
Pursuit-Evasion with Imprecise Target Location∗

Günter Rote†

October 16, 2002

Abstract

We consider a game between two persons where one person tries to chase
the other, but the pursuer only knows an approximation of the true position of
the fleeing person. The two players have identical constraints on their speed. It
turns out that the fugitive can increase his distance from the pursuer beyond any
limit. However, when the speed constraints are given by a polyhedral metric, the
pursuer can always remain within a constant distance of the other person.

We apply this problem to buffer minimization in an on-line scheduling prob-
lem with conflicts.

1 Problem Statement and Overview

We consider a game between two players, the sheriff S and the thief T . The sheriff
tries to catch the thief or at least remain close to him, whereas the thief tries to escape.
The thief does not have to reveal his true location but only an approximate location R
that is constrained within a constant radius of the true position.1

The game is played in continuous time t. The sheriff can control his position S(t)
after observing R(t). The thief can control T (t) and R(t). To make the game fair,
identical velocity constraints are imposed on the motions of S and T :

‖S(t2)− S(t1)‖V ≤ |t2 − t1| and ‖T (t2)− T (t1)‖V ≤ |t2 − t1|,

where ‖·‖V is the norm that is used to measure speed. The revealed position R is
subject only to the distance constraint

‖R(t)− T (t)‖D ≤ 1.

where ‖·‖D is another norm, possibly different from ‖·‖V . There is no velocity constraint
on R.2

∗The results of Section 3 about Euclidean speed constraints were obtained after the paper was ac-
cepted for this conference, during my visit to the DIMACS Special Focus on Computational Geometry
and Applications, supported by grant NSF EIA 00 87022.

†Freie Universität Berlin, Institut für Informatik, Takustraße 9, D-14195 Berlin, Germany,
rote@inf.fu-berlin.de

1We may for example think of the thief as submerged under water, and the sheriff moving on the
surface, being able to see only the tip of the thief’s air-tube, which the thief can move at will within a
limited radius. One could also regard the deviation between R and T as resulting from a sensing error
on the side of the sheriff, as suggested by the title of the paper, but we prefer the metaphor where R

is controlled by a personal adversary (the thief) instead of an anonymous entity like “Nature”.
2It can however be shown that it does not “make sense” for the thief to move R faster than a

certain bound.
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It is clear that the thief can move on a straight line away from S and thus make
it impossible for S to ever come closer to him, even if the thief always reveals his true
position R(t) = T (t). The question is whether the possibility of faking his position
gives the thief essentially more power.

• Can the thief eventually get further and further away from the sheriff? If so, at
what rate can he increase his distance?

• Or can the sheriff ensure that he remains within a bounded distance of the thief?
If yes, what is this distance (assuming that they are close enough at the start)?

It is clear that the distance norm ‖·‖D can only affect the quantitative questions, but
not the qualitative result of the game. However, the velocity norm ‖·‖V has a more
profound influence on the problem.

For the Euclidean norm—this corresponds to the usual notion of a speed limit—we
are going to see in Section 3 that the thief has a strategy which moves him further and
further away from the sheriff. His distance increases like ‖T (t)− S(t)‖ = Ω( 3

√
t). The

sheriff can ensure that the distance growth can asymptotically be no worse than this,
by following the most natural “greedy” approach of always moving towards the current
apparent target position R. The easy proof will be given in Section 2. On the other
hand, if the velocity is constrained by a polyhedral metric, there is a bounded-distance
strategy for the sheriff, see Section 4. This result holds in any dimension.

Such problems have been treated in recreational mathematics and mathematical
games, like the lion-and-man problem [10, pp. 114–117], [13], but they also have ap-
plications in search theory, which deals with the planning of rescue searches [4]. Many
other settings are possible, like cooperating players that try to meet despite incomplete
information (rendezvous search), see [2]. Pursuit-evasion games have also been studied
in graphs [1, 12] and inside polygonal regions [7, 9, 11, 14], with various capabilities of
the pursuer and the fugitive, or with several pursuers instead of one.

