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Abstract. We introduce and study the problem Ordered Level Pla-
narity which asks for a planar drawing of a graph such that vertices
are placed at prescribed positions in the plane and such that every edge
is realized as a y-monotone curve. This can be interpreted as a variant
of Level Planarity in which the vertices on each level appear in a
prescribed total order. We establish a complexity dichotomy with respect
to both the maximum degree and the level-width, that is, the maximum
number of vertices that share a level. Our study of Ordered Level
Planarity is motivated by connections to several other graph drawing
problems.
Geodesic Planarity asks for a planar drawing of a graph such that
vertices are placed at prescribed positions in the plane and such that every
edge e is realized as a polygonal path p composed of line segments with
two adjacent directions from a given set S of directions symmetric with
respect to the origin. Our results on Ordered Level Planarity imply
NP-hardness for any S with |S| ≥ 4 even if the given graph is a matching.
Katz, Krug, Rutter and Wolff claimed that for matchings Manhattan
Geodesic Planarity, the case where S contains precisely the horizontal
and vertical directions, can be solved in polynomial time [GD’09]. Our
results imply that this is incorrect unless P = NP . Our reduction extends
to settle the complexity of the Bi-Monotonicity problem, which was
proposed by Fulek, Pelsmajer, Schaefer and Štefankovič.
Ordered Level Planarity turns out to be a special case of T-Level
Planarity, Clustered Level Planarity and Constrained Level
Planarity. Thus, our results strengthen previous hardness results. In
particular, our reduction to Clustered Level Planarity generates
instances with only two non-trivial clusters. This answers a question
posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.

1 Introduction

In this paper we introduce Ordered Level Planarity and study its complexity.
We establish connections to several other graph drawing problems, which we
survey in this first section. We proceed from general problems to more and more
constrained ones.

? Due to space constraints, some proofs in the first 12 pages of this manuscript are only
sketched or omitted entirely. Full proofs of all claims can be found in the appendix.
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Upward Planarity: An upward planar drawing of a directed graph is a
plane drawing where every edge e = (u, v) is realized as a y-monotone curve that
goes upward from u to v. Such drawings provide a natural way of visualizing a
partial order on a set of items. The problem Upward Planarity of testing
whether a directed graph has an upward planar drawing is NP-complete [12].
However, if the y-coordinate of each vertex is prescribed, the problem can be
solved in polynomial time [19]. This is captured by the notion of level graphs.

Level Planarity: A level graph G = (G, γ) is a directed graph G = (V,E)
together with a level assignment γ : V → {0, . . . , h} where γ is a surjective map
with γ(u) < γ(v) for every edge (u, v) ∈ E. Value h is the height of G. The vertex
set Vi = {v | γ(v) = i} is called the i-th level of G and λi = |Vi| is its width. The
level-width λ of G is the maximum width of any level in G. A level planar drawing
of G is an upward planar drawing of G where the y-coordinate of each vertex v
is γ(v). The horizontal line with y-coordinate i is denoted by Li. The problem
Level Planarity asks whether a given level graph has a level planar drawing.
The study of the complexity of Level Planarity has a long history [9,11,17–19],
culminating in a linear-time approach [19]. Level Planarity has been extended
to drawings of level graphs on surfaces different from the plane such as standing
cylinder, a rolling cylinder or a torus [1, 4, 5].

An important special case are proper level graphs, that is, level graphs in
which γ(v) = γ(u) + 1 for every edge (u, v) ∈ E. Instances of Level Planarity
can be assumed to be proper without loss of generality by subdividing long
edges [9, 19]. However, in variations of Level Planarity where we impose
additional constraints, the assumption that instances are proper can have a strong
impact on the complexity of the respective problems [2].

Level Planarity with Various Constraints: Clustered Level Pla-
narity is a combination of Cluster Planarity and Level Planarity. The
task is to find a level planar drawing while simultaneously visualizing a given
cluster hierarchy according to the rules of Cluster Planarity. The problem
is NP-complete in general [2], but efficiently solvable for proper instances [2, 10].

T-Level Planarity is a consecutivity-constrained version of Level Pla-
narity: every level Vi is equipped with a tree Ti whose set of leaves is Vi. For
every inner node u of Ti the leaves of the subtree rooted at u have to appear
consecutively along Li. The problem is NP-complete in general [2], but efficiently
solvable for proper instances [2,21]. The precise definitions and a longer discussion
about the related work are deferred to Appendix C.

Very recently, Brückner and Rutter [7] explored a variant of Level Pla-
narity in which the left-to-right order of the vertices on each level has to
be a linear extension of a given partial order. They refer to this problem as
Constrained Level Planarity and they provide an efficient algorithm for
single-source graphs and show NP-completeness of the general case.

A Common Special Case - Ordered Level Planarity: We introduce a
natural variant of Level Planarity that specifies a total order for the vertices
on each level. An ordered level graph G is a triple (G = (V,E), γ, χ) where (G, γ)
is a level graph and χ : V → {0, . . . , λ− 1} is a level ordering for G. We require
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that χ restricted to domain Vi bijectively maps to {0, . . . , λi − 1}. An ordered
level planar drawing of an ordered level graph G is a level planar drawing of (G, γ)
where for every v ∈ V the x-coordinate of v is χ(v). Thus, the position of every
vertex is fixed. The problem Ordered Level Planarity asks whether a given
ordered level graph has an ordered level planar drawing.

In the above definitions, the x- and y-coordinates assigned via χ and γ merely
act as a convenient way to encode total and partial orders respectively. In terms
of realizability, the problems are equivalent to generalized versions where χ and γ
map to the reals. In other words, the fixed vertex positions can be any points
in the plane. All reductions and algorithms in this paper carry over to these
generalized versions, if we pay the cost for presorting the vertices according to
their coordinates. Ordered Level Planarity is also equivalent to a relaxed
version where we only require that the vertices of each level Vi appear along Li

according to the given total order without insisting on specific coordinates. We
make use of this equivalence in many of our figures for the sake of visual clarity.

Geodesic Planarity: Let S ⊂ Q2 be a finite set of directions symmetric
with respect to the origin, i.e. for each direction s ∈ S, the reverse direction −s
is also contained in S. A plane drawing of a graph is geodesic with respect to S
if every edge is realized as a polygonal path p composed of line segments with
two adjacent directions from S. Two directions of S are adjacent if they appear
consecutively in the projection of S to the unit circle. Such a path p is a geodesic
with respect to some polygonal norm that corresponds to S. An instance of the
decision problem Geodesic Planarity is a 4-tuple G = (G = (V,E), x, y, S)
where G is a graph, x and y map from V to the reals and S is a set of directions
as stated above. The task is to decide whether G has a geodesic drawing, that
is, G has a geodesic drawing with respect to S in which every vertex v ∈ V is
placed at (x(v), y(v)).

Katz, Krug, Rutter and Wolff [20] study Manhattan Geodesic Planarity,
which is the special case of Geodesic Planarity where the set S consists of the
two horizontal and the two vertical directions. Geodesic drawings with respect to
this set of direction are also referred to as orthogeodesic drawings [13, 14]. Katz
et al. [20] show that a variant of Manhattan Geodesic Planarity in which
the drawings are restricted to the integer grid is NP-hard even if G is a perfect
matching. The proof is by reduction from 3-Partition and makes use of the fact
the number of edges that can pass between two vertices on a grid line is bounded.
In contrast, they claim that the standard version of Manhattan Geodesic
Planarity is polynomial-time solvable for perfect matchings [20, Theorem 5].
To this end, they sketch a plane sweep algorithm that maintains a linear order
among the edges that cross the sweep line. When a new edge is encountered it is
inserted as low as possible subject to the constraints implied by the prescribed
vertex positions. When we asked the authors for more details, they informed us
that they are no longer convinced of the correctness of their approach. Theorem 2
of our paper implies that the approach is indeed incorrect unless P = NP.

