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Partial Least-Squares Point Matching under Translations
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Abstract

We consider the problem of translating a given pat-
tern set B of size m, and matching every point of B
to some point of a larger ground set A of size n in an
injective way, minimizing the sum of the squared dis-
tances between matched points. We show that when
B can only be translated along a line, there can be at
most m(n − m) + 1 different matchings as B moves
along the line, and hence the optimal translation can
be found in polynomial time.

1 Introduction

In the partial pattern matching problem we are look-
ing for an occurrence of some pattern B as part of
a larger structure A. In this paper, we consider the
case when A and B are finite points sets in the plane
of size n and m respectively. (The results extend to
higher dimensions, but for simplicity, we remain in
the plane.)

Thus, we are looking for a subset A′ ⊂ A of size
m that is as similar to B as possible. In this paper
we measure similarity by the sum of the squared dis-
tances between corresponding points in some bijective
mapping between B and A′. In other words, we insist
that every point of B is matched with a distinct point
of A.

In addition we allow B to be translated by some
vector t. Thus, we are trying to solve the following
problem:

minimize f(π, t) :=
m∑
i=1

‖(bi + t)− aπ(i)‖2 (1)

subject to π : B → A, injective,

t ∈ R2.

Related Work. This is a rich area of research. See
for example [8, 9] for the case of least-squares match-
ing between two equal sets. See [1, 4, 5] for other
distance measures.
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2 Basic Observations. The Partial Matching Sub-
division

For a fixed assignment π, the objective function f can
be rewritten in the form

f(π, t) =
m∑
i=1

‖(bi + t)− aπ(i)‖2

=
m∑
i=1

‖bi − aπ(i)‖2

+
〈
t,

m∑
i=1

(bi − aπ(i))
〉

+m‖t‖2

= cπ + 〈t, dπ〉+m‖t‖2, (2)

for a constant cπ ∈ R and a vector dπ ∈ R2.
We can thus rewrite the objective function (1) as

min
t
F (t) +m‖t‖2,

where
F (t) = min

π : B→A
π injective

(cπ + 〈t, dπ〉)

For a given translation t, minimizing f(π, t) over all π
is equivalent to determining the minimum in the ex-
pression for F (t), since the difference is the constant
term m‖t‖2. The function F (t) is the minimum of a
finite number of linear functions. The regions where
the minimum is attained by a particular linear func-
tion is hence a convex polygonal region. We call the
subdivions of the plane into these regions the partial
matching subdivision DB,A:

Theorem 1 This is a basic theorem.
The space of parameters t ∈ R2 is subdivided into

finitely many polygonal regions Rπ, π ∈ Π0. For all
values t in one region Rπ the same optimum assign-
ment π optimizes (1) (or the expression in F (t)).

When B consists of a single point, the partial
matching subdivision DB,A is just the Voronoi dia-
gram of A. When A is a large dense point set and B
consists of few points that are relatively spread out
the subdivision looks like an overlay of several trans-
lated copies of the Voronoi diagram of A, since each
point of B is just independently matched to its near-
est neighbor in A. At least, this is true as long as the
points of B lie “within” the set A; when they move
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far away, several points of B will have the same clos-
est point, and they have to compete for the point to
which they are matched. Unfortunately, I could not
produce interesting illustrations of partial matching
subdivisions so far.

3 Exploring the Parameter Space

Inside each region Rπ, the function f(π, t) is a convex
quadratic function of t, and hence it can be optimized
easily. Thus, the straightforward approach to solving
(1) is to search all regions Rπ and compute the opti-
mum in each region.

For a fixed vector t, the problem (1) is a minimum-
cost bipartite matching problem and can be solved in
polynomial time, for example by using network flow
techniques. In this way, one can find the region Rπ
to which a parameter t belongs. By parametric lin-
ear programming techniques, one can then find the
boundaries of this region, and one can also determine
the adjacent regions across the boundary edges.

The running time of this approach is, up to a poly-
nomial factor, determined by the number of regions
that are to be explored. The crucial question is there-
fore, how many regions Rπ there are.

We know a polynomial bound only for a very re-
stricted case: namely when the translations t are re-
stricted to a line only. In other words, we consider the
intersection of the partial matching subdivision with
a line.

Theorem 2 This is the most important theorem.
A line can intersect the interior of at most 1+m(n−

m) different regions of the partial matching subdivi-
sion DB,A, for |A| = n and |B| = m. �

For the special case m = n, this means that there
is only one region, and we get the well-known fact
that the least-squares assignment between two sets of
equal size is independent of t [8], which is also obvious
from the calculation leading to (2).

Proof. It even comes with a proof.
The problem of finding an optimal matching in (1)

(for a fixed t) can be formulated as a network flow
problem.