We apply our techniques to a different field: to an on-line multi-processor scheduling
problem with conflicts that was proposed in [5]. More details are given in Section 5. In
fact, we originally developed the above pursuit-evasion game as a geometric abstraction
of this scheduling problem. We can establish a bound of n on the competitive ratio for
the case when the conflict graph is a bipartite graph with n vertices.

The geometric and polyhedral approach that is applied to a special on-line schedul-
ing problem in this paper may prove to be useful for other problems.

2 Euclidean Speed Bound: A Greedy Strategy for

the Sheriff

In this section and the next, the velocity norm ‖·‖V is the Euclidean norm ‖·‖2, which
we denote simply by ‖·‖ if no confusion is possible. We will also assume without loss
of generality that ‖x‖D ≥ ‖x‖2. This can always be achieved by choosing a different
time scale and space scale.

Theorem 1. When the sheriff always moves straight toward R, the distance increases

by a rate of at most

‖T (t)− S(t)‖ ≤
√

3/2 · 3

√

t+ t̂ = O(
3
√
t),
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Figure 1: The distance increase of the greedy algorithm from time t to time t+∆t.

where the constant t̂ is chosen to fulfill ‖T (0)− S(0)‖ =
√

3/2 · 3
√
t̂.

Proof. If the direction between the direction SR of movement and the true direction
ST to the target is ϕ, then the distance d(t) := ‖T (t)− S(t)‖ increases at most by

ḋ(t) ≤ 1− cosϕ

if the sheriff always moves at full speed, see Figure 1. (The best that the thief can do
is to move straight away from the sheriff.) ḋ denotes the derivative with respect to t.
From the constraint ‖T −R‖ ≤ 1 we get sinϕ ≤ 1/d, see Figure 1. Thus we have

ḋ(t) ≤ 1−
√

1− 1

d2
≤ 1−

(

1− 1

2d2

)

=
1

2d2
, (1)

using the inequality
√
1 + x ≤ 1+x/2. The family of functions f(t) =

√

3/2 · 3

√

t+ t̂,

for any constant t̂, satisfies this inequality as an equation: ḟ(t) = 1/(2f(t)2).

3 Euclidean Speed Bound: How the Thief Can Es-

cape

We will give an escape strategy for the thief which achieves the same asymptotic dis-
tance growth Θ( 3

√
t) as in Theorem 1. In fact, the growth is governed by a very similar

relation as (1), only with a different constant. Similar as in the previous section, we
will assume that ‖x‖D ≤ ‖x‖2. (This is the reverse inequality of the previous section.)

The thief’s strategy that we describe is against a known deterministic strategy for
the sheriff. The thief knows what the sheriff will do, based on his observation of R.
Alternatively, we can view the sheriff as an “off-line” player who need not specify T ,
but who must reveal only the positions of R, subject to the condition that a compatible
path of T exists. (This path is selected at the end after the game is over.) It is also
possible to derive a randomized strategy that achieves the same growth rate.

Theorem 2. The thief has a strategy which guarantees a distance increase of at least

‖T (t)− S(t)‖ ≥ 3

√

3

8
· (t+ t̂ )−O

(

1
3
√
t

)

= Θ(
3
√
t),
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Figure 2: The escape strategy for the murderer.

for some constant t̂.

Proof. The strategy proceeds in rounds. Let Si and Ti be the positions at the start of
the round, (at time ti), and let let di = d(ti) be their distance ‖Si − Ti‖. The round
will take time 2di.

3 Let L be the line SiTi, see Figure 2. The thief moves R on line
L straight from Ti away from Si. T moves on a straight line at a small angle with L,
in such a way that at the end of the round, at time ti+1 = ti + 2di, it has reached a
point at distance 1 from L. There are two symmetric possibilities for the final position,
which we denote by T+ and T−. Now from observing R, the sheriff cannot distinguish
whether the thief moves to T+ or T−. So, at the end of the round it will be at some
definite point Si+1 inside the circle of radius 2di around Si. If Si+1 is below the line
L (in the shaded half-disk indicated in Figure 2), then the thief chooses to go to T+,
otherwise he goes to T−. In this way, the thief always forces the sheriff to make a small
detour. The minimum distance is achieved when the Si+1 is the point S∗ on line L.