Bi-Monotonicity: Fulek, Pelsmajer, Schaefer and Štefankovič [11] present
a Hanani-Tutte theorem for y-monotone drawings, that is, upward drawings in
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which all vertices have distinct y-coordinates. They accompany their result with
a simple and efficient algorithm for Y-Monotonicity, which is equivalent to
Level Planarity restricted to instances with level-width λ = 1. They propose
the problem Bi-Monotonicity and leave its complexity as an open problem.
The input of Bi-Monotonicity is a triple G = (G = (V,E), x, y) where G is
a graph and x and y injectively map from V to the reals. The task is to decide
whether G has a bi-monotone drawing, that is, a plane drawing in which edges
are realized as curves that are both y-monotone and x-monotone and in which
every vertex v ∈ V is placed at (x(v), y(v)).

Main results: In Section 3 we study the complexity of Ordered Level
Planarity. While Upward Planarity is NP-complete [12] in general but
becomes polynomial-time solvable [19] for prescribed y-coordinates, we show
that prescribing both x-coordinates and y-coordinates renders the problem NP-
complete. We complement our result with efficient approaches for some special
cases of ordered level graphs and, thereby, establish a complexity dichotomy with
respect to the level-width and the maximum degree.

Theorem 1. Ordered Level Planarity is NP-complete, even for maximum
degree ∆ = 2 and level-width λ = 2. For level-width λ = 1 or ∆+ = ∆− = 1
or proper instances Ordered Level Planarity can be solved in linear time,
where ∆+ and ∆− are the maximum in-degree and out-degree respectively.

Ordered Level Planarity restricted to instances with λ = 2 and ∆ = 2
is an elementary problem. We expect that it may serve as a suitable basis for
future reductions. As a proof of concept, the remainder of this paper is devoted
to establishing connections between Ordered Level Planarity and several
other graph drawing problems. Theorem 1 serves as our key tool for settling their
complexity. In Section 2 we study Geodesic Planarity and obtain:

Theorem 2. Geodesic Planarity is NP-hard for any set of directions S
with |S| ≥ 4 even for perfect matchings in general position.

Observe the aforementioned discrepancy between Theorem 2 and the claim by
Katz et al. [20] that Manhattan Geodesic Planarity for perfect matchings
is in P. Bi-Monotonicity is closely related to a special case of Manhattan
Geodesic Planarity. With a simple corollary we settle the complexity of
Bi-Monotonicity and, thus, answer the open question by Fulek et al. [11].

Theorem 3. Bi-Monotonicity is NP-hard even for perfect matchings.

Ordered Level Planarity is an immediate and very constrained spe-
cial case of Constrained Planarity. Further, in Appendix C we establish
Ordered Level Planarity as a special case of both Clustered Level
Planarity and T-Level Planarity by providing the following reductions.

Theorem 4. Ordered Level Planarity with maximum degree ∆ = 2 and
level-width λ = 2 reduces in linear time to T-Level Planarity with maximum
degree ∆′ = 2 and level-width λ′ = 4.
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Theorem 5. Ordered Level Planarity with maximum degree ∆ = 2 and
level-width λ = 2 reduces in quadratic time to Clustered Level Planarity
with maximum degree ∆′ = 2, level-width λ′ = 2 and κ′ = 3 clusters.

Angelini, Da Lozzo, Di Battista, Frati and Roselli [2] propose the complexity
of Clustered Level Planarity for clustered level graphs with a flat cluster
hierarchy as an open question. Theorem 5 answers this question by showing that
NP-hardness holds for instances with only two non-trivial clusters.

2 Geodesic Planarity and Bi-Monotonicity

In this section we establish that deciding whether an instance G = (G, x, y, S) of
Geodesic Planarity has a geodesic drawing is NP-hard even if G is a perfect
matching and even if the coordinates assigned via x and y are in general position,
that is, no two vertices lie on a line with a direction from S. The NP-hardness
of Bi-Monotonicity for perfect matchings follows as a simple corollary. Our
results are obtained via a reduction from Ordered Level Planarity.

Lemma 1. Let S ⊂ Q2 with |S| ≥ 4 be a finite set of directions symmetric with
respect to the origin. Ordered Level Planarity with maximum degree ∆ = 2
and level-width λ = 2 reduces to Geodesic Planarity such that the resulting
instances are in general position and consist of a perfect matching and direction
set S. The reduction can be carried out using a linear number of arithmetic
operations.

Proof Sketch. In this sketch, we prove our claim only for the classical case that
S contains exactly the four horizontal and vertical directions. Our reduction
is carried out in two steps. Let Go = (Go = (V,E), γ, χ) be an Ordered
Level Planarity instance with maximum degree ∆ = 2 and level-width λ =
2. In Step (i) we turn Go into an equivalent Geodesic Planarity instance
G′g = (Go, x

′, γ, S). In Step (ii) we transform G′g into an equivalent Geodesic
Planarity instance Gg = (Gg, x, y, S) where Gg is a perfect matching and the
vertex positions assigned via x and y are in general position.

Step (i): In order to transform Go into G′g we apply a shearing transformation.
We translate the vertices of each level Vi by 3i units to the right, see Figure 1(a)
and Figure 1(b). Clearly, every geodesic drawing of G′g can be turned into an
ordered level planar drawing of Go. On the other hand, consider an ordered level
planar drawing Γo of Go. Without loss of generality we can assume that in Γo

all edges are realized as polygonal paths in which bend points occur only on
the horizontal lines Li through the levels Vi where 0 ≤ i ≤ h. Further, we may
assume that all bend points have x-coordinates in the open interval (−1, 2). We
shear Γo by translating the bend points and vertices of level Vi by 3i units to
the right for 0 ≤ i ≤ h, see Figure 1(b). In the resulting drawing Γ ′o, the vertex
positions match those of G′g. Furthermore, all edge-segments have a positive slope.
Thus, since the maximum degree is ∆ = 2 we can replace all edge-segments with
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Fig. 1: (a), (b) and (c): Illustrations of Step (i). (d) The two gadget squares of
each level. Grid cells have size 1/48× 1/48. (e) Illustration of Step (ii). Turning
a drawing of Gg into a drawing of G′g (f) and vice versa (g).

L1-geodesic rectilinear paths that closely trace the segments and we obtain a
geodesic drawing Γ ′g of G′g, see Figure 1(c).

Step (ii): In order to turn G′g = (Go = (V,E), x′, γ, S) into the equivalent
instance Gg = (Gg, x, y, S) we transform Go into a perfect matching. To this
end, we split each vertex v ∈ V by replacing it with a small gadget that fits
inside a square rv centered on the position pv = (x′(v), γ(v)) of v, see Figure 1(e).
We call rv the square of v and use ptrv , ptlv , pbrv and pblv to denote the top-
right, top-left, bottom-right and bottom-left corner of rv, respectively. We use
two different sizes to ensure general position. The size of the gadget square is
1/4 × 1/4 if χ(v) = 0 and it is 1/8 × 1/8 if χ(v) = 1. The gadget contains a
degree-1 vertex for every edge incident to v. In the following we explain the
gadget construction in detail, for an illustration see Figure 1(d). Let {v, u} be an
edge incident to v. We create an edge {v1, u} where v1 is a new vertex which is
placed at ptrv − (1/48, 1/48) if u is located to the top-right of v and it is placed
at pblv + (1/48, 1/48) if u is located to the bottom-left of v. Similarly, if v is
incident to a second edge {v, u′}, we create an edge {v2, u′} where v2 is placed at
ptrv −(1/24, 1/24) or pblv +(1/24, 1/24) depending on the position of u′. Finally, we
create a blocking edge {vtl, vbr} where vtl is placed at ptlv and vbr is placed at pbrv .
The thereby assigned coordinates are in general position and the construction
can be carried out in linear time.

Assume that Gg has a geodesic drawing Γg. By construction, all blocking
edges have a top-left and a bottom-right endpoint. On the other hand, all other
edges have a bottom-left and a top-right endpoint. As a result, a non-blocking
edge e = {u, v} can not pass through any gadget square rw, except the squares ru
or rv since e would have to cross the blocking edge of rw. Accordingly, it is
straight-forward to obtain a geodesic drawing of Γ ′g: We remove the blocking
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edges, reinsert the vertices of V according to the mappings x′ and γ and connect
them to the vertices of their respective gadgets in a geodesic fashion. This can
always be done without crossings. Figure 1(f) shows one possibility. If the edge
from v2 passes to the left of v1, we may have to choose a reflected version. Finally,
we remove the vertices v1 and v2 which now act as subdivision vertices.

