interior of the secondary cone of S. The
characterization of the finest regular coarsening in the previous paragraph is equivalent to
this statement, by the duality between the secondary fan and the secondary polytope Σ(A).

2.3 The regularity tree and recursively regular subdivisions

Roughly speaking, recursively regular subdivisions are subdivisions that can be decomposed,
via a regular coarsening, into recursively regular pieces.

Definition 2.5. A polyhedral subdivision S is recursively regular if it is regular or there
exists a proper, non-trivial, and regular coarsening S ′ of S such that S|C is recursively
regular for each cell C ∈ cells(S ′).

This definition can be extended to polyhedral fans. We will use the notation R(A)
to refer to the set of recursively regular subdivisions of a point configuration A. The class
of all recursively regular subdivisions of any point set will be denoted by R. We will show
that R is larger than the class of regular subdivisions.
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Figure 1: A recursively regular subdivision and a sketch of its regularity tree.

A specially relevant subclass of the subdivisions that do not belong to R are pre-
sented next.

Definition 2.6. A subdivision is completely non-regular if it has more than one cell and
its finest regular coarsening is its trivial coarsening.

This condition implies, in particular, that every wall of the subdivision can appear
in a contradiction cycle of its regularity system.

To proceed, we need to introduce some notation and technical definitions. Given
a subset C of cells(S), we denote by |C| the ground set ∪C∈C C covered by these cells.
Similarly, if S is a subdivision, |S| will denote the union of the cells of S.
Definition 2.7. A subdivision tree of a subdivision S of a point set A is a rooted tree such
that:

i) its vertices are subsets of cells(S)

ii) its root is cells(S)

iii) if the children of C are C1, . . . , Cl, then there is a polyhedral subdivision SC of A ∩ |C|
such that {|C1|, . . . , |Cl|} = cells(SC).

A subdivision tree is called regular if the subdivision SC of A ∩ |C| used to split the node C
is regular for each node C of the tree.

Note that a subdivision is recursively regular if and only if it has a regular subdivision
tree. However, a subdivision can have many subdivision trees, and even many regular
subdivision trees. Fortunately, we can define a canonical one, which will be later used to
decide if a subdivision is recursively regular:

Definition 2.8. The regularity tree of the subdivision S is the subdivision tree created by
the following recursion:
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(a) If a subdivision S is regular or completely non-regular, its regularity tree is the tree
whose single node is |S|.

(b) Otherwise, let S0 be the finest regular coarsening of S. The regularity tree is the root
node |S| with a child for each cell C ∈ cells(S0). The subtrees are regularity trees of
S|C for C ∈ cells(S0).

Figure 1 exhibits an example of a regularity tree. The figure shows a triangulation
in R which needs two levels of recursion to fit the definition of recursively regular subdivi-
sion. The coordinates of this example and a proof that the finest regular coarsening of the
depicted subdivision is the subdivision defined by the second level of the tree are provided
in Appendix C. Note that the example consists of a “pinwheel” triangulation inserted into
a triangle of a bigger copy of the pinwheel triangulation. The insertion procedure can be
repeated recursively to obtain a family of triangulations where the number of levels of the
regularity tree grows linearly in the number of vertices.

The leaves of the regularity tree of S form a partition of cells(S). There are two
possibilities for the subdivision in a leaf of the regularity tree: it is are either regular or
completely non-regular. Accordingly, we speak of regular leaves and completely non-regular
leaves.

The following theorem relates the regularity tree and the recursive regularity of a
subdivision.

Theorem 2.9. A polyhedral subdivision S is recursively regular if and only if the leaves of
its regularity tree are regular.

Before proceeding to the proof of the theorem, we state an easy technical lemma
without proof.

Lemma 2.10. Let S be a subdivision of a finite point set A ⊂ Rd and Q ⊂ Rd be a
polyhedron. Then:

i) If S is regular, then S|Q is regular as well.

ii) If S ′ refines S, then S ′|Q refines S|Q.

iii) If S is recursively regular, then S|Q is recursively regular as well.

Proof of Theorem 2.9. If all leaves of the regularity tree are regular, the regularity tree
itself certifies the recursive regularity of S. That is, the hierarchy of regular coarsenings
encoded by the regularity tree ensures that the subdivision satisfies the recursive conditions
in Definition 2.5. The if direction is then proved.

For the only if direction, we will prove that the leaves of the regularity tree of
any subdivision in R are regular. We do this by induction on the number of cells of the
subdivision. The base case is when the subdivision consists of a single cell C. In this case,
the only leaf of its regularity tree is C, which is regular.
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For the inductive step, let S be in R, and assume that the regularity tree of any
subdivision in R with fewer cells has regular leaves. If S is regular, then the statement is
trivially true. Assume then that S is not regular and let S̄ be a non-trivial regular coarsening
splitting S into smaller subdivisions in R. Such a coarsening exists by the definition of
recursive regularity. Indeed, there is a regular subdivision tree of S representing a set of
coarsenings certifying that S belongs to R. The second part of Theorem 2.4 asserts that S̄
is a coarsening of the finest regular coarsening S0 of S. Then, given a cell C ∈ cells(S0),
there is a cell C ′ ∈ cells(S̄) such that C ⊂ C ′. Since S|C′ ∈ R and C ⊂ C ′, it follows
from Lemma 2.10.iii that S|C ∈ R. By induction hypothesis, the leaves of the regularity
tree of S|C are regular. Since the leaves of the regularity tree of S are the leaves of the
regularity trees of S|C for all C ∈ cells(S0), the proof is completed.

We present now some properties of recursively regular subdivisions.

Proposition 2.11. Let A be a finite point set.

i) Every regular subdivision of A is recursively regular. The converse does not hold.

ii) Every recursively regular subdivision of A is acyclic. The converse does not hold.

Proof. i) Regular subdivisions are in R by definition.

A non-regular triangulation that belongs to R is shown in Figure 1. This example is
analyzed in Appendix C. More examples may be found in [25, Figure 2a] or in [30,
Figure 3] (where the recursive regularity is not analyzed).

ii) We will prove that any S ∈ R must be acyclic by induction on the number of cells.
For the base case, we observe that a single-cell subdivision is always acyclic. If S has
more than one cell, we distinguish two cases. If S itself is regular, then Theorem 1.8
shows that it must be acyclic. Otherwise, let S0 be the finest regular coarsening of S.
Assume for the sake of contradiction that S contains a cycle. If the cycle contains cells
belonging to more than one cell of S0, it induces a cycle in S0 contradicting the fact
that S0 is regular. If the cycle is contained a single cell C ∈ cells(S0), then it is also a
cycle in S|C . Since S|C ∈ R and it has fewer cells than S, this leads to a contradiction
as well.

For the strictness of the inclusion, we refer to the example of Figure 2, which shows
an acyclic subdivision that does not belong to R. These properties are established
in Appendix B.

The next proposition illustrates that R includes some “pathological” triangulations.
More precisely, we will show that there are triangulations in R that are not connected in
the graph of flips of their (common) vertex set. To prove this, we will simply show that the
non-regular triangulations used by Santos [29] belong to R.

Proposition 2.12. There exists a point set A ⊂ R5 whose recursively regular triangulations
are not connected by geometric bistellar flips.
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Figure 2: An acyclic triangulation that is completely non-regular.