Let us now analyze the distance increase that the thief has gained in this way.
Elementary calculations give

di+1 = ‖Ti+1 − S∗‖ =

√

(
√

(2di)2 − 1− di)2 + 1

=

√

5d2i − 2di

√

4d2i − 1 = di ·
√

5− 4
√

1− 1
4d2

i

≥ di ·
√

5− 4
(

1− 1
8d2

i

)

= di ·
√

1 + 1
2d2

i

= di · (1 + 1
4d2

i

−O( 1
d4
i

)) = di +
1
4di

−O( 1
d3
i

),

using the inequalities
√
1 + x ≤ 1+x/2 and

√
1 + x ≥ 1+x/2−O(1/x2). This defines

a sequence of pairs (ti, di) with di = d(ti) by the relations ti+1 = ti + 2di and

di+1 =

√

5d2i − 2di

√

4d2i − 1 = di +
1
4di

−O( 1
d3
i

). (2)

For simplicity, we ignore the O( 1
d3
i

) error term in the following computation. The

complete calculation will appear in the full version of the paper. It is easy to check

that the function f(t) := 3

√

3
8
· (t+ t̂ ), for any constant t̂, satisfies the relation

f(t+ 2f(t)) ≤ f(t) +
1

4f(t)
,

3The constant 2 in 2d is the optimal choice for this proof.
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by a similar calculation as above, using 3
√
1 + x ≤ 1 + x/3.

f(t) =
3
√
ct

f(t+ 2f(t)) =
3

√

c(t+ 2
3
√
ct) =

3
√
ct · 3

√

1 + 2c(ct)−2/3

≤ 3
√
ct · (1 + 2c/3 · (ct)−2/3) =

3
√
ct+ 2c/3 · (ct)−1/3 =

3
√
ct+

8c/3

4 3
√
ct

Now it follows by induction that d(t) ≥ f(t) holds for the sequence of values t0, t1, t2, . . .
if we choose t̂ so that it holds initially at t = t0. For the inductive step from i to i+ 1,
find a value t̃ such that f(t̃) = d(ti). By the inductive assumption d(ti) ≥ f(ti) and by
the monotonicity of f we have t̃ ≥ t. Thus,

d(ti+1) = d(ti) +
1

4d(ti)
= f(t̃) + 1

4f(t̃)
≥ f(t̃+ 2f(t̃))

= f(t̃+ 2d(t)) ≥ f(t+ 2d(t)) = f(ti+1)

We have proved that ‖T (t) − S(t)‖ ≥ 3

√

3
8
· (t+ t̂ ) holds at the beginning and at

the end of each round (for the times t0, t1, . . .). During a round, the distance may
temporarily decrease, since the thief moves at an angle from the line ST . This, and
the O( 1

d3
i

) error term in (2), accounts for the term −O(1/ 3
√
t) in Theorem 2.

The possible decrease of ‖S − T‖ during a round comes at the expense of an ad-

ditional increase at the end of the round. Thus, it might be possible to get rid of the
error term O(1/ 3

√
t), but we have not analyzed this. It is probably easier to increase

the constant 3

√

3/8 by a more refined algorithm.
The thief can use a randomized strategy which does not assume any knowledge

about the strategy of the sheriff. If the thief simply chooses the points T+ and T− with
probability 1/2 each, then di becomes a random variable, and one can show that (2)
holds for the expected distance di+1. Thus, Theorem 2 holds for the expected distance
of this randomized algorithm.