On the other hand, let Γ ′g be a geodesic planar drawing of G′g. Without loss of
generality, we can assume that each edge {u, v} passes only through the squares
of u and v. Furthermore, for each v ∈ V we can assume that its incident edges
intersect the boundary of rv only to the top-right of ptrv − (1/48, 1/48) or to the
bottom-left of pblv + (1/48, 1/48), see Figure 1(g). Thus, we can simply remove
the parts of the edges in the interior of the gadget squares and connect the
gadget vertices to the intersection points of the edges with the gadget squares in
a geodesic fashion. ut

The bit size of the numbers involved in the calculations of our reduction is
linearly bounded in the bit size of the directions of S. Together with Theorem 1
we obtain the proof of Theorem 2. The instances generated by Lemma 1 are in
general position. In particular, this means that the mappings x and y are injective.
We obtain an immediate reduction to Bi-Monotonicity. The correctness follows
from the fact that every L1-geodesic rectilinear path can be transformed into a
bi-monotone curve and vice versa. Thus, we obtain Theorem 3.

3 Ordered Level Planarity

To show NP-hardness of Ordered Level Planarity we reduce from a 3-
Satisfiability variant described in this paragraph. A monotone 3-Satisfiability
formula is a Boolean 3-Satisfiability formula in which each clause is either
positive or negative, that is, each clause contains either exclusively positive or
exclusively negative literals respectively. A planar 3SAT formula ϕ = (U , C) is a
Boolean 3-Satisfiability formula with a set U of variables and a set C of clauses
such that its variable-clause graph Gϕ = (U ] C, E) is planar. The graph Gϕ is
bipartite, i.e. every edge in E is incident to both a clause vertex from C and
a variable vertex from U . Furthermore, edge {c, u} ∈ E if and only if a literal
of variable u ∈ U occurs in c ∈ C. Planar Monotone 3-Satisfiability is a
special case of 3-Satisfiability where we are given a planar and monotone
3-Satisfiability formula ϕ and a monotone rectilinear representation R of the
variable-clause graph of ϕ. The representation R is a contact representation on
an integer grid in which the variables are represented by horizontal line segments
arranged on a line `. The clauses are represented by E-shapes turned by 90◦ such
that all positive clauses are placed above ` and all negative clauses are placed be-
low `, see Figure 2a. Planar Monotone 3-Satisfiability is NP-complete [6].
We are now equipped to prove the core lemma of this section.

Lemma 2. Planar Monotone 3-Satisfiability reduces in polynomial time
to Ordered Level Planarity. The resulting instances have maximum de-
gree ∆ = 2 and all vertices on levels with width at least 3 have out-degree at most
1 and in-degree at most 1.
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u1u2u3u4u5

(a)

u1u2u3u4u5u1 u2 u3 u4 u5

(b)
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1 Tn
2Tn

5T p
2 T p

3 T p
4 T p

5

(c)

Fig. 2: (a) RepresentationR of ϕ with negative clauses (u1∨u4∨u5), (u1∨u3∨u4)
and (u1 ∨ u2 ∨ u3) and positive clauses (u1 ∨ u4 ∨ u5) and (u1 ∨ u2 ∨ u3) and (b)
its modified version R′ in Lemma 2. (c) Tier T0.

Proof Sketch. We perform a polynomial-time reduction from Planar Monotone
3-Satisfiability. Let ϕ = (U , C) be a planar and monotone 3-Satisfiability
formula with C = {c1, . . . , c|C|}. Let Gϕ the variable-clause graph of ϕ. Let R
be a monotone rectilinear representation of Gϕ. We construct an ordered level
graph G = (G, γ, χ) such that G has an ordered level planar drawing if and only
if ϕ is satisfiable. In this proof sketch we omit some technical details such as
precise level assignments and level orderings.

Overview: The ordered level graph G has l3 + 1 levels which are partitioned
into four tiers T0 = {0, . . . , l0}, T1 = {l0+1, . . . , l1}, T2 = {l1+1, . . . , l2} and T3 =
{l2 + 1, . . . , l3}. Each clause ci ∈ C is associated with a clause edge ei = (csi , c

t
i)

starting with csi in tier T0 and ending with cti in tier T2. The clause edges have to be
drawn in a system of tunnels that encodes the 3-Satisfiability formula ϕ. In T0
the layout of the tunnels corresponds directly to the rectilinear representation R,
see Figure 2c. For each E-shape there are three tunnels corresponding to the
three literals of the associated clause. The bottom vertex csi of each clause edge ei
is placed such that ei has to be drawn inside one of the three tunnels of the
E-shape corresponding to ci. This corresponds to the fact that in a satisfying
truth assignment every clause has at least one satisfied literal. In tier T1 we merge
all the tunnels corresponding to the same literal. We create variable gadgets that
ensure that for each variable u edges of clauses containing u can be drawn in
the tunnel associated with either the negative or the positive literal of u but not
both. This corresponds to the fact that every variable is set to either true or
false. Tiers T2 and T3 have a technical purpose.

We proceed by describing the different tiers in detail. Recall that in terms
of realizability, Ordered Level Planarity is equivalent to the generalized
version where γ and χ map to the reals. For the sake of convenience we will begin
by designing G in this generalized setting. It is easy to transform G such that it
satisfies the standard definition in a polynomial-time post processing step.
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βh(ci)v1

v2

v3

v′1 v′2 v′3

s1 s2 s3

(a)

v1

csi
v3

v4 v5

v′1 v′2 v′3v6 v7 v8

(b)

Fig. 3: (a) The E-shape and (b) the clause gadget of clause ci. The thick gray
lines represent the gates of ci.

Tier 0 and 2, clause gadgets: The clause edges ei = (csi , c
t
i) end in tier T2.

It is composed of l2 − l1 = |C| levels each of which contains precisely one vertex.
We assign γ(cti) = l1 + i. Observe that this imposes no constraint on the order in
which the edges enter T2.

Tier T0 consists of a system of tunnels that resembles the monotone rectilinear
representation R of Gϕ = (U ] C, E), see Figure 2c. Intuitively it is constructed
as follows: We take the top part of R, rotate it by 180◦ and place it to the left of
the bottom part such that the variables’ line segments align, see Figure 2b. We
call the resulting representation R′. For each E-shape in R′ we create a clause
gadget, which is a subgraph composed of 11 vertices that are placed on a grid
close to the E-shape, see Figure 3. The red vertex at the bottom is the lower
vertex csi of the clause edge ei of the clause ci corresponding to the E-shape.
Without loss of generality we assume the grid to be fine enough such that the
resulting ordered level graph can be drawn as in Figure 2c without crossings.
Further, we assume that the y-coordinates of every pair of horizontal segments
belonging to distinct E-shapes differ by at least 3. This ensures that all vertices
on levels with width at least 3 have out-degree at most 1 and in-degree at most 1
as stated in the lemma.

The clause gadget (without the clause edge) has a unique ordered level planar
drawing in the sense that for every level Vi the left-to-right sequence of vertices
and edges intersected by the horizontal line Li through Vi is identical in every
ordered level planar drawing. This is due to the fact that the order of the top-most
vertices v′1, v6, v′2, v7, v′3 and v8 is fixed. We call the line segments v′1v6, v′2v7
and v′3v8 the gates of ci. Note that the clause edge ei has to intersect one of the
gates of ci. This corresponds to the fact the at least one literal of every clause
has to be satisfied.