Proof. Santos [29] constructs a set of triangulations T of a five-dimensional point set A that
are pairwise disconnected in the graph of flips. We show that all triangulations in T are
recursively regular. The convex hull of A is a prism P over a four-dimensional polytope
Q called the 24-cell. The polytope Q has 24 facets, which are regular octahedra. All
triangulations in T are refinements of the prism P (in the sense of [15, Definition 4.2.10])
over a subdivision B of A ∩ Q. The subdivision B is a central subdivision of Q, it is thus
regular (see [15, Section 9.5]) and consists of 24 pyramids over octahedra. Therefore, the
prism P is regular as well, because the prism over a regular subdivision is regular [15, Lemma
7.2.4]. Each triangulation in T triangulates the cells of B in a specific way. However, since
a triangulation of a pyramid is regular if and only if the triangulation induced on its base is
regular [15, Observation 4.2.3], and the bases of the pyramids are regular octahedra (which
are known to have only regular triangulations), the restriction of any triangulation in T to
any cell of B is regular. Hence, the restriction of any triangulation in T to every cell of P is
regular as well, since a triangulation of a prism over a simplex is regular [15, Section 6.2].
Thus, every triangulation in T is recursively regular. Indeed, each triangulation in T is a
refinement of a regular subdivision P, and its restriction to any cell of P is regular.

In fact, the proposition shows that there is a point set A with at least 12 tri-
angulations in R(A) that are pairwise disconnected and disconnected from any regular
triangulation in the graph of flips of A, as observed in [29].

2.4 Algorithms

With the help of Proposition 2.2, it becomes easy to prove that the finest regular coarsening
of a subdivision can be efficiently computed. The known polynomial bound for linear
programming holds only if the total number L of bits needed to encode the coefficients is
counted for the input size (as in the Turing machine model).

Corollary 2.13. Let S be a subdivision of a point set A in any fixed dimension and let
L be the total number of bits necessary to encode the coordinates of A. The finest regular
coarsening of S can be computed in time polynomial in L.

Proof. It follows from the definition of the finest regular coarsening that it can be determined
by finding a point ω0 in the relative interior of the secondary cone of S, computing the
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point set Aω0 and its convex hull to finally project its lower faces. However, it is easier
to iteratively construct it following the algorithm in Proposition 2.2 to find the smallest
relaxation set of its regularity system. Whenever a constraint is relaxed (a dual variable
is unrestricted), we merge the cells sharing the corresponding wall. We perform the merge
operation symbolically by giving a common label to the merged cells. When the iteration
ends, we construct the cells of the finest regular coarsening by computing the convex hull of
the vertices of the cells with the same label. Since we assume that the dimension is constant
and the vertices of the finest regular coarsening are a subset of A, the construction of the
cells can be done in polynomial time.

The coefficients of the linear program come from d-dimensional determinants on
the coordinates of points in A. Therefore, the number of bits needed to encode them is
polynomial in L. In each iteration, a linear program is solved. The number of variables
is bounded by |A|, and there are as many constraints as walls in S. Therefore, the whole
algorithm takes polynomial time in |A| and L.

The statement in the corollary is not trivial because there are subdivisions, even
in the plane, that have a linear number of simultaneous flips [20], that is, a linear number
of pairs of triangular cells that can be independently merged into quadrilaterals or not.
Consequently, if one would want to try out all possibilities of merging cells, these subdi-
visions have an exponential number of potential minimal coarsenings that one might need
to test for regularity. The scenario seems even worse when it comes to recursive regularity.
Fortunately, as a consequence of Theorem 2.9, this can indeed be decided in polynomial
time using the procedure in Corollary 2.13.

Proposition 2.14. Let S be a subdivision of a point set A in any fixed dimension and
let L be the total number of bits necessary to encode the coordinates of A. Whether S is
recursively regular can be decided in time polynomial in L.

Proof. Theorem 2.9 ensures that we only need to compute the regularity tree of S to de-
cide whether S belongs to R. This is done by computing the finest regular coarsening of
subdivisions of some subsets of A. Each time we go down a level in the tree, there is one
wall in the finest regular coarsening that was not in any previous finest regular coarsenings.
Therefore, if we charge the computation of the finest regular coarsening to this wall, we can
conclude that the number of computations is bounded by the number of walls in S, which
is polynomial if d is considered to be a constant.

3 Illumination by oodlights in high dimensions

In the last decades, a wide collection of problems have been studied concerning illumination
or guarding of geometric objects. The first Art Gallery problem posed by Klee asked simply
how many guards are necessary to guard a polygon. Since then, considerable research has
addressed several variants of this problem, such as finding watchman routes or illuminating
sets of objects. A remarkable group of problems arises when the light sources (or the
surveillance devices) do not behave in the same way in all directions. In the major part of
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the literature, these problems are studied only in the plane. A compilation of results on
this type of problem can be found in [31].

The problems we are interested in assume that each light source illuminates a poly-
hedral cone. The first problem we look at in this section is the space illumination problem
in three or higher dimensions. Informally speaking, the problem asks, for a given set of
floodlights and a given set of points, whether there is a placement of the floodlights on the
points such that the whole space is illuminated. Afterwards, we study the generalization to
higher dimensions of the stage illumination problem, introduced by Bose, Guibas, Lubiw,
Overmars, Souvaine and Urrutia [9].

We first present a result that will be used in the subsequent proofs.

Definition 3.1. The power diagram of a finite set of points Q ⊂ Rd (called sites) with
assigned weights w : Q→ R is the polyhedral complex whose cells are

Rq = {x ∈ Rd : ‖x− q‖2 − w(q) ≤ ‖x− q′‖2 − w(q′) for all q′ ∈ Q}, for q ∈ Q.

For every q ∈ Q, the locus Rq is a polyhedron called the region of q. For more details
on this type of diagrams, see the survey by Aurenhammer [6]. Given a finite point set S
and a set Q of weighted points, we say that an assignment σ : S → Q is compatible with
the power diagram of Q if s ⊂ Rσ(s), for all s ∈ S. (If a point s ∈ S lies on the boundary
between power regions, a compatible assignment can assign such a point to any region in
which it lies.)

The next theorem relates power diagrams and constrained least-squares assignments.

Theorem 3.2 (Aurenhammer, Hoffmann and Aronov [4]). Let Q and S be finite sets of
points, and let c : Q→ N be a function such that

∑
q∈Q c(q) = |S|. Then there exist weights

w : Q → R and an assignment σ : S → Q with |σ−1(q)| = c(q) for all q ∈ Q, which is
compatible with the power diagram of Q.

If k = |Q| ≤ |S| = n, the assignment in Theorem 3.2 can be computed inO(k2n log n)
time by an algorithm of Alberts [2]. For the special case |S| = |Q| = n and c(q) = 1 for
all q ∈ Q, the problem becomes an assignment problem and can be thus solved using the
Hungarian method in O(n3) time.

The results presented in this section use recursively regular polyhedral fans. These
objects are analogous to recursively regular subdivisions of a point set with vectors instead
of points as base elements. We next introduce some new definitions specific to this problem.

The ground set of a polyhedral complex C, denoted by |C|, is the union of all its
cells. We say that a d-dimensional polyhedral fan is complete if its ground set is the whole
space and that it is conic if the ground set is a pointed d-dimensional cone. Similarly, we
will talk about the complete case and the conic case to refer to instances of the problem
where the given fan is complete or conic, respectively. A wall of a fan will be called interior
if it is not contained in the boundary of the ground set of the fan. A cone K is said to
contain a direction (or vector) v if it contains the ray ρv starting at the apex of K and
having direction (or direction vector) v. We will say that the direction is interior to a cone
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if ρv intersects the boundary of K only in its apex. We fix some vector u ∈ Rd \ {0} and
declare it as the upwards vertical direction. For a non-vertical hyperplane Π ⊂ Rd, we
let Π+ (respectively, Π−) denote the closed halfspace bounded by Π and containing the
direction u (respectively, −u). Given a set H = {Π1, . . . ,Πm} of hyperplanes, the upper
envelope of H is defined as

⋂
i∈[m] Π

+
i and the lower envelope is

⋂
i∈[m] Π

−
i .