4 Polyhedral Distance Functions

A polyhedral norm ‖·‖V in R
n is given by some polytope V which is centrally symmetric

about the origin and contains the origin in its interior, see Figure 3a.4 V is then the
unit ball of this norm, and

‖x‖V := min{λ ≥ 0 | x ∈ λ · V },

see Figure 3b. The polytope V can be written as an intersection of half-spaces

V = {x | ai · x ≤ 1 for i = 1, . . . , k }

Each half-space corresponds to a facet Fi of V .

Fi := {x ∈ V | ai · x = 1 }

4The requirement that V is symmetric is only required to satisfy the axioms of a norm. The results
of this paper don’t require symmetry. A non-symmetric polytope V gives rise to a non-symmetric
distance function.
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Figure 3: The polyhedral norm induced by V

Now suppose that the sheriff is at position S and wants to reach a fixed target point
T as fast as possible. The shortest time is given by the distance ‖T − S‖V , and it can
for example be reached by moving on a straight line from S to T . However, this is not
the only possibility, see Figure 4: We can draw the ray from S to T and determine the
facet Fi at which this ray intersects the polytope V centered at S. Now, a small move
towards any point on Fi will decrease distance from S to T at the optimal rate.

R2

R3

Fi

V

T

S

Q

R1

Figure 4: Various ways how the rays from S to R +D can lie with respect to V

Lemma 1. The set of directions in which S can move on a fastest route to T is given

by the facet or the facets of V that are hit by the ray from S to T .

Now, consider the case when the location of the target T is not known precisely,
but it is known in some neighborhood R+D of a point R, where D is the unit ball of
the metric ‖·‖D, see Figure 4. It may happen that the ray ST exits S + V in a unique
facet Fi, regardless of where T is chosen, as shown in the case of R1 +D. Even if the
facet Fi is not uniquely determined, all possible facets might still meet in a common
point, such as Q in the case of R2 +D. Q can always be chosen as a vertex of V . This
point specifies the direction in which S has to move. It may happen that there is no
such direction, as in R3 +D.

The crucial idea is that the third case cannot occur when R is sufficiently far away
from S.

Theorem 3. If speed is measured according to a polyhedral distance function V , there

is a constant c such that whenever the distance between the sheriff S and the revealed

position R of the thief is larger than c, the sheriff has a strategy which ensures that the

distance ‖T − S‖V does not increase.

Proof. If we succeed to find a direction Q which is valid according to Lemma 1 for all
choices of T in R+D, we can ensure that we decrease the distance ‖T −S‖V at rate 1,
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i. e., we would decrease it by ε in time ε if T were static. On the other hand, T may
move away at maximum speed, increasing ‖T − S‖V at a rate at most 1. Thus, the
distance can only decrease or stay the same.

We assume for convenience that S is the origin. Let F1, . . . , Fl be the facets of V
which are hit by the radial projection of R+D onto V . Let us assume that these facets
don’t intersect in a common vertex Q. We have to show that this can only happen for
‖R− S‖ ≤ c. (We can measure the distance ‖R− S‖ by any convenient norm.)

We project the facets Fi onto the unit sphere Sn−1 in R
n, yielding spherical poly-

topes F̂1, . . . , F̂l. Let K be the smallest ball on Sn−1 which intersects each of F̂1, . . . , F̂l.
K must have a positive radius rK > 0, because otherwise F̂1, . . . , F̂l would contain a
common point. Therefore, when R is sufficiently far away, we can ensure that the
projection of R+D onto the unit sphere is contained in a sphere smaller than rK . This
means that, if ‖R − S‖ > c for an appropriate constant c, F1, . . . , Fl cannot be the
facets which are hit by the projection of R +D onto V .

Such a constant c can be determined for each set F1, . . . , Fl of facets which have
no common vertex. By taking the maximum c over all these finitely many choices, we
obtain the theorem.

We will briefly discuss how one can make this proof more effective. In principle, for
small examples, one can determine the optimum value of the constant c.

For each facet Fi of V , the rays from the origin S through the points of Fi form a
polyhedral cone which we denote by SFi. This cone is given by

SFi = {x ∈ R
n | ai · x ≤ aj · x for all j = 1, . . . , k, j 6= i }. (3)

(It is sufficient to take the indices j of the facets adjacent to Fi, if the structure of the
polytope V is known.)