We are given an m×n cost matrix (cij) with cij =
‖(bi + t)− aj‖2

minimize
m∑
i=1

n∑
j=1

cijxij

subject to
∑n

j=1
xij = 1, for i = 1, . . . ,m∑m

i=1
xij ≤ 1, for j = 1, . . . , n

0 ≤ xij ≤ 1

By network flow theory, there is an optimal solution
with xij ∈ {0, 1}, and it represents an assignment
where each row i is assigned to exactly one column j
and each column j is assigned to at most one row i.
(The special case wherem = n is the usual assignment
problem.) Among the n points of A, there will be m
matched and n −m unmatched vertices. We denote
the set of matched vertices by M(x).

Now, if we change t continuously, the solution (xij)
will at some point change to a different solution (x̄ij).
Some vertices will become matched and others will
become unmatched.

Lemma 3 And then we also found this lemma. Let
(xij) and (x̄ij) be optimal solutions for parameter val-
ues t and t̄, respectively. Then there is a one-to-one
matching σ between the points in M(x) \M(x̄) and
the points in M(x̄) \M(x) such that

〈aσ(j) − aj , t̄− t〉 ≥ 0,

for all j ∈M(x) \M(x̄) As a consequence, we have〈 ∑
j∈M(x̄)

aj −
∑

j∈M(x)

aj , t̄− t
〉
≥ 0 (3)

Proof. The difference x̄−x between two assignments
can be decomposed into an edge-disjoint union of
(a) alternating even-length cycles and (b) alternat-
ing paths of even length starting at a matched vertex
a− of (xij) and ending at an unmatched vertex a+

of (xij). For each such path of type (b), the vertex
a+ will be matched in the new assignment, and the
vertex a− will become unmatched.

Now let a− = a0, b1, a1, b2, . . . , ak−1, bk, ak = a+ be
such an alternating path or cycle (for a− = a+).

The cost difference ∆c = c(x̄)−c(x) between the old
matching x and the new matching x̄ can be expressed
as follows. In order to simplify notation, we have first
written the formulas without translation (t = 0).

∆c =
k∑
i=1

‖bi − ai‖2 −
k∑
i=1

‖bi − ai−1‖2

=
k∑
i=1

(‖bi‖ − 2〈bi, ai〉+ ‖ai‖2)

−
k∑
i=1

(‖bi‖ − 2〈bi, ai−1〉+ ‖ai−1‖2)

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai〉+ 2
k∑
i=1

〈bi, ai−1〉

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai − ai−1〉

Now let us bring in the dependence on t and replace
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bi by bi + t:

∆c(t) = ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi + t, ai − ai−1〉

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai − ai−1〉

− 2
k∑
i=1

〈t, ai − ai−1〉

= ‖a+‖2 − ‖a−‖2 − 2
k∑
i=1

〈bi, ai − ai−1〉

− 2〈t, a+ − a−〉

The only term that depends on t is the last term
−2〈t, a+ − a−〉. Now if x is optimal at t, then
∆c(t) must be nonnegative; otherwise we could use
the alternating path or cycle to obtain a better solu-
tion. Similarly, since x̄ is optimal at t̄, we must have
∆c(t̄) ≤ 0. Thus we get ∆c(t)−∆c(t̄) ≥ 0, or

〈t̄− t, a+ − a−〉 ≥ 0

If we add this relation for all alternating paths and
cycles the form the difference x̄ − x, we obtain (3).
(The alternating cycles give no contribution.) �

Now we can conclude the proof of the theorem. Let
us vary t along a line in direction s. Lemma 3 tells
us that, whenever the assignment changes, a matched
point a− can only be replaced by a new matched point
a+ with 〈t̄ − t, a+ − a−〉 > 0, or in other words,
〈a+, s〉 > 〈a−, s〉. If we sort the points a by 〈a, s〉, and
classify the subsets M(x) of matched points of A by
the sum of the ranks in this order, this means that the
sum of the ranks can only go up. The minimum sum of
ranks is

∑m
i=1 i = m(m+1)/2, and the maximum sum

of ranks is
∑m
i=1(n+ 1− i) = (n+ 1)m−m(m+ 1)/2.

Between these two extreme values, there can be only
(n−m)m changes. �

An example showing that the bound is tight can be
easily constructed in one dimension already: the set A
consists of n uniformly spaced points, and B consists
of m points very close together (much closer than the
spacing between the points of A).

4 Conclusion

What we did is amazing and improves everything that
was there before.

Still, the most important question is open: is the
complexity of the partial matching subdivision DB,A
bounded by a polynomial? It is possible that a bound
can already be derived from Theorem 2.

Another question arises if we allow rotations. Even
if A and B have the same size and we consider only

the one-parameter family of rotations about a fixed
point, there can be many different optimal assign-
ments, No polynomial bound is known. This prob-
lem can be formulated as a special parametric assign-
ment problem where the costs depend linearly on a
parameter x. For this more general problem, a super-
polynomial lower bound of the form 2

√
n on the num-

ber of optimal assignments has been proved by Pa-
tricia Carstensen [3, 2], based on a construction of
Zadeh [7].
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