The subgraph G0 induced by T0 (without the clause edges) has a unique
ordered level planar drawing. In tier T1 we bundle all gates that belong to one
literal together by creating two long paths for each literal. These two paths form
the tunnel of the corresponding literal. All clause edges intersecting a gate of
some literal have to be drawn inside the literal’s tunnel, see Figure 2c. To this
end, for j = 1, . . . , |U| we use N0

j (n0j ) to refer to the left-most (right-most) vertex
of a negative clause gadget placed on a line segment of R′ representing uj ∈ U .
The vertices N0

j and n0j are the first vertices of the paths forming the negative
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Fig. 4: (a) The variable gadget of uj in (b) positive and (c) negative state.

tunnel Tn
j of the negative literal of variable uj . Analogously, we use P 0

j (p0j) to
refer to the left-most (right-most) vertex of a positive clause gadget placed on a
line segment of R′ representing uj . The vertices P 0

j and p0j are the first vertices
of the paths forming the positive tunnel T p

j of the positive literal of variable uj . If
for some j the variable uj is not contained both in negative and positive clauses,
we artificially add two vertices N0

j and n0j or P 0
j and p0j on the corresponding

line segments in order to avoid having to treat special cases in the remainder of
the construction.

Tier 1 and 3, variable gadgets: Recall that every clause edge has to pass
through a gate that is associated with some literal of the clause, and, thus, every
edge is drawn in the tunnel of some literal. We need to ensure that it is not
possible to use tunnels associated with the positive, as well as the negative literal
of some variable simultaneously. To this end, we create a variable gadget with
vertices in tier T1 and tier T3 for each variable. The variable gadget of variable uj
is illustrated in Figure 4a. The variable gadgets are nested in the sense that they
start in T1 in the order u1, u2, ..., u|U|, from bottom to top and they end in the
reverse order in T3, see Figure 5. We force all tunnels with index at least j to be
drawn between the vertices uaj and ubj . This is done by subdividing the tunnel
edges on this level, see Figure 4b. The long edge (usj , u

t
j) has to be drawn to the

left or right of ucj in T3. Accordingly, it is drawn to the left of uaj or to the right

of ubj in T1. Thus, it is drawn either to the right (Figure 4b) of all the tunnels or to
the left (Figure 4c) of all the tunnels. As a consequence, the blocking edge (usj , u

p
j )

is also drawn either to the right or the left of all the tunnels. Together with the
edge (uqj , u

p
j ) it prevents clause edges from being drawn either in the positive

tunnel T p
j or negative tunnel Tn

j of variable uj which end at level γ(uqj) because
they can not reach their endpoints in T2 without crossings. We say T p

j or Tn
j are

blocked respectively.
The construction of the ordered level graph G can be carried out in polynomial

time. Note that maximum degree is ∆ = 2 and that all vertices on levels with
width at least 3 have out-degree at most 1 and in-degree at most 1 as claimed in
the lemma.

Correctness: It remains to show that G has an ordered level planar drawing
if and only if ϕ is satisfiable. Assume that G has an ordered level planar drawing Γ .
We create a satisfying truth assignment for ϕ. If Tn

j is blocked we set uj to true,
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Fig. 5: Nesting structure of the variable gadgets.

otherwise we set uj to false for j ∈ 1, . . . , |U|. Recall that the subgraph G0

induced by the vertices in tier T0 has a unique ordered level planar drawing.
Consider a clause ci and let f, g, j be the indices of the variables whose literals
are contained in ci. Clause edge ei = (esi , e

t
i) has to pass level l0 through one of

the gates of ci. More precisely, it has to be drawn between either N0
f and n0f , N0

g

and n0g or N0
j and n0j if ci is negative or between either P 0

f and p0f , P 0
g and p0g or

P 0
j and p0j if ci is positive, see Figure 2c. First, assume that ci is negative and

assume without loss of generality that it traverses l0 between N0
j and n0j . In this

case clause edge ei has to be drawn in Tn
j . Recall that this is only possible if Tn

j

is not blocked, which is the case if uj is false, see Figure 4c. Analogously, if ci is
positive and ei traverses w.l.o.g. between pPj and ppj , then uj is true, Figure 4b.
Thus, we have established that one literal of each clause in C evaluates to true
for our truth assignment and, hence, formula ϕ is satisfiable.

Now assume that ϕ is satisfiable and consider a satisfying truth assignment.
We create an ordered level planar drawing Γ of G. It is clear how to create the
unique subdrawing of G0. The variable gadgets are drawn in a nested fashion, see
Figure 5. For j = 1, . . . , |U|−1 we draw edge (uaj , u

c
j) to left of uaj+1 and usj+1 and

edge (ubj , u
c
j) to right of ubj+1 and usj+1. In other words, the pair ((uaj , u

c
j), (u

b
j , u

c
j))

is drawn between all such pairs with index smaller than j. Recall that the vertices
uaj , ubj , u

s
j , u

p
j and uqj are located on higher levels than the according vertices

of variables with index smaller than j and that utj and ucj are located on lower
levels than the according vertices of variables with index smaller than j.
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For j = 1, . . . , |U| if uj is positive we draw the long edge (usj , u
t
j) to the right

of ubj and ucj and, accordingly, we have to draw all tunnels left of usj and uqj
(except for Tn

j , which has to be drawn to the left of usj and end to the right of uqj),

see Figure 4b. If uj is negative we draw the long edge (usj , u
t
j) to the left of ubj

and ucj and, accordingly, we have to draw all tunnels right of usj and uqj (except
for T p

j , which has to be drawn to the right of usj and end to the left of uqj), see

Figure 4c. We have to draw the blocking edge (usj , u
p
j ) to the right of nj+1

j if uj

is positive and to the left of P j+1
j if uj is negative.

It remains to describe how to draw the clause edges. Let ci be a clause. There
is at least one true literal in ci. Let k be the index of the corresponding variable.
We describe the drawing of clause edge ei = (csi , c

t
i) from bottom to top. We

start by drawing ei in the tunnel T p
k (Tn

k ) if ci is positive (negative). After the
variable gadget of uk the edge ei leaves its tunnel and is drawn to the left (right)
of all gadgets of variables with higher index, see Figure 5. ut

We obtain NP-hardness for instances with maximum degree ∆ = 2. In fact,
we can restrict our attention to instances level-width λ = 2. To this end, we split
levels with width λi > 2 into λi − 1 levels containing exactly two vertices each.

Lemma 3. An instance G = (G = (V,E), γ, χ) of Ordered Level Planarity
with maximum degree ∆ ≤ 2 can be transformed in linear time into an equivalent
instance G′ = (G′ = (V ′, E′), γ′, χ′) of Ordered Level Planarity with
level-width λ′ ≤ 2 and maximum degree ∆′. If in G all vertices on levels with
width at least 3 have out-degree at most 1 and in-degree at most 1, then ∆′ ≤ 2.
Otherwise, ∆′ ≤ ∆+ 1.

The reduction in Lemma 2 requires degree-2 vertices. With ∆ = 1, the
problem becomes polynomial-time solvable. In fact, even if ∆ = 2 one can easily
solve it as long as the maximum in-degree and the maximum out-degree are both
bounded by 1. Such instances consists of a set P of y-monotone paths. We write
p ≺ q, meaning that p ∈ P must be drawn to the left of q ∈ P , if p and q have
vertices vp and vq that lie adjacent on a common level. If ≺ is acyclic, we can
draw G according to a linear extension of ≺, otherwise there exists no solution.

Lemma 4. Ordered Level Planarity restricted to instances with maximum
in-degree ∆− = 1 and maximum out-degree ∆+ = 1 can be solved in linear time.

For λ = 1 Ordered Level Planarity is solvable in linear time since Level
Planarity can be solved in linear time [19]. Proper instances can be solved in
linear-time via a sweep through every level. The problem is obviously contained
in NP. The results of this section establish Theorem 1.

Acknowledgements: We thank the authors of [20] for providing us with
unpublished information regarding their plane sweep approach for Manhattan
Geodesic Planarity.
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A Omitted Proofs in Section 2

Lemma 1. Let S ⊂ Q2 with |S| ≥ 4 be a finite set of directions symmetric with
respect to the origin. Ordered Level Planarity with maximum degree ∆ = 2
and level-width λ = 2 reduces to Geodesic Planarity such that the resulting
instances are in general position and consist of a perfect matching and direction
set S. The reduction can be carried out using a linear number of arithmetic
operations.