We can directly write the constraints that the cones SFi intersect R+D by postu-
lating the existence of a point Ti:

Ti ∈ SFi and Ti ∈ R +D

If D is a polytope, all these constraints can be written as linear inequalities in the
unknown coordinates Ti and R. By checking all vertices of this polytope, one can
determine the largest value of ‖R− S‖. If ‖R− S‖ is measured by a polyhedral norm,
the largest value can also be found by a sequence of linear programming problems.

This procedure would have to be repeated for all sets F1, . . . , Fl of facets which have
no common vertex.

By Helly’s theorem, applied to the convex sets SFi−{S}, there is a subfamily of at
most n+1 facets without common vertex. It is therefore sufficient to check all subsets
consisting of 2, 3, . . . , n+ 1 facets.

Using history. By using information from previous values of R, it is often possible to
restrict T to a smaller set than R+D whenever R moves fast. By the speed constraint
we know that T (t) ∈ R(t′) + D + (t − t′) · V , for all t′ ≤ t. If this is exploited in a
systematic way, it might lead to better bounds.

5 On-line Buffer Minimization

We consider the scheduling problem for a sequence of tasks in a multi-processor system
with conflicts due to the fact that two or more processors share common resources that
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can only be accessed by one processor at a time. This can be modeled as an undirected
graph G = (P,E), where P is the set of processors and the edges in E represent
conflicts. The elements of P will be called the nodes of the graph to distinguish
them from vertices of polytopes. Processors that may run simultaneously form an
independent set in this graph.

At certain times new tasks arrive in the system, where each task specifies the amount
of work (processing time) added to each processor’s workload. Each processor stores
this workload in its input buffer. Our objective is to schedule task execution, obeying
the conflict constraints, and minimizing the maximum buffer size of all processors.

An on-line algorithm processes the workload from the buffers without knowledge of
future tasks.

We evaluate on-line algorithms by comparing their buffer size to that of an optimal
off-line algorithm. An on-line algorithm is c-competitive for a graph G if, for any task
sequence that has an off-line schedule with maximum buffer size B, it constructs a
feasible schedule with buffer size at most cB. The competitive ratio of G, denoted
buf (G), is the smallest value of c for which there is a c-competitive on-line algorithm
on G.

This problem was introduced by Chrobak, Csirik, Imreh, Noga, Sgall, and Woegin-
ger [5]. They showed that buf (G) is finite for all graphs G, and they calculated buf (G)
for complete graphs and complete multipartite graphs. For trees of diameter d they
proved an upper bound of buf (G) ≤ 1 + d/2.

When G is the complete graph on n nodes, there is essentially a single processor
which has to process the tasks from all queues. This situation has later been indepen-
dently analyzed by [3, 8]. The optimal competitive ratio Hn = 1 + 1/2 + · · · + 1/n is
achieved by a greedy algorithm. In Theorem 4 we will give an upper bound of n on
the competitive ratio for a bipartite graph on n nodes.

The stable set polytope, buffer minimization, and fractional chromatic num-

ber. Suppose that the current load vector is w. Then the minimum time needed to
empty all buffers (without any new tasks arriving) is given by the following linear
program, where we use I to denote independent sets in G.

minλ =
∑

I

yI

s.t.
∑

I∋j

yI = wj for j ∈ P

yI ≥ 0 for each I

(4)

The variables yI indicate the amount of time for which I should be run in this schedule.
If w = 1 (the vector of all 1’s) and if the variables yI are restricted to integral

values, then the optimal solution of the resulting integer program is just the chromatic
number χ(G): Every independent set I with yI = 1 forms a color class. When the
integrality constraints are relaxed, the optimal value is called the fractional chromatic

number χf (G). The above linear program is a weighted generalization, and we denote
the optimal value by χf (G,w). The chromatic number and the fractional chromatic
number are closely related, see [6].