For completeness, we state a well-known fact [6], which reveals the relation between
power diagrams and regular polyhedral complexes.

Proposition 3.3. The following sets are equivalent:

i) The set of regular polyhedral complexes S with |S| = Rd

ii) The set of power diagrams in Rd

iii) The set of lower envelopes of arrangements of non-vertical planes in Rd+1

Definition 3.4. Let P be a polyhedron P = (
⋂
i∈I Π+

i ) ∩ (
⋂
j∈J Π−j ), where Πi are the

hyperplanes supporting the facets of P , for i ∈ I. The reverse polyhedron of P , denoted by
P−, is defined as P− = (

⋂
i∈I Π−i ) ∩ (

⋂
j∈J Π+

j ). The reverse fan of a polyhedral fan F is
the fan obtained by reversing all its faces. The reverse cone of a conic fan is the reverse
polyhedron of its ground set.

Note that if P is a cone with apex at the origin, then P− = −P , where −P denotes
the inversion of the set P with respect to the origin. We let A + t denote the result of
translating the set A by the vector t.

Definition 3.5. Given a d-dimensional complete polyhedral fan F with n cells and a set of
n points P ⊂ Rd, we say that an assignment σ : cells(F)→ P is covering if it is one-to-one
and ⋃

C∈cells(F)

(C + σ(C)) ⊃ |F|.

The cones of the fans represent floodlights, which have to be placed at the corre-
sponding points. They can be translated but they are not allowed to rotate, as in other
variants of the problem. Figure 3 shows an example where a covering assignment is rep-
resented by the actual translation of each cell of the fan to the corresponding point. We
can see that the plane is covered (or illuminated) by the translated cells and, therefore, the
assignment is covering.

We are now ready to state formally the space illumination problem. Given a d-
dimensional polyhedral fan and a set of points in Rd we would like to know whether there
is a covering assignment for that fan and the point set. Galperin and Galperin [19] proved
that a covering assignment can be found if the fan is complete and regular, regardless of
the given point set and in any dimension.

Theorem 3.6 (Galperin and Galperin [19], Rote [27]). Let F ⊂ Rd be a complete regular
polyhedral fan consisting of n cells, and let P ⊂ Rd be a set of n points. There is a covering
assignment for F and P .
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Figure 3: A covering assignment (right) for a fan F (left) and a point set S (center).

In particular, there is a covering assignment for a fan in the plane and any point
set of the right cardinality. This last statement was rediscovered with a small variation in
the formulation of the problem in [9], where an O(n log n) algorithm for finding a covering
assignment is given as well. The conic case in the plane has also been considered with the
extra assumption that the points are contained in the reverse cone of the fan. In this case,
a covering assignment can be always found as well. However, if the points are not required
to lie in the reverse cone, deciding the existence of a covering assignment becomes NP-hard
even in the plane, since the problem is equivalent to the wedge illumination problem studied
in [10].

3.1 Recursively regular fans are universally covering

We generalize first the conic case to higher dimensions and prove that it is sufficient for the
fan to be recursively regular to ensure the existence of a covering assignment for any point
set in the reverse cone of the fan. Afterwards, we use this result to prove that Theorem 3.6
can be extended to recursively regular fans in the complete case as well. Both generalizations
are synthesized in the following statement.

Theorem 3.7. Let F ⊂ Rd be a full-dimensional recursively regular polyhedral fan consist-
ing of n cells and P ⊂ |F|− be a set of n points. There is a covering assignment for F
and P .

Note that (Rd)− = Rd and there is thus no restriction for P in the complete case.
As a preparation for the proof, we establish two technical lemmas and a crucial lemma.

Lemma 3.8. A conic full-dimensional fan F ⊂ Rd with |F| = K is regular if and only if
F is the restriction to K of a complete regular fan.

Proof. For the only if direction, assume that F is regular and, hence, there is a cone
K̃ ⊂ Rd+1 whose lower convex hull projects on F . This cone can be written as

K̃ =

 ⋂
i∈I+

Π+
i

 ∩
 ⋂
i∈I−

Π−i

 ,
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for some hyperplanes Πi, i ∈ I+∪ I−. By convention, any vertical hyperplanes bounding K̃
are considered as part of I−. Then

⋂
i∈I+ Π+

i is a cone whose faces project onto a complete
fan G, since the vertical direction is interior to it. By construction, G is regular and G|K = F .

To prove the if direction, assume that L̃ ⊂ Rd+1 is a cone whose lower hull projects
onto a complete fan G ⊂ Rd and let K =

⋂
i∈I Π−i ⊂ Rd be a polyhedral cone. (Here, the

superscript “−” in Π−i has no directional significance; Π−i denotes a d-dimensional half-space
bounded by some hyperplane Πi.) For every i ∈ I, let Π̃i be the vertical hyperplane in Rd+1

containing Πi. Clearly the set L̃ ∩ (
⋂
i∈I Π̃−i ) is a cone whose lower convex hull projects

onto the restriction of G to K.

In one step of the proof of Theorem 3.7, we want to cover a polyhedron Q by
assigning n cones of a fan to n points of a point set P ⊂ Q−. The following lemma reduces
this task to finding a covering assignment for a complete fan.

Lemma 3.9. Let Q =
⋂
i∈I(Π

+
i + ti) ⊂ Rd be a full-dimensional polyhedron, where ti ∈ Rd

and O ∈ Πi for all i ∈ I. Let G ⊂ Rd be a full-dimensional complete fan consisting of n
cells, whose restriction F to the recession cone K =

⋂
i∈I Π+

i consists of n cells as well. Let
P be a set of n points with P ⊂ Q−. If there is a covering assignment for G and P , then
the cells of F translated by the corresponding assignment cover Q.

Proof. Let θ : cells(F)→ cells(G) be the map such that C = θ(C)∩K for all C ∈ cells(F),
and let σ : cells(G)→ P be a covering assignment. We want to show that⋃

C∈cells(F)

(C + σ(θ(C))) ⊃ Q. (4)

Since σ is a covering assignment,⋃
D∈cells(G)

(D + σ(D)) =
⋃

C∈cells(F)

(θ(C) + σ(θ(C))) = Rd ⊃ Q. (5)

We will be done if we can prove that (C + p) ∩Q = (θ(C) + p) ∩Q for all p ∈ Q− and for
all C ∈ cells(F), because then every set in the union in (5) will correspond to a set in (4).
Note that Q ⊂ Π+

i + p for any p ∈ Q− and for all i ∈ I, by definition of reverse polyhedron.
Hence, Q ⊂ K + p. Since

C = θ(C) ∩K = θ(C) ∩
(⋂
i∈I

Π+
i

)
,

it follows that

(C + p) ∩Q = ((θ(C) ∩K) + p) ∩Q = (θ(C) + p) ∩ (K + p) ∩Q = (θ(C) + p) ∩Q.

Therefore, the cells of F translated according to σ ◦ θ cover Q.
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C∗
C C∗

Figure 4: A fan F (left). An instance of ϕ∗(F , ω) and ϕ∗(F , ω) (center). A cell C∗ contained
in the reverse cone of C∗.