Proof. We first prove our claim for the classical case that S contains exactly
the four horizontal and vertical directions. Afterwards, we discuss the necessary
adaptations for the general case. Our reduction is carried out in two steps. Let
Go = (Go = (V,E), γ, χ) be an Ordered Level Planarity instance with
maximum degree ∆ = 2 and level-width λ = 2. In Step (i) we turn Go into an
equivalent Geodesic Planarity instance G′g = (Go, x

′, γ, S). In Step (ii) we
transform G′g into an equivalent Geodesic Planarity instance Gg = (Gg, x, y, S)
where Gg is a perfect matching and the vertex positions assigned via x and y are
in general position.

Step (i): In order to transform Go into G′g we apply a shearing transformation.
We translate the vertices of each level Vi by 3i units to the right, see Figure 1(a)
and Figure 1(b). Clearly, every geodesic drawing of G′g can be turned into an
ordered level planar drawing of Go. On the other hand, consider an ordered level
planar drawing Γo of Go. Without loss of generality we can assume that in Γo

all edges are realized as polygonal paths in which bend points occur only on
the horizontal lines Li through the levels Vi where 0 ≤ i ≤ h. Further, we may
assume that all bend points have x-coordinates in the open interval (−1, 2). We
shear Γo by translating the bend points and vertices of level Vi by 3i units to
the right for 0 ≤ i ≤ h, see Figure 1(b). In the resulting drawing Γ ′o, the vertex
positions match those of G′g. Furthermore, all edge-segments have a positive slope.
Thus, since the maximum degree is ∆ = 2 we can replace all edge-segments with
L1-geodesic rectilinear paths that closely trace the segments and we obtain a
geodesic drawing Γ ′g of G′g, see Figure 1(c).

Step (ii): In order to turn G′g = (Go = (V,E), x′, γ, S) into the equivalent
instance Gg = (Gg, x, y, S) we transform Go into a perfect matching. To this
end, we split each vertex v ∈ V by replacing it with a small gadget that fits
inside a square rv centered on the position pv = (x′(v), γ(v)) of v, see Figure 1(e).
We call rv the square of v and use ptrv , ptlv , pbrv and pblv to denote the top-
right, top-left, bottom-right and bottom-left corner of rv, respectively. We use
two different sizes to ensure general position. The size of the gadget square is
1/4 × 1/4 if χ(v) = 0 and it is 1/8 × 1/8 if χ(v) = 1. The gadget contains a
degree-1 vertex for every edge incident to v. In the following we explain the
gadget construction in detail, for an illustration see Figure 1(d). Let {v, u} be an
edge incident to v. We create an edge {v1, u} where v1 is a new vertex which is
placed at ptrv − (1/48, 1/48) if u is located to the top-right of v and it is placed
at pblv + (1/48, 1/48) if u is located to the bottom-left of v. Similarly, if v is
incident to a second edge {v, u′}, we create an edge {v2, u′} where v2 is placed at
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ptrv −(1/24, 1/24) or pblv +(1/24, 1/24) depending on the position of u′. Finally, we
create a blocking edge {vtl, vbr} where vtl is placed at ptlv and vbr is placed at pbrv .
The thereby assigned coordinates are in general position and the construction
can be carried out in linear time.

Assume that Gg has a geodesic drawing Γg. By construction, all blocking
edges have a top-left and a bottom-right endpoint. On the other hand, all other
edges have a bottom-left and a top-right endpoint. As a result, a non-blocking
edge e = {u, v} can not pass through any gadget square rw, except the squares ru
or rv since e would have to cross the blocking edge of rw. Accordingly, it is
straight-forward to obtain a geodesic drawing of Γ ′g: We remove the blocking
edges, reinsert the vertices of V according to the mappings x′ and γ and connect
them to the vertices of their respective gadgets in a geodesic fashion. This can
always be done without crossings. Figure 1(f) shows one possibility. If the edge
from v2 passes to the left of v1, we may have to choose a reflected version. Finally,
we remove the vertices v1 and v2 which now act as subdivision vertices.

On the other hand, let Γ ′g be a geodesic planar drawing of G′g. Without loss of
generality, we can assume that each edge {u, v} passes only through the squares
of u and v. Furthermore, for each v ∈ V we can assume that its incident edges
intersect the boundary of rv only to the top-right of ptrv − (1/48, 1/48) or to the
bottom-left of pblv + (1/48, 1/48), see Figure 1(g). Thus, we can simply remove
the parts of the edges in the interior of the gadget squares and connect the
gadget vertices to the intersection points of the edges with the gadget squares in
a geodesic fashion.

The general case: It remains to discuss the adaptations for the case that S
is an arbitrary set of directions symmetric with respect to the origin. By applying
a linear transformation we can assume without loss of generality that (1, 0) and
(0, 1) are adjacent directions in S. Accordingly, all the remaining directions point
into the top-left or the bottom-right quadrant. Further, by vertical scaling we
can assume that no direction projects to (1, 1) on the unit square. Observe that
if we do not insist on a coordinate assignment in general position, the reduction
for the restricted case discussed above is already sufficient. In order to guarantee
general position we have to avoid points that lie on a line with a direction from S.
This requires some easy but a bit technical modifications of our construction.

Note that since no direction of S points to the top-right or bottom-left
quadrant, every pair of conflicting vertices from Gg that defines a line parallel
to one of the directions in S has to belong to one or both of the gadgets of two
vertices u, v ∈ V with γ(u) = γ(v). Let s1 and s2 be the flattest and steepest
slope of S \ {(1, 0), (0, 1)} respectively. In order to guarantee general position we
apply the following two changes.

(1) We increase the horizontal distance in the mapping x′ between each pair
of vertices u ∈ V and v ∈ V with γ(u) = γ(v) and χ(u) = 0 and χ(v) = 1 in
order to ensure that there can not be any conflicting vertices u′,v′ in Gg such
that u′ belongs to the gadget of u and v belongs to the gadget of v . It suffices
to translate v and its square to the right such that pblv is to the right of the line
with direction s1 through ptru , see Figure 6(a).
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Fig. 6: Adaptations (1) (a) and (2) (b) for the general case.

(2) In order to ensure that there are no conflicting vertices w, w′ that belong
to the same gadget square rv, we change the offset to the gadget square corners
from ±(1/48) and ±(1/24) to ±(c/48) and ±(c/24) where 0 < c < 1 is chosen
small enough such that the gadget vertices are placed above the line with
direction s1 through rtlv , below the line with direction s1 through rbrv , below the
line with direction s2 through rtlv and above the line with direction s2 through rbrv ,
see Figure 6(b). ut

B Omitted Proofs in Section 3

Lemma 2. Planar Monotone 3-Satisfiability reduces in polynomial time to
Ordered Level Planarity. The resulting instances have maximum degree ∆ =
2 and all vertices on levels with width at least 3 have out-degree at most 1 and
in-degree at most 1.

Proof. We perform a polynomial-time reduction from Planar Monotone 3-
Satisfiability. Let ϕ = (U , C) be a planar and monotone 3-Satisfiability
formula with C = {c1, . . . , c|C|}. Let Gϕ the variable-clause graph of ϕ. Let R
be a monotone rectilinear representation of Gϕ. We construct an ordered level
graph G = (G, γ, χ) such that G has an ordered level planar drawing if and only
if ϕ is satisfiable.