The stable set polytope STAB(G) is the convex hull of the incidence vectors of the
independent sets I. It is the set of weight vectors w for which the linear program
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(4) has a solution of value 1. Therefore, χf (G,w) equals just the norm ‖w‖V for
V = STAB(G):

χf (G,w) = min{λ | w ∈ λ · STAB(G) }
(To satisfy the requirements of a norm, we would have to extend this polytope V , which
is defined to lie in the nonnegative orthant, to all other orthants. But we will compute
the norm only for nonnegative vectors w.)

We model the scheduling problem as a pursuit-evasion game in n dimensions as
follows. R(t) is the cumulative workload that has arrived until time t. S(t) represents
the total work that has been done on each processor by the on-line algorithm. The
work that is stored in the buffers is R− S. Thus, we reduce the work stored in buffers
by moving S closer to R. The maximum buffer size is given by the maximum norm
‖R− S‖∞. T (t) represents the total work that has been done on all processors by the
off-line algorithm, increased by B ·1, where B is the maximum buffer size of the off-line
algorithm. The addition of B · 1 ensures that S ≤ T .

This fits the framework of our pursuit-evasion game, with the following modifica-
tions:

• S and T are restricted to move monotonically in each direction, with the speed
limit given by V = STAB(G).

• R is restricted by R ≤ T and ‖R − T‖∞ ≤ B, and it can only move in discrete
time steps.

• S is restricted by S ≤ R, and we want to minimize ‖S −R‖∞.

Apart from the restriction S ≤ R, all constraints can be accommodated in the
setting of Section 4, and thus, finiteness of buf (G) can be obtained as a consequence
of Theorem 3, with appropriate modifications to account for the constraint S ≤ R. In
Theorem 4 we will show that, for bipartite graphs G with n nodes, buf (G) is bounded
by n.

The stable set polytope V = STAB(G) of a bipartite graph G = (P,E) is given by
the inequalities

xi + xj ≤ 1, for all edges ij ∈ E

and the nonnegativity constraints xi ≥ 0. Thus, it has a facet Fij = {x ∈ STAB(G) |
xi + xj = 1 } for each edge ij ∈ E, and we have

‖w‖V = max{wi + wj | ij ∈ E }

for all w ≥ 0.
The on-line algorithm which we propose is the attempt to carry out the program of

the proof of Theorem 3 for this particular problem and this particular polytope V .
The steps of the algorithm will perhaps seem completely unmotivated at first sight.

Their purpose is to guarantee the existence of a vertex Q of V which is a “good
direction” provided that R is far enough from S. It will be seen that the algorithm
fits perfectly together with the lemmas in the ensuing proof of competitiveness, which
relies on the facet structure of F .

Algorithm. Let P = P1 ∪ P2 be the decomposition of the node set into the two
color classes. By ai := Ri − Si we denote the buffered workload for processor i. Let
N := { i ∈ P | ai > 0 } be the set of processors with some work to do and Z := P −N
the set of processors with zero work. We have to select an independent subset I ⊆ N
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for processing. For a parameter β ≥ 0, let H(β) := { ij ∈ E | ai + aj > β } denote
the edges with “high load”. We determine the smallest value β such that the graph
G[H(β)] with node set P and edge set H(β) contains no path from a node in P1∩Z to
a node in P2 ∩ Z. Then in each component C of G[H(β)], we select the nodes of I as
follows: If C contains a node in P1∩Z, we put the nodes of C∩P2 into I. If C contains
a node in P2 ∩ Z, we put the nodes of C ∩ P1 into I. If C contains no node of Z, we
arbitrarily choose a color class of C and put it into I. Clearly, I is an independent set
and contains no node of Z. Furthermore, every edge ij ∈ H(β) is covered by I, in the
sense that either i ∈ I or j ∈ I. We process I until a new job arrives or until the graph
H(β) changes due to the decrease of the workloads ai.

Theorem 4. If G is bipartite and the longest simple odd path in G has length 2∆+ 1,
then buf (G) ≤ 2∆ + 2.