We introduce some notation and provide a proof for a generalization of a lemma
from [27]. Let G be a regular polyhedral fan and let

K =
⋂

C∈cells(G)

Π+
C

be a (d+1)-dimensional cone projecting onto G, where the hyperplane ΠC supports the
facet of K that projects onto C, for all C ∈ cells(G). Given a function ω : cells(G) → R,
let the power diagram ϕ∗(G, ω) be the (projection of the) upper envelope of the hyperplane
arrangement obtained by vertically shifting the hyperplane ΠC by ω(C), for all C ∈ cells(G).
Similarly, let ϕ∗(G, ω) denote the projection of the lower envelope of these hyperplanes. Both
power diagrams have as many cells as G and all of the cells are unbounded. In addition, the
cells in these diagrams can be paired in a natural way with the hyperplane they come from.
Let C∗ denote the cell of ϕ∗(G, ω) corresponding to C, and let C∗ denote the corresponding
cell of ϕ∗(G, ω). These pairs of cells satisfy the following property, which is illustrated in
Figure 4. We include the short proof for completeness.

Lemma 3.10 (Rote [27]). Let G be a complete regular polyhedral fan, and let ω be a function
ω : cells(G)→ R. Then every cell C∗ ∈ cells(ϕ∗(G, ω)) is contained in the reverse polyhedron
of C∗ ∈ cells(ϕ(G, ω)).

Proof. Choose an arbitrary cell C∗ of ϕ∗(G, ω). LetW∗ be a wall between C∗ and an adjacent
cell D∗. W∗ lies in the hyperplane h, which is the projection of (ΠC +ω(C))∩ (ΠD +ω(D)).
We have to show that C∗ lies on the opposite side of h as C∗. Clearly ΠC + ω(C) is above
ΠD + w(D) on one side of h while ΠD + ω(D) is above ΠC + ω(C) on the other side and,
hence, C∗ is contained in one side of h while C∗ is contained in the other.

We can now prove Theorem 3.7 about recursively regular fans, which generalizes the
results in [19, 27].

Proof of Theorem 3.7. We first deal with the case that F is a complete fan. The idea of the
proof is to implicitly walk down the regularity tree and recursively split the set of cells of F ,
the space in |F| and the points of P into smaller problems, as summarized in Algorithm 1.
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Algorithm 1: Compute the covering assignment of Theorem 3.7.
Input: F ⊂ Rd, a full-dimensional, complete, recursively regular polyhedral

fan consisting of n cells, and a set P of n points
Output: A covering assignment for F and P .
if F is regular then

return the covering assignment given by Theorem 3.6
else
F0 ← the finest regular coarsening of F
foreach C ∈ cells(F0) do

nC ← |cells(F|C)|
Find a partition of P into subsets PC of size |PC | = nC , for C ∈ cells(F0),

and a weight function ω such that each set PC is contained in the
corresponding cell C∗ of ϕ∗(F0, ω), with the help of Theorem 3.2

foreach C ∈ cells(F0) do
Construct a complete fan G with |cells(G)| = |cells(F|C)| and G|C = F|C

by Lemma 3.8
Apply Algorithm 1 recursively to (G,PC), yielding σC

return the combination of σC for all C ∈ cells(F0)

If F is regular, Theorem 3.6 provides a covering assignment. If F is not regular
but recursively regular, we compute the finest regular coarsening F0 of F . Note that the
lower envelope ϕ∗(F0, ω) is also a power diagram for some set of sites Q by Proposition 3.3.
Changes in the weight function w : Q → R of the power diagram correspond to changes
in the function ω : cells(G) → R. Therefore, we can apply Theorem 3.2 to find ω and a
partition of P into one set PC for each cell C ∈ cells(F0), such that PC is contained in the
cell C∗ of ϕ∗(F0, ω) and |PC | = nC = |cells(F|C)|. We then want to cover recursively each
cell C∗ of ϕ∗(F0, ω) with the floodlights of F|C and the points of PC . Since the polyhedral
cells C∗ partition space, this will be sufficient.

We recursively compute a covering assignment σC for the complete fan G that ex-
tends F|C . Lemma 3.10 ensures that the points PC ⊂ C∗ are in the reverse polyhedron
of C∗, and therefore the hypotheses of Lemma 3.9 are satisfied. Thus, when we use σC as
an assignment for F|C and PC , the region C∗ will be covered.

The algorithm terminates because the number of cells of the fan strictly decreases
in each recursive call.

In the case when F is a conic fan, we first construct a complete fan G, invok-
ing Lemma 3.8, and apply the algorithm to G. Since P ⊂ |F|− by assumption, we can
argue as above with Lemma 3.9 that the resulting assignment covers |F|.

3.2 Cyclic fans are not universally covering

Let F ⊂ Rd be a full-dimensional polyhedral fan with n cells. We say that F is universally
covering if for any point set P ⊂ Rd of n points there exists a covering assignment for F
and P . After showing that all recursively regular fans are universally covering, one could
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imagine that all fans are so. We prove that this is not the case in dimension three and higher
by showing that if a fan is cyclic in some direction, there is a point set for which there is no
covering assignment. This statement will easily follow from Theorem 3.15. Before proving
this theorem, we need to introduce a definition and state a technical lemma.

Definition 3.11. Let F ⊂ Rd be a full-dimensional polyhedral fan, let W ∈ F be common
wall between two cells C,D ∈ cells(F), and let v be a vector normal to W pointing from C
to D. We say that an assignment σ : cells(F) → Rd satisfies the overlapping condition for
W if 〈(σ(C)− σ(D)), v〉 ≥ 0.

An assignment satisfies this condition for a wall if and only if the copies of the two
cells sharing the wall translated to the assigned points have non-empty intersection. The
following observation is straightforward.

Lemma 3.12. Let K ⊂ Rd be a full-dimensional polyhedral cone.

(i) Any line with direction interior to K has unbounded intersection with K.

(ii) Any line with direction not contained in K has bounded intersection with K.

The next lemma follows easily.

Lemma 3.13. Let F ⊂ Rd be a full-dimensional polyhedral fan. A covering assignment for
F must satisfy the overlapping condition for every interior wall of the fan.

Proof. If the condition is not satisfied for the wall H = C ∩ D, we consider a ray ρ in a
direction interior to H and place it at the point (σ(C) + σ(D))/2. Since only the cells
C and D contain the direction of ρ, only C and D can cover an unbounded part of ρ,
by Lemma 3.12. In addition, none of these two cells intersect ρ. Therefore, since ρ is
unbounded and we have finitely many cones, ρ cannot be completely covered. If the fan is
complete, the proof is finished. Otherwise, we should note that ρ will eventually enter |F|,
since the direction of ρ is interior to an interior wall of F and, hence, interior to |F|.

Satisfying the overlapping conditions is not sufficient in general, not even in the
plane. An exception is the case where all points lie on a line, which is studied in the
following lemma.

Lemma 3.14. Let σ : cells(F)→ P be an assignment for a full-dimensional polyhedral fan
F ⊂ Rd consisting of n cells, and a set P ⊂ |F|− of n points lying on a line `. If σ satisfies
the overlapping condition for all interior walls, then it is a covering assignment.

Proof. We prove first the complete case. We can assume without loss of generality that `
goes through the origin, and F has its apex at the origin. Fix a direction vector v parallel
to `. Consider any oriented line `′ with direction v. At infinity in direction v, `′ is covered
by some (untranslated) cell C of F . Hence, when C is translated to its assigned point σ(C)
of P , it still covers `′ at infinity because the translation is only parallel to `′. Let q ∈ `′ be
the point where `′ leaves C+σ(C). Suppose that q is in the relative interior of a translated
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wall of C, and let W = C ∩D be this wall, where C,D ∈ cells(F). Then the overlapping
condition forW and the special position of P ensures that `′ enters D+σ(D) before leaving
C + σ(C). Iterating this argument, we eventually reach a cell containing the direction −v
that covers the unbounded remainder of `′. Thus, any line `′ with direction v and that
intersects only d- and (d−1)-dimensional faces of the translated cells is completely covered.
The union U of the remaining lines with direction v (that is, the lines intersecting some
(d− 2)-dimensional face of some translated cell) is a nowhere-dense set and thus is covered
as well. Indeed, for every line ˆ̀∈ U we can find a line not in U with direction v (and, hence,
covered) arbitrarily close to ˆ̀. Since the cells are closed sets, the limit of a sequence of
covered lines must be covered as well, and thus U is covered. Since any line with direction
v is covered, Rd is completely covered.