Overview: The ordered level graph G has l3 + 1 levels which are partitioned
into four tiers T0 = {0, . . . , l0}, T1 = {l0+1, . . . , l1}, T2 = {l1+1, . . . , l2} and T3 =
{l2 + 1, . . . , l3}. Each clause ci ∈ C is associated with a clause edge ei = (csi , c

t
i)

starting with csi in tier T0 and ending with cti in tier T2. The clause edges have to be
drawn in a system of tunnels that encodes the 3-Satisfiability formula ϕ. In T0
the layout of the tunnels corresponds directly to the rectilinear representation R,
see Figure 2c. For each E-shape there are three tunnels corresponding to the
three literals of the associated clause. The bottom vertex csi of each clause edge ei
is placed such that ei has to be drawn inside one of the three tunnels of the
E-shape corresponding to ci. This corresponds to the fact that in a satisfying
truth assignment every clause has at least one satisfied literal. In tier T1 we merge
all the tunnels corresponding to the same literal. We create variable gadgets that
ensure that for each variable u edges of clauses containing u can be drawn in
the tunnel associated with either the negative or the positive literal of u but not
both. This corresponds to the fact that every variable is set to either true or
false. Tiers T2 and T3 have a technical purpose.
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We proceed by describing the different tiers in detail. Recall that in terms
of realizability, Ordered Level Planarity is equivalent to the generalized
version where γ and χ map to the reals. For the sake of convenience we will begin
by designing G in this generalized setting. It is easy to transform G such that it
satisfies the standard definition in a polynomial-time post processing step.

Tier 0 and 2, clause gadgets: The clause edges ei = (csi , c
t
i) end in tier T2.

It is composed of l2 − l1 = |C| levels each of which contains precisely one vertex.
We assign γ(cti) = l1 + i. Observe that this imposes no constraint on the order in
which the edges enter T2.

Tier T0 consists of a system of tunnels that resembles the monotone rectilinear
representation R of Gϕ = (U ] C, E), see Figure 2c. Intuitively it is constructed
as follows: We take the top part of R, rotate it by 180◦ and place it to the left of
the bottom part such that the variables’ line segments align, see Figure 2b. We
call the resulting representation R′. For each E-shape in R′ we create a clause
gadget, which is a subgraph composed of 11 vertices that are placed on a grid
close to the E-shape, see Figure 3. The red vertex at the bottom is the lower
vertex csi of the clause edge ei of the clause ci corresponding to the E-shape.
Without loss of generality we assume the grid to be fine enough such that the
resulting ordered level graph can be drawn as in Figure 2c without crossings.
Further, we assume that the y-coordinates of every pair of horizontal segments
belonging to distinct E-shapes differ by at least 3. This ensures that all vertices
on levels with width at least 3 have out-degree at most 1 and in-degree at most 1
as stated in the lemma.

Technical Details: In the following two paragraphs, we describe the con-
struction of the clause gadgets in detail.

For every i = 1, . . . , |C| where ci is negative we create its 11-vertex clause gad-
get as follows, see Figure 3. Let s1, s2, s3 be the three vertical line segments of the
E-shape representing ci inR′ where s1 is left-most and s3 right-most. Let v1, v2, v3
be the lower endpoints and v′1, v

′
2, v
′
3 be the upper endpoints of s1, s2, s3, respec-

tively. We place the tail csi of the clause edge ei of ci at v2. We create new vertices
at v1, v3, v′1, v′2, v′3, v4 = v1 + (1, 1), v5 = v2 + (1, 2) and at v6, v7, v8 which
are the lattice points one unit to the right of v′1, v

′
2, v
′
3, respectively. To simplify

notation, we identify these new vertices with their locations on the grid. We add
edges (v1, v

′
1), (v3, v8), (v4, v6), (v4, v

′
2), (v5, v7) and (v5, v

′
3) to G.

As stated above, we can assume without loss of generality that the grid is fine
enough such that the resulting ordered level graph can be drawn as in Figure 2c
without crossing. It suffices to assume that the horizontal and vertical distance
between any two segment endpoints of R′ is at least 3 (unless the endpoints lie
on a common horizontal or vertical line).

Gates and Tunnels: The clause gadget (without the clause edge) has a
unique ordered level planar drawing in the sense that for every level Vi the
left-to-right sequence of vertices and edges intersected by the horizontal line Li

through Vi is identical in every ordered level planar drawing. This is due to the
fact that the order of the top-most vertices v′1, v6, v′2, v7, v′3 and v8 is fixed. We
call the line segments v′1v6, v′2v7 and v′3v8 the gates of ci. Note that the clause
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edge ei has to intersect one of the gates of ci. This corresponds to the fact the at
least one literal of every clause has to be satisfied.

The subgraph G0 induced by T0 (without the clause edges) has a unique
ordered level planar drawing. In tier T1 we bundle all gates that belong to one
literal together by creating two long paths for each literal. These two paths form
the tunnel of the corresponding literal. All clause edges intersecting a gate of
some literal have to be drawn inside the literal’s tunnel, see Figure 2c. To this
end, for j = 1, . . . , |U| we use N0

j (n0j ) to refer to the left-most (right-most) vertex
of a negative clause gadget placed on a line segment of R′ representing uj ∈ U .
The vertices N0

j and n0j are the first vertices of the paths forming the negative

tunnel Tn
j of the negative literal of variable uj . Analogously, we use P 0

j (p0j) to
refer to the left-most (right-most) vertex of a positive clause gadget placed on a
line segment of R′ representing uj . The vertices P 0

j and p0j are the first vertices
of the paths forming the positive tunnel T p

j of the positive literal of variable uj . If
for some j the variable uj is not contained both in negative and positive clauses,
we artificially add two vertices N0

j and n0j or P 0
j and p0j on the corresponding

line segments in order to avoid having to treat special cases in the remainder of
the construction.

Tier 1 and 3, variable gadgets: Recall that every clause edge has to pass
through a gate that is associated with some literal of the clause, and, thus, every
edge is drawn in the tunnel of some literal. We need to ensure that it is not
possible to use tunnels associated with the positive, as well as the negative literal
of some variable simultaneously. To this end, we create a variable gadget with
vertices in tier T1 and tier T3 for each variable. The variable gadget of variable uj
is illustrated in Figure 4a. The variable gadgets are nested in the sense that they
start in T1 in the order u1, u2, ..., u|U|, from bottom to top and they end in the
reverse order in T3, see Figure 5. We force all tunnels with index at least j to be
drawn between the vertices uaj and ubj . This is done by subdividing the tunnel
edges on this level, see Figure 4b. The long edge (usj , u

t
j) has to be drawn to the

left or right of ucj in T3. Accordingly, it is drawn to the left of uaj or to the right

of ubj in T1. Thus, it is drawn either to the right (Figure 4b) of all the tunnels or to
the left (Figure 4c) of all the tunnels. As a consequence, the blocking edge (usj , u

p
j )

is also drawn either to the right or the left of all the tunnels. Together with the
edge (uqj , u

p
j ) it prevents clause edges from being drawn either in the positive

tunnel T p
j or negative tunnel Tn

j of variable uj which end at level γ(uqj) because
they can not reach their endpoints in T2 without crossings. We say T p

j or Tn
j are

blocked respectively.

Technical Details: In the following two paragraphs, we describe the con-
struction of the variable gadgets in detail.

Tier T3 has l3 − l2 = 2 · |U| layers each of which contains precisely one
vertex. We refer to the vertex in layer (l3 − 2j + 1) as utj and to the vertex in
layer (l3 − 2j) as ucj for j = 1, . . . , |U|. Tier T1 has l1 − l0 = 4 · |U| levels. In
each of the levels (l0 + 4j − 3), (l0 + 4j − 1) and (l0 + 4j) where j = 1, . . . , |U|
we create one vertex. These vertices are called usj , u

q
j and upj respectively. In
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level (l0 + 4j − 2) we create two vertices uaj and ubj in this order. We add the

edges (usj , u
t
j), (usj , u

p
j ), (uaj , u

c
j), (ubj , u

c
j) and (uqj , u

p
j ).

Finally, for j = 1, . . . , |U| do the following, see Figure 4b or Figure 4c. In
level (l0 + 4j − 2) we create vertices P j

j , p
j
j , . . . , P

j
|U|, p

j
|U|, N

j
|U|, n

j
|U|, . . . , N

j
j , n

j
j

and add them in this order between uaj and ubj . In level (l0 + 4j−1) we create ver-

tices P j+1
j and pj+1

j in this order before uqj and we create vertices N j+1
j and nj+1

j

in this order after uqj . We create edges realizing the paths tPj = (P 0
j , . . . , P

j+1
j ),

tpj = (p0j , . . . , p
j+1
j ), tNj = (N0

j , . . . , N
j+1
j ) and tnj = (n0j , . . . , n

j+1
j ). The pair

of paths T p
j = (tPj , t

p
j ) is the positive tunnel of variable uj . The pair of paths

Tn
j = (tNj , t

n
j ) is the negative tunnel of variable uj . If an edge e is drawn in the

region between the two paths of a tunnel T , we say it is drawn in T .