Corollary 1. If G is bipartite with n1+n2 nodes in its two color classes, then buf (G) ≤
2 ·min{n1, n2}.

For trees with diameter d, the bound that we get from Theorem 4 is about twice
as large as the bound 1 + d/2 of [5].

The proof of Theorem 4 proceeds in a couple of lemmas. Let α := ‖R − S‖V =
max{ ai + aj | ij ∈ E }. We start by bounding the value of β that is determined in the
algorithm.

Lemma 2.

β ≤ α · ∆

∆+ 1

Proof. Let α′ := α∆/(∆+1) and assume thatG[H(α′)] contains an odd path i0, i1, . . . , i2k+1

from a node i0 ∈ Z to a node i2k+1 ∈ Z. We have the relations a0+a1 > α′, a2+a3 > α′,
. . . , and a1 + a2 ≤ α, a3 + a4 ≤ α, . . . , as well as a0 = a2k+1 = 0. By the assumption
we know that k ≤ ∆, and by subtracting the second class of inequalities from the first
class one derives the contradiction (k + 1)α′ < kα.

Remark. The definition of ∆ by the longest path is actually more general than
what is needed in this proof. Only the following very special condition is necessary:
We consider certain kinds of alternating paths in G with a designated subset of nodes
Z and a designated subset of edges H: paths from a node in Z∩P1 to a node in Z∩P2,
such that every odd-numbered edge of such a path belongs to H. For every choice of
H and Z, whenever such an alternating path exists between a pair of nodes of Z ∩ P1

and Z ∩ P2, then there must be such an alternating path of length at most 2∆ + 1
between those two nodes.

For example, when G is a complete bipartite graph, one can take ∆ = 1.
Let B denote the buffer size of the off-line algorithm.

Lemma 3. Let I be the independent set found by the algorithm, and let xI be the

corresponding vertex of V = STAB(G). If α = ‖R− S‖V ≥ 2(∆+ 1)B then every ray

from S to a point in the cube [R,R+B] goes through one of the facets Fij of V which

contain the vertex xI .

Proof. [R,R+B] denotes the cube in which T is known to lie. The facets Fij incident
to xI correspond precisely to the edges ij that are covered by I, i. e., i ∈ I or j ∈ I.
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For deriving a contradiction, assume that a ray to a point T ∈ [R,R+B] goes through
a face Fkl, where kl is disjoint from I.

Regarding S as the origin and writing ti for the coordinates of T −S, we then have

tk + tl > ti + tj, for all ij ∈ E, ij 6= kl

by (3) and
ai ≤ ti ≤ ai + B, for all i ∈ P

This leads to
ak + al > ai + aj − 2B, for all ij ∈ E

and hence ak + al > α − 2B ≥ α∆/(∆ + 1) ≥ β, by Lemma 2. Hence kl ∈ H(β) and
therefore the edge kl is covered by I, a contradiction.

Under the conditions of Lemma 3, it follows that S can decrease his distance to T
at full speed. As in Theorem 3, it follows that the invariant ‖R − S‖V ≤ 2(∆ + 1)B
will be maintained. From this we conclude that for all i, ai ≤ max{ ai+aj | ij ∈ E } =
‖R− S‖V ≤ 2(∆ + 1)B, i. e., the algorithm is 2(∆ + 1)-competitive.

This concludes the proof of Theorem 4.

6 Open Questions

We have seen a striking difference between the Euclidean norm and polyhedral norms
with respect to the pursuit evasion-game. The proof of Theorem 3 is somehow in
accordance with this. The tendency is that the bound degrades as the polytope V has
more and more small facets with small angles between them. It would be interesting
to find the exact boundary between those norms that allow the thief to escape, like the
Euclidean norm, and those norms that behave like polyhedral norms.

The main problem is of course to improve the bounds by using more sophisticated
algorithms than the simple greedy-style algorithms of Section 2 and 4, and to come up
with lower bounds as well.
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