Assume now that F is a conic fan with K = |F|. Consider a line `′ with direction
v that enters K through a wall. Let C ∈ cells(F) be the cell containing this wall. Since
P ⊂ `∩K−, the line `′ enters the translated cell C+σ(C) before enteringK. The arguments
for the complete case carry over unless the line crosses a wall W + σ(D) of some translated
cell D + σ(D) such that W ⊂ ∂K. Then, again the fact that P ⊂ ` ∩ K− implies that
the line ` has left K before this happens. Therefore, if `′ is a line with direction v that
avoids (d − 2)-dimensional faces of the translated cells (and of K), then `′ ∩K is covered.
A limit argument as in the complete case ensures that then all lines with direction v have
the portion intersecting K covered, and thus K is covered.

We will now show that there is a fan and a point set for which there is no covering
assignment.

Theorem 3.15. Given a full-dimensional polyhedral fan F ⊂ Rd with n cells and set of n
points P ⊂ |F|− lying on a line `, there is a covering assignment for F and P if and only
if F is acyclic in the direction of the line `.

Proof. Let v 6= 0 be a vector parallel to `. We can construct a directed graph G having
the cells of F as vertices and an edge from D to C if the vector u normal to W = C ∩D
pointing from C to D satisfies 〈u, v〉 ≥ 0.

If F is acyclic in the direction v, G is acyclic as well. If the points σ(C) appear on ` in
an order which is compatible with the partial order represented by G, then the overlapping
conditions hold for σ. Lemma 3.14 ensures then that the assignment is covering.

On the other hand, if there is a visibility cycle τ = (C1 . . . Ck) in the direction v,
that is, Ci is in front of Ci+1, for all i ∈ [k − 1], and Ck is in front of C1, there is a cycle in
the order in which the points σ(C1), . . . , σ(Ck) should appear in the line in order to satisfy
the overlapping conditions, preventing them to be satisfied for all walls of the fan. These
conditions have been proved to be necessary for a covering assignment.

If a covering assignment exists for a given point set in a line and a given fan, it can
be computed in O(n2) time. We first perform a topological sort on the graph G described in
the proof of Theorem 3.15. Since the number of walls is bounded by n2, so is the number of
edges, and the algorithm runs in O(n2) time. Afterwards, it only remains to sort the points
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Figure 5: Acyclic subdivision that is not recursively regular (left) and the corresponding
fan (right).

in P , which can be done in O(n log n) time, and assign them according to the topological
sorting of G. Moreover, the topological sort algorithm would detect if the graph has a cycle
and, therefore, if there is no covering assignment.

In view of the previous theorem, one might be tempted to conjecture that being
acyclic is equivalent to being universally covering. We exhibit next an example to show
that this is not the case.

Proposition 3.16. There is an acyclic full-dimensional polyhedral fan F ⊂ R3 consisting
of n cells, and a set of n points P ⊂ |F|− for which there is no assignment satisfying
the overlapping conditions. Hence, by Lemma 3.13, there is no covering assignment for F
and P .

Proof. We will provide a three-dimensional fan F with five cells and a point set P ⊂ R3 for
which there is no covering assignment. More precisely, it can be shown that for each of the
5! possible assignments, one of the eight overlapping conditions is violated.

To construct F , take the subdivision sketched in Figure 5 (left) and embed it in the
plane {(x, y, z) ∈ R3 : z = −1/8}. Take then the cones from the origin to each of the cells
of this subdivision forming the fan displayed in Figure 5 (right).

Let P be the point set consisting of the points

p1 = (29, 95, 89), p2 =(55, 19, 92), p3 = (54, 10, 82)

p4 = (78, 2, 68), p5 = (15, 40, 92).

There is no assignment for this point set fulfilling all overlapping conditions. The com-
putations supporting this claim are given in [25, 24]. We prove in Appendix A that F is
acyclic.

The fan in this proof was selected because it is the fan with the fewest cells that is
not recursively regular we are aware of. The point set P was then found with the help of a
computer. We generated many pseudo-random samples of five points in R3, trying different
ranges for the coordinates and several parameters for the distribution.
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This last example motivates the conjecture that a fan is covering if and only if it is
recursively regular. Note that a fan that is not recursively regular must have a completely
non-regular convex region, and this fact could perhaps be used to construct a point set for
which no covering assignment exists.

Illuminating a stage. The problem of illuminating a pointed cone using floodlights is
closely related to the problem of illuminating a stage considered in [9, 13, 16, 23]. Informally,
the problem in the plane asks whether given n angles and n points, floodlights having the
required angles can be placed on the points in a way that a given segment (the stage) is
completely illuminated. The problem can be generalized to higher dimensions where our
results on covering a cone by a conic fan have new implications [24, 25].

4 Other applications and related problems

In this section we describe applications of the theoretical results introduced before.

4.1 Embeddings of directional graphs

As shown in Section 3, for the existence of a covering assignment it is necessary that
there is an assignment satisfying the overlapping condition for every interior wall of the
fan. Moreover, the examples we have found so far of polyhedral fans and point sets for
which there is no covering assignment fail to fulfill the overlapping conditions. Hence,
it could be that these conditions are also sufficient. In any case, we think that it is of
independent interest to study these conditions alone, which are connected to a problem on
graph embedding.

Note first that the overlapping condition for a wall can be expressed as a requirement
on the order in which the two involved points are swept by a hyperplane parallel to the
wall. The problem we study here asks whether, given a set of relations of this type (stated
on labels) and a point set, we can find a one-to-one labeling of the point set such that every
relation is satisfied. We next describe the problem formally.

Definition 4.1. A d-dimensional directional graph is a tuple ~G = (V, h), where V is a set
and h : V × V → Rd is a function such that h(v, u) = −h(u, v), for all v, u ∈ V .

The elements of V are called vertices. We say that u, v ∈ V are connected by an edge
if h(u, v) 6= 0. We may regard this structure as a directed graph with a non-zero direction
associated to every edge. Such a graph will be called the underlying graph of the directional
graph. Note that the condition in the definition already implies that h(v, v) = 0, for all
v ∈ V .

Definition 4.2. 1. An embedding of a d-dimensional directional graph ~G = (V, h) on a
point set P ⊂ Rd is a one-to-one assignment σ : V → P such that

〈h(u, v), σ(v)− σ(u)〉 ≥ 0, for all u, v ∈ V.
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Figure 6: A directional graph (left), a drawing (center), and an embedding (right).

If such an embedding exists, we say that ~G is embeddable in P .
~G is universally embeddable if it is embeddable on any point set P ⊂ Rd with |P | = |V |.

2. A drawing of a directional graph ~G = (V, h) is a bijection π : V → S ⊂ Rd such that for
all u, v ∈ V with h(u, v) 6= 0, there is some λuv > 0 such that π(v)−π(u) = λuv ·h(u, v).
~G is drawable if it has a drawing.

A directional graph is shown in Figure 6, together with a drawing and an embedding.
The arrows near the edges indicate the directions associated with them. Observe that the
embedding condition for an edge restricts its direction to a halfspace, while the drawing
condition fixes its direction completely. Note also that the lengths of the vectors assigned
by h are irrelevant for the existence of an embedding or a drawing of a directional graph.
Therefore, we will consider two directional graphs (V, h) and (V, h′) equivalent if h(u, v) is
a positive scalar multiple of h′(u, v) for all u, v ∈ V .