Runtime and Properties: The construction of the ordered level graph G
can be carried out in polynomial time. Note that maximum degree is ∆ = 2 and
that all vertices on levels with width at least 3 have out-degree at most 1 and
in-degree at most 1 as claimed in the lemma.

Correctness: It remains to show that G has an ordered level planar drawing
if and only if ϕ is satisfiable. Assume that G has an ordered level planar drawing Γ .
We create a satisfying truth assignment for ϕ. If Tn

j is blocked we set uj to true,
otherwise we set uj to false for j ∈ 1, . . . , |U|. Recall that the subgraph G0

induced by the vertices in tier T0 has a unique ordered level planar drawing.
Consider a clause ci and let f, g, j be the indices of the variables whose literals
are contained in ci. Clause edge ei = (esi , e

t
i) has to pass level l0 through one of

the gates of ci. More precisely, it has to be drawn between either N0
f and n0f , N0

g

and n0g or N0
j and n0j if ci is negative or between either P 0

f and p0f , P 0
g and p0g or

P 0
j and p0j if ci is positive, see Figure 2c. First, assume that ci is negative and

assume without loss of generality that it traverses l0 between N0
j and n0j . In this

case clause edge ei has to be drawn in Tn
j . Recall that this is only possible if Tn

j

is not blocked, which is the case if uj is false, see Figure 4c. Analogously, if ci is
positive and ei traverses w.l.o.g. between pPj and ppj , then uj is true, Figure 4b.
Thus, we have established that one literal of each clause in C evaluates to true
for our truth assignment and, hence, formula ϕ is satisfiable.

Now assume that ϕ is satisfiable and consider a satisfying truth assignment.
We create an ordered level planar drawing Γ of G. It is clear how to create the
unique subdrawing of G0. The variable gadgets are drawn in a nested fashion, see
Figure 5. For j = 1, . . . , |U|−1 we draw edge (uaj , u

c
j) to left of uaj+1 and usj+1 and

edge (ubj , u
c
j) to right of ubj+1 and usj+1. In other words, the pair ((uaj , u

c
j), (u

b
j , u

c
j))

is drawn between all such pairs with index smaller than j. Recall that the vertices
uaj , ubj , u

s
j , u

p
j and uqj are located on higher levels than the according vertices

of variables with index smaller than j and that utj and ucj are located on lower
levels than the according vertices of variables with index smaller than j.

For j = 1, . . . , |U| if uj is positive we draw the long edge (usj , u
t
j) to the right

of ubj and ucj and, accordingly, we have to draw all tunnels left of usj and uqj
(except for Tn

j , which has to be drawn to the left of usj and end to the right of uqj),
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see Figure 4b. If uj is negative we draw the long edge (usj , u
t
j) to the left of ubj

and ucj and, accordingly, we have to draw all tunnels right of usj and uqj (except
for T p

j , which has to be drawn to the right of usj and end to the left of uqj), see

Figure 4c. We have to draw the blocking edge (usj , u
p
j ) to the right of nj+1

j if uj

is positive and to the left of P j+1
j if uj is negative.

It remains to describe how to draw the clause edges. Let ci be a clause. There
is at least one true literal in ci. Let k be the index of the corresponding variable.
We describe the drawing of clause edge ei = (csi , c

t
i) from bottom to top. We

start by drawing ei in the tunnel T p
k (Tn

k ) if ci is positive (negative). Immediately

after level γ(pk+1
k ) we end up to the left (right) of all tunnels with index larger

than k, see Figure 4b (Figure 4c). Note that since T p
k (Tn

k ) is not blocked we can
continue without having to cross blocking edge (usk, u

p
k) or (uqk, u

p
k). We draw ei

to the left (right) of all vertices belonging to variable gadgets with index larger
than k, see Figure 5. This introduces no crossings since above level γ(pk+1

k ) all
tunnels with index larger than k are drawn to the right of uak+1, . . . , u

a
|U| and the

left of ubk+1, . . . , u
b
|U|. Connecting to cti in tier T2 is straight-forward since every

level contains only one vertex. ut
Lemma 3. An instance G = (G = (V,E), γ, χ) of Ordered Level Planarity
with maximum degree ∆ ≤ 2 can be transformed in linear time into an equivalent
instance G′ = (G′ = (V ′, E′), γ′, χ′) of Ordered Level Planarity with
level-width λ′ ≤ 2 and maximum degree ∆′. If in G all vertices on levels with
width at least 3 have out-degree at most 1 and in-degree at most 1, then ∆′ ≤ 2.
Otherwise, ∆′ ≤ ∆+ 1.

Proof. Figure 7 illustrates the following process. For each level i with |Vi| > 2 we
replace level Vi by |Vi| − 1 levels with 2 vertices each. Accordingly we increase
the level of all vertices with a level larger than i by |Vi| − 2. Let v1, . . . , v|Vi| ∈ Vi
with χ(v1) < · · · < χ(v|Vi|). We increase the level of vertex vj by j − 2 for j =
3, . . . , |Vi|. For j = 2, . . . , |Vi| − 1 we create a vertex v′j one level above vj with
χ(v′j) = 0 and we create edge (vj , v

′
j). We call these new edges the stretch edges

of level i. For j = 2, . . . , |Vi| we set χ(vj) = 1. For j = 2, . . . , |Vi| − 1 and for
every edge (vj , t) ∈ E we replace (vj , t) with (v′j , t). Let G′ denote the resulting
instance, which can be constructed in linear time. Observe that the vertex degrees
behave as desired.

Clearly, if G has an ordered level planar drawing, then G′ has an ordered level
planar drawing. On the other hand, if G′ has an ordered level planar drawing,
then G also has an ordered level planar drawing: The subgraph induced by the
stretch edges of any level has a unique ordered level planar drawing. Further,
if an edge e is drawn right of some vj and left of vj+1 then it has to be drawn
to the right of v′j and left of v′j+1 due to the stretch edges. Therefore, we can
transform an ordered level planar drawing of G′ into a drawing of G essentially
by contracting the stretch edge to single vertices and by removing the resulting
superfluous levels. ut
Lemma 4. Ordered Level Planarity restricted to instances with maximum
in-degree ∆− = 1 and maximum out-degree ∆+ = 1 can be solved in linear time.
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v1 v2
v3
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v′3
v′4

v′5

(b)

Fig. 7: In order to reduce from Ordered Level Planarity each level i with k > 2
vertices (Fig. (a)) is replaced with k − 1 levels (Fig. (b)). Thick edges are the
stretch edges of level i.

Proof. Let G = (G = (V,E), γ, χ) be an ordered level graph with maximum
indegree ∆− = 1 and maximum outdegree ∆+ = 1. Such a graph G consists of a
set P of y-monotone paths. Each path p ∈ P has vertices on some sequence of
levels, possibly skipping intermediate levels.

We define the following relation on P : We write p ≺ q, meaning that p must
be drawn to the left of q, if p and q have vertices vp and vq that lie adjacent on
a common level, i.e. γ(vp) = γ(vq) and χ(vq) = χ(vp) + 1. This relation has at
most |V | pairs, and by topological sorting, we can find in O(|V |) time a linear
ordering that is consistent with the relation ≺, unless this relation has a cycle.
The former case implies the existence of an ordered level drawing while the latter
case implies that the problem has no solution.