Definition 4.3. 1. The directional graph of a polytope is the set of its vertices, together
with the function h(u, v) = v− u if u and v are endpoints of an edge of the polytope,
and h(u, v) = 0 otherwise.

2. The normal graph of a polyhedral fan is the set of its cells with the function h(C,D)
being a vector normal to the wall common to C and D and pointing “from C to D ”
if they share a wall, and h(u, v) = 0 otherwise.

Note that the directional graph of a polytope and the normal graph of its normal
fan are equivalent. This is a consequence of the duality between a polytope at its normal
fan. The following proposition shows that these graphs provide a large family of universally
embeddable directional graphs.

Proposition 4.4. 1. If a directional graph is drawable, then it is universally embeddable.
In particular, a directional graph ~G = (V, h) whose underlying graph G is a tree is
universally embeddable, regardless of h.

2. The directional graph of a polytope is universally embeddable.

Proof. Given a point set P with |P | = |V |, consider a drawing π of ~G, and let µ be the least-
squares optimal matching between π(V ) and P . We will show that µ ◦ π is an embedding
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of ~G. Assume that this is not the case. Then there must be a pair u, v ∈ V such that
〈h(u, v), µ(π(v))− µ(π(u))〉 < 0. Since π(v) − π(u) = λuv · h(u, v) for some λuv > 0, it
follows that 〈π(v)− π(u), µ(π(v))− µ(π(u))〉 < 0, which contradicts the optimality of µ
because swapping the images of π(u) and π(v) would improve the matching.

Directional graphs having a tree as underlying graph are trivially drawable and
directional graphs of polytopes have the 1-skeleton of the polytope as a drawing.

It is not hard to see that if there is a sequence of vertices v1, . . . , vl, vl+1 = v1 in
V and a vector δ ∈ Rd such that 〈h(vi, vi+1), δ〉 > 0, for all i ∈ [l], then the graph is not
drawable. Such a cycle is called a (δ-)forcing cycle. However, the converse is not true in
general: for instance, the normal graph of the subdivision in Figure 5 has no forcing cycle
but it is also non-drawable.

The following proposition summarizes several relations between recursive regularity,
drawability and embeddability of directional graphs. The projection of a d-dimensional
directional graph ~G into a k-dimensional linear subspace L ⊂ Rd is the k-dimensional
directional graph obtained by projecting each vector h(u, v) ∈ Rd onto L ∼= Rk.

Proposition 4.5.

(i) A projection of a universally embeddable directional graph is universally embeddable.

(ii) Normal graphs of recursively regular fans are universally embeddable.

(iii) Universally-embeddable graphs are not necessarily drawable.

(iv) Graphs with forcing cycles are not universally embeddable.

(v) There are graphs with no forcing cycles that are not universally embeddable.

Proof.

(i) Let ~G = (V, h) be a d-dimensional universally-embeddable directional graph, and let
L be a k-dimensional linear subspace of Rd with a basis {l1, . . . , lk}. Let Ḡ = (V, h̄)
be the projection of ~G onto L, which is identified with Rk through the bijection

i : Rk → L ⊂ Rd

(x1, . . . , xk) 7−→
∑
j∈[k]

xjlj .

Consider any set of |V | points P̄ ⊂ Rk, and the associated point set P = i(P̄ ) ⊂ Rd.
If σ : V → P is an embedding of ~G on P , then σ̄ = i−1 ◦ σ is an embedding of Ḡ
on P̄ . Indeed, 〈h(u, v), σ(v)− σ(u)〉 =

〈
h̄(u, v), σ̄(v)− σ̄(u)

〉
for all u, v ∈ V , because

σ(u) − σ(v) ∈ L and thus only the projection of h(u, v) onto L contributes to the
scalar product.
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(ii) Let F ⊂ Rd be a full-dimensional polyhedral fan consisting of n cells. Theorem 3.7
ensures that there is a covering assignment for F and any set P of n points. This
assignment must satisfy the overlapping condition for each wall of the fan, which is
equivalent to the embedding condition for the corresponding edge in its normal graph.

(iii) The normal graph of a fan is drawable if and only if the fan is regular (see, for
instance, [5]). Thus, the normal graph of a recursively regular non-regular fan is not
drawable. It is, however, universally embeddable, as shown in (ii).

(iv) Consider a δ-forcing cycle v1, . . . , vl, vl+1 = v1. Take a set of different points in a
line having direction vector δ and label them increasingly with respect to their scalar
products with δ. For any embedding σ, σ(vi+1) must have a label larger than σ(vi),
for all i ∈ [l], which is obviously impossible.

(v) The normal graph of the fan obtained by taking cones from the subdivision in Figure 5
has no forcing cycle, since it is acyclic (in the sense of Definition 1.7). However, we
have given a set of points for which all assignments violate an overlapping condition.
Hence, there is no embedding of its normal graph on this point set.

4.2 Redundancy in spider webs

We present now a problem in tensegrity theory related to the finest regular coarsening of
subdivisions in R2. We first review the main results we will need.

Tensegrity theory studies the rigidity properties of frameworks made of bars, cables
and struts. An abstract framework G = (V ;B,C, S) is a graph on the vertex set V =
{v1, . . . , vn} whose edge set E is partitioned into sets B, C and S. The edges in B are called
bars, the ones in C are called cables and the ones in S are called struts. They represent
links supporting any stress, non-negative stresses, and non-positive stresses, respectively.

Definition 4.6. A (tensegrity) framework in R2 is an abstract framework together with an
embedding of the vertices p : V → R2.

The framework associated to an abstract frameworkG = (V ;B,C, S) will be denoted
by G(p) and p will be thought of as a point (p1, . . . , pn) ∈ R2n, with pi = p(vi) for i ∈ [n].
The configuration space X(p) of G(p) is

X(p) = {(x1, . . . , xn) ∈ R2n : ‖xi − xj‖ = ‖pi − pj‖, for all vivj ∈ B;

‖xi − xj‖ ≤ ‖pi − pj‖, for all vivj ∈ C;

‖xi − xj‖ ≥ ‖pi − pj‖, for all vivj ∈ S}. (6)

That is, X(p) is the set of embeddings of G preserving the length of the bars, making the
lengths of the cables no longer and the lengths of the struts no shorter than their lengths
induced by p.

A tensegrity framework G(p) is rigid in Rd if there exists an open neighborhood
U ⊂ R2n of p such that X(p) ∩ U = M(p) ∩ U , where

M(p) = {(x1, . . . , xn) ∈ R2n : ‖xi − xj‖ = ‖pi − pj‖, for all i, j ∈ [n]}

http://jocg.org/


JoCG 7(1), 185–220, 2016 211

Journal of Computational Geometry jocg.org

is the manifold of rigid motions associated to p. In other words, a framework is rigid if
its only motions respecting the constraints (6) are the motions that rigidly move the whole
framework. The study of the quadratic constraints in the definition of X(p) can be compli-
cated. Because of this, the notion of infinitesimal rigidity was introduced, which captures
the rigidity constraints up to the first order. Consider the system of linear equations and
inequalities obtained by differentiating the constraints in (6). If the solutions of the system
correspond only to differentials of Euclidean motions, the framework is infinitesimally rigid.
It is known that infinitesimal rigidity implies rigidity, and the converse is not true.

Definition 4.7. Given a framework G(p), we say that ω : E → R is a proper (equilibrium)
stress for G(p) if the following conditions hold:

(1) ω(vivj) = 0 if vivj 6∈ E.

(2) ω(vivj) ≥ 0 if vivj ∈ C.