This follows from considerations about horizontal separability of y-monotone
sets by translations, cf. [3, 8]. An easy proof can be given following Guibas and
Yao [15, 16]: Consider an ordered level planar drawing of G. Among the paths
whose lower endpoint is visible from the left, the one with the topmost lower
endpoint must precede all other paths to which it is related in the ≺-relation.
Removing this path and iterating the procedure leads to a linear order that
extends ≺. On the other hand, if we have such a linear order x : P → {1, . . . , |P |},
we can simply draw each path p straight at x-coordinate x(p), subdivide all edges
properly and, finally, shift the vertices on each level such that the vertices of V
are placed according to χ while maintaining the order x. ut

C Relationship to Level Planarity Variants

Clustered Level Planarity: Forster and Bachmaier [10] introduced a version of
Level Planarity that allows the visualization of vertex clusterings. A clustered
level graph G is a triple (G = (V,E), γ, T ) where (G, γ) is a level graph and
T is a cluster hierarchy, i.e. a rooted tree whose leaves are the vertices in V .
Each internal node of T is called cluster. The vertices of a cluster c are the
leaves of the subtree of T rooted at c. A cluster hierarchy is flat if all leaves
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have distance at most two from the root. A clustered level planar drawing of a
clustered level graph G is a level planar drawing of (G, γ) together with a closed
simple curve for each cluster that encloses precisely the vertices of the cluster
such that the following conditions hold: (i) no two cluster boundaries intersect
(ii) every edge crosses each cluster boundary at most once (iii) the intersection of
any cluster with the horizontal line Li through level Vi is either a line segment
or empty for any level Vi. The problem Clustered Level Planarity asks
whether a given clustered level graph has a clustered level planar drawing. Forster
and Bachmaier [10] presented a O(h|V |) algorithm for a special case of proper
clustered level graphs, where h is the height of G. Angelini, Da Lozzo, Di Battista,
Frati, and Roselli [2] provided a quartic-time algorithm for all proper instances.
The general version of Clustered Level Planarity is NP-complete [2].

T-Level Planarity: This variation of Level Planarity considers con-
secutivity constraints for the vertices on each level. A T-level graph G is a
triple (G = (V,E), γ, T ) where (G, γ) is a level graph and T = (T0, . . . , Th) is a
set of trees where the leaves of Ti are Vi. An T-level planar drawing of a T-level
graph G is a level planar drawing of (G, γ) such that for every level Vi and for
each node u of Ti the leaves of the subtree of Ti rooted at u appear consecutively
along Li. The problem T-Level Planarity asks whether a given T-level graph
has a T-level planar drawing. Wotzlaw, Speckenmeyer and Porschen [21] intro-
duced the problem and provided a quadratic-time algorithm for proper instances
with constant level-width. Angelini et al. [2] give a quartic-time algorithm for
proper instances with unbounded level-width. For general T-level graphs the
problem is NP-complete [2].

Theorem 4. Ordered Level Planarity with maximum degree ∆ = 2 and
level-width λ = 2 reduces in linear time to T-Level Planarity with maximum
degree ∆′ = 2 and level-width λ′ = 4.

Proof. Let G = (G = (V,E), γ, π) be an ordered level graph with maximum
degree ∆ = 2 and level-width λ = 2. We augment each level Vi with |Vi| = 1 by
adding an isolated dummy vertex v with γ(v) = i and χ(v) = 1 in order to avoid
having to treat special cases. Thus, each level Vi has a vertex v0i with χ(v0i ) = 0
and a vertex v1i with χ(v1i ) = 1. The following steps are illustrated in Figure 8a.
For each level Vi we create two new vertices vli and vri . We add edges (vli, v

l
i+1)

and (vri , v
r
i+1) for i = 0, . . . , h− 1, where h is the height of G. Hence, we obtain a

path pl from vl0 to vlh and a path pr from vr0 to vrh. The root ri of each tree Ti has
two children uli and uri . The two children of uli are vli and v0i . The two children
of uri are vri and v1i . Let G′ denote the resulting T-level graph. The construction
of G′ can clearly be carried out in linear time.

Clearly, an ordered level planar drawing Γ of G can be augmented to a T-level
planar drawing of G′ by drawing pl to the left of Γ and by drawing pr to the
right of Γ . On the other hand, let Γ ′ be a T-level-planar drawing of G′. We
can assume without loss of generality that all vertices are placed on vertical
lines with x-coordinate −1, 0, 1 or 2. The paths pl and pr are vertex-disjoint
and drawn without crossing. Thus, pl is drawn either to the left or to the right
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Fig. 8: Reductions from Ordered Level Planarity to T-level Planarity
(a) and Clustered Level Planarity (b). Big black vertices are the vertices
of the Ordered Level Planarity instance. White vertices belong to the
paths pl and pr. In (a) the orange vertices and edges illustrate each level’s tree.
In (b) and (c) the clusters are represented as orange regions. The small black
vertices are subdivision vertices. (c) Subdivided edges can be drawn to the left,
to the right or between the two big black vertices while intersecting each cluster
boundary at most once.

of pr. By reflecting horizontally at the line x = 1/2 we can assume without loss
of generality that pl is drawn to the left of pr. Consequently, for each level Vi
the vertex v0i has to be drawn to the left of the vertex v1i since vli and v0i are
the children of uli and since vri and v1i are the children of uri . Therefore, the
subdrawing of G or its mirror image is an ordered level planar drawing of G. ut

Theorem 5. Ordered Level Planarity with maximum degree ∆ = 2 and
level-width λ = 2 reduces in quadratic time to Clustered Level Planarity
with maximum degree ∆′ = 2, level-width λ′ = 2 and κ′ = 3 clusters.

Proof. Let G = (G = (V,E), γ, π) be an ordered level graph with maximum
degree ∆ = 2 and level-width λ = 2. We augment each level Vi with |Vi| = 1
by adding an isolated dummy vertex v with γ(v) = i and χ(v) = 1. Thus, each
level Vi has a vertex v0i with χ(v0i ) = 0 and a vertex v1i with χ(v1i ) = 1. The
following steps are illustrated in Figure 8b. In addition to the trivial cluster that
contains all vertices, we create two clusters c0 and c1. Cluster c0 contains the
vertices v0i and cluster c1 contains the vertices v1i for i = 0, . . . , h.

By subdivision, we transform every edge from some level i to some level j
into a path of 2(j − i) + 1 edges. This path will alternatively enter c0 and c1 but
each subdivision edge crosses the boundary of each cluster at most once. More
precisely, for each level index i = 0, . . . , h− 1 we do the following. We subdivide
each edge (u, v) ∈ E with γ(u) ≤ i and γ(v) ≥ i + 1 twice. The upper of the
resulting subdivision vertices is added to c0, the lower to c1. The subdivision
vertices added to c0 are placed on new distinct levels added between Vi and Vi+1.
Below these new levels and above Vi we place the subdivision vertices added to c1,
again on new distinct levels, see Figure 8b. Note that the realizability of G as an
ordered level planar drawing is invariant under the described subdivision since
every subdivision vertex is the singleton vertex of some new level, see Figure 8c.
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Let G′ denote the resulting clustered level graph. Since edges may stretch over a
linear number of levels, the construction of G′ can increase the size of the graph
quadratically and, therefore, may require quadratic time.

It is straight-forward to augment an ordered level planar drawing Γ of Gs
to create a clustered level planar drawing of G′, where Gs = (Gs, γs, χs) is the
ordered level graph obtained by applying the described edge subdivision to G.
To this end, we simply draw the cluster’s curve appropriately. In particular, the
subdivision vertices allow us to maintain the property that edges do not traverse
a cluster’s boundary more than once, see Figure 8c.

For the other direction, let Γ ′ be a clustered level planar drawing of G′. We
can assume without loss of generality that all vertices are placed on vertical
lines with x-coordinate 0 or 1. The two clusters pass through every level, their
boundaries are not allowed to intersect and they can not be nested. Thus, by
reflecting horizontally at the line x = 1/2 we can assume without loss of generality
that c0 intersects each level to the left of c1. Consequently, on each level Vi the
vertex v0i ∈ c0 is placed to the left of v1i ∈ c1. Therefore, the subdrawing of Gs

or its mirror image is an ordered level planar drawing of Gs. ut
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