(3) ω(vivj) ≤ 0 if vivj ∈ S.

(4) Every vi ∈ V is in equilibrium, that is,
∑
vj∈V

ω(vivj)(pj − pi) = 0.

We say that ω is strictly proper if the stresses on all cables and struts are non-zero.

Intuitively, ω is a proper equilibrium stress for G(p) if the forces (represented by ω)
exerted by the incident edges on each vertices add up to zero, taking into account that
cables can support only non-negative stresses and struts can support only non-positive
ones. Clearly, the stress assigning zero to all edges is proper. This stress is called the trivial
stress.

We can associate a framework G(S) with a given subdivision S in the plane by
making the vertices and edges of S to induce the vertices and edges of the underlying graph
of G(S) and setting p to place each vertex of G(S) on the corresponding vertex of S. Note
that it also should be prescribed which edges of S should be regarded as cables, bars and
struts. We restrict the study to this type of frameworks for simplicity, although the results
admit a more general setting (allowing non-convex faces, for instance).

We state next a special case of the Maxwell-Cremona correspondence, which relates
liftings from a subdivision to a polyhedral terrain and stresses of the associated framework.
When two adjacent faces of the subdivision are lifted to a terrain, the vertices of one lifted
face that do not belong to the other one may be below, above or on the plane containing the
other lifted face. These three types of edges are called valleys, mountains and flat edges,
respectively. We refer to [12] for more details.

Theorem 4.8 (Maxwell-Cremona correspondence). Let S be a subdivision in the plane and
let G(S) be the associated framework. There is a bijection between proper stresses for G(S)
and polyhedral terrains (with one arbitrarily chosen but fixed face at height zero) projecting
on S. Positive stress values correspond to valleys, negative stress values correspond to
mountains and zero stress values correspond to flat edges in the terrain.
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Stresses on a framework are also related to its (infinitesimal) rigidity.

Lemma 4.9 (Roth and Whiteley [28]). If a tensegrity framework is infinitesimally rigid,
then it has a strictly proper stress.

We are interested in a kind of frameworks that are called spider webs.

Definition 4.10. A spider web is a framework G(p) (in R2) consisting only of cables and
whose graph is connected.

It is considered that the vertices in the convex hull of p(V ) are pinned down (that
is, they are in equilibrium by definition).

Lemma 4.11 (Connelly [11]). If a spider web has a strictly proper stress, then it is rigid.

Note that the Maxwell-Cremona correspondence implies that a spider web G(S) has
a strictly-proper stress if and only if S is regular.

Proposition 4.12. Let S be a subdivision associated and G(S) be the associated spiderweb.

(i) Only the cables of G corresponding to edges of the finest regular coarsening of S support
a positive stress in any equilibrium stress of G(S).

(ii) If S is recursively regular, then G(S) is rigid.

Proof.

(i) Since the vertices on the boundary of |S| are in equilibrium by definition, we can make
edges on this boundary to support a positive stress. For the remaining edges, The-
orem 2.4 implies that if they are omitted in the finest regular coarsening, then they
are lifted to flat edges by any convex lifting. Then, the Maxwell-Cremona correspon-
dence indicates that the corresponding cables will receive zero stress in any proper
equilibrium.

(ii) The finest regular coarsening S0 of S corresponds to a set of cables such that there
is an equilibrium stress assigning positive values to all of them. Therefore, the spider
web defined by this set of cables is rigid by Lemma 4.11. The recursively regular
subdivision S|C for an arbitrary cell C ∈ cells(S0) can be considered an spiderweb
on its own, since the vertices in the boundary of |S|C | are now fixed. Thus, the
argument applies recursively until a regular subdivision is reached, which are rigid by
Lemma 4.11.

Figure 7 illustrates the result. The spider web represented in it is constructed from
a triangulation appearing in [1]. The edges omitted in the picture to the right, which do
not belong to the finest regular coarsening of the associated subdivision, support no stress
in any equilibrium. Therefore, they can be considered redundant.

Even though recursively regular subdivisions are associated to rigid spider webs,
they might be far from infinitesimally rigid. For instance, if a regular subdivision is refined
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Figure 7: A spider web with 4 pinned vertices (left) and the result of removing redundant
cables (right).

by adding an edge whose endpoints are interior to previous edges, the result is recursively
regular but obviously not infinitesimally rigid. We next translate a well-known fact of
infinitesimal rigidity to the language of finest regular coarsenings.

Corollary 4.13. Let S be a subdivision in the plane and G(S) be the associated spiderweb.
If G(S) is infinitesimally rigid, then S is its own finest regular coarsening.

Proof. As Lemma 4.9 states, if a framework is infinitesimally rigid, it has a strictly-proper
stress. The edges omitted in the finest regular coarsening of the associated subdivision
cannot participate in such stress. Therefore, none of the edges are omitted in the finest
regular coarsening of the subdivision.

5 Concluding remarks and open problems

We have shown that the finest regular coarsening of a subdivision, which can be seen as the
regular subdivision that is closest to it, can be used to define a structure called the regularity
tree. The leaves of this tree define a partition of the subdivision in sub-subdivisions that
are either regular or completely non-regular. The regularity tree reflects thus some of the
structure of non-regular subdivisions, and it measures, in a sense, the degree of regularity.
As a consequence, the class of recursively regular subdivisions arises in a natural way. We
have shown that this class goes beyond regular subdivisions while excluding cyclic ones.
However, we have proven that they are in general not connected by flips.

In addition, we have studied a collection of related applications, and we expect to
find even more, since any theorem or algorithm based on the regularity of a subdivision and
admitting a recursive scheme might be extended to apply for the larger set of recursively
regular subdivisions.

In particular, we have focused on the problem of illuminating space by floodlights.
It was known that regular fans are universal and our aim was to answer the question for
the other fans. We have proved that not only regular fans are universal and that not only
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cyclic ones are non-universal. It makes then sense to ask what is the complexity class of
the general problem of deciding whether the space can be covered by a given fan from a
given point set (in dimensions bigger than two). It remains open as well to explore the
precise limits of universality, that is, to characterize the polyhedral fans that can cover the
space from any point set. A reasonable candidate is recursive-regularity. Indeed, the fact
that a subdivision that is not recursively regular must have a convex sub-subdivision which
is completely non-regular could be the first step towards a proof for this fact. Our results
on covering the space by floodlights have implications for a three-dimensional version of
the stage illumination problem. In data visualization, recursive partitions using regular
subdivisions (Voronoi treemaps) have been used by Balzer and Deussen [7] to visualize
hierarchical structures. Although these partitions are not polyhedral subdivisions, they can
be constructed from a recursively regular subdivision applying a weighting scheme as in the
proof of Theorem 3.7 [24].

The problem of embedding directional graphs is left in a similar situation. A natural
and easy to state open question is whether deciding if a directional graph can be embedded
in a given point set is NP-hard.

Concerning algorithmic issues, we have proven that the finest regular coarsening and
the regularity tree of a subdivision can be computed in polynomial time. We have used
these facts to prove that recursive regularity of a subdivision can be decided in polynomial
time as well, which is relevant for the algorithmic version of the aforementioned problems.
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A An acyclic polyhedral fan which is not universal

We show here that the polyhedral fan F described in Proposition 3.16 and shown in Figure 5,
which is not universally covering, is acyclic.

The fan F is a pointed cone with apex O over a two-dimensional subdivision S in
the plane z = −1/8. We will show that it is therefore sufficient to look for cycles of the
in-front relation in the planar subdivision S.

We choose any point v 6= 0 in space (possibly at infinity) and look at the order in
which rays ρ emanating from v intersect the cones of F . We are only interested in the part
ρ− of such a ray in the halfspace z < 0, and we perform a central projection from O onto
the plane z = −1/8. The projection ρ′ of ρ− may by a line segment or a ray; in any case, it
is part of a ray starting at the projected point v′. (If v lies in the plane z = 0, then v′ is at
infinity, and the projections ρ′ are parallel rays.) When we compare the intersection order
of ρ with the order in which the projected ray ρ′ intersects the cells of S, we either get the
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Figure 8: Halfplanes with empty intersection.

same order, if v lies in the lower halfspace z ≤ 0, or the reverse order, if v lies in the upper
halfspace z > 0. In either case, we can get a cycle from v only if we get a cycle from v′ in
the plane subdivision S.

Let us check that S is acyclic from any point v′. S is a convex subdivision in the
plane. It is known that a convex subdivision in the plane cannot be cyclic from a point
at infinity [14, 22], see also [3, Section 3.2, p. 201]. By the same argument that is used to
prove this statement, a cycle of the in-front relation around a finite point v′ must be formed
from cells that surround v′, in the sense that every ray from v′ to infinity must hit one of
these cells. Suppose that the point v′ lies in some cell C. In this case, all rays emanating
from v′ meet the interior of C right from the start if they meet C at all. It follows that C
is a minimal element for the in-front relation and cannot be part of any cycle.

Now, if v′ lies in one of the cells C = C1, C2, C3, C4 that are incident to the outer
boundary, there is always a ray from v′ that intersects only C. It follows from the above
considerations that there can be no cycle around v′. The same argument applies when v′

lies in the unbounded region outside |S|. Thus, the only remaining possibility of a cycle
is that v′ lies in C5, and the cycle is C1C2C3C4 or its reverse. These two cycles can be
easily excluded by looking at the arrangement of the lines separating successive cells in the
cycle: If C1C2C3C4 should be a cycle in the in-front relation, v′ would have to lie in the four
halfplanes indicated by arrows in Figure 8 (left). These halfplanes have empty intersection
since the two gray regions in the figure are disjoint. If C4C3C2C1 should be a cycle, v′

would have to lie in the four halfplanes indicated by double arrows in Figure 8 (right). In
either case, a direct inspection reveals that the four halfplanes have an empty intersection.
This finishes the proof of acyclicity.

B An acyclic triangulation which is not recursively regular

We prove here that the triangulation S pictured in Figure 2 is not recursively regular. To
this end, we prove that its finest regular coarsening has only one cell, by showing that its
regularity system has no solution.

The rows of the matrix of the regularity system of S associated to the edges labeled
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Figure 9: A triangulation which is not recursively regular. The four inner vertices form an
axis-aligned 4× 4 square.

in Figure 9 are

s1 = (8,−32, 8, 0, 16, 0, 0, 0)

s2 = (8, 0,−24, 0, 0, 16, 0, 0)

s3 = (12, 0, 8,−36, 0, 0, 16, 0)

s4 = (−28, 0, 4, 8, 0, 0, 0, 16)

s5 = (−16, 16,−16, 16, 0, 0, 0, 0)

s6 = (−48, 0, 0, 20, 4, 0, 0, 24)

s7 = (−16, 20, 0, 0,−12, 0, 0, 8)

s8 = (16,−48, 0, 0, 24, 8, 0, 0)

s9 = (0,−16, 16, 0, 8,−8, 0, 0)

s10 = (0, 18,−50, 0, 0, 24, 8, 0)

s11 = (0, 0,−22, 18, 0, 12,−8, 0)

s12 = (0, 0, 17,−57, 0, 0, 28, 12)

s13 = (17, 0, 0,−13, 0, 0, 4,−8).

We form a linear combination of the corresponding inequalities with the following positive
coefficients yi:

y1 = 207, y2 = 24, y3 = 20, y4 = 24, y5 = 288, y6 = 24, y7 = 1308,

y8 = 24, y9 = 1464, y10 = 24, y11 = 198, y12 = 24, y13 = 1464.

Since
∑13

i=1 yisi = 0, this linear combination leads to the contradiction 0 > 0, and hence
the regularity system is inconsistent.

We prove now that S has no cycle in the in-front relation. We show first that the
coarsening S ′ of S depicted in Figure 10 is acyclic. This is can be seen, as in Appendix A,
by checking that the shaded regions in the figure are disjoint. On the other hand, the
subdivisions S|C for C ∈ cells(S ′) are obviously acyclic. Hence, a cycle cannot be contained
in S|C for C ∈ cells(S ′), but it also cannot involve cells of S ′ contained in different cells of
S ′. Thus, the subdivision S is acyclic.
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Figure 10: An acyclic coarsening S ′ of S.
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Figure 11: A recursively regular subdivision which is not regular.

C A subdivision whose regularity tree has height two

We prove here that the subdivision S pictured in Figure 1 (left) is not regular and that
its finest regular coarsening is the subdivision S0 defined by the second level of the tree
in Figure 1 (right).

The rows of the matrix of the regularity system of S associated to the edges labeled
with numbers in Figure 11 are

s2 = (−56, 20, 0, 4, 32, 0, 0, 0, 0)

s4 = (0, 0, 84,−72, 0,−24, 0, 0, 12)

s5 = (12, 0,−56, 34, 0, 10, 0, 0, 0)

s6 = (4, 10,−32, 18, 0, 0, 0, 0, 0)

s7 = (8,−34, 8, 0, 0, 18, 0, 0, 0)

s8 = (−32, 10, 4, 0, 18, 0, 0, 0, 0)

s9 = (0, 56, 16, 0, 8, 32, 0, 0, 0)

s10 = (0, 12,−16, 8, 0,−4, 0, 0, 0)

s11 = (−20, 0, 20,−10, 10, 0, 0, 0, 0)

s12 = (16,−12, 0,−8, 4, 0, 0, 0, 0)
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s20 = (0, 0, 0, 136, 0, 0, 36,−84,−88)

s21 = (0, 0, 0, 0,−112, 48,−48, 112, 0).

We form a linear combination of the inequalities with the following nonnegative coeffi-
cients yi:

y2 = 1
10 , y4 = 11

10 , y5 = 109
110 , y6 = 1, y7 = 50

99 , y8 = 71
99 ,

y9 = 1
10 , y10 = 11

10 , y12 = 4
5 , y11 = 23

110 , y20 = 3
20 , y21 = 9

80 .

The remaining values yi are zero. Since
∑21

i=1 yisi = 0, this linear combination leads to the
contradiction 0 > 0, and hence the regularity system is inconsistent.

The sub-subdivision of S represented in the lower part of Figure 11 is a variant of
a typical non-regular subdivision appearing, for instance, in [15]. However, since the lines
supporting the edges 2, 5 and 9 are concurrent, the sub-subdivision is recursively regular
(its finest regular coarsening is the projection of a truncated triangular pyramid). Similarly,
it is clear that S0 is regular as well.

http://jocg.org/

	Introduction
	Polyhedral complexes, fans and subdivisions
	Regular subdivisions
	The secondary fan and the secondary polytope
	Edelsbrunner's acyclicity theorem
	Our contribution

	The finest regular coarsening and the regularity tree
	The finest regular coarsening of a subdivision
	Relation to the secondary polytope
	The regularity tree and recursively regular subdivisions
	Algorithms

	Illumination by floodlights in high dimensions
	Recursively regular fans are universally covering
	Cyclic fans are not universally covering

	Other applications and related problems
	Embeddings of directional graphs
	Redundancy in spider webs

	Concluding remarks and open problems
	An acyclic polyhedral fan which is not universal
	An acyclic triangulation which is not recursively regular
	A subdivision whose regularity tree has two levels

