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Abstract
The Koebe-Andreev-Thurston Circle Packing Theorem states that every triangulated planar
graph has a contact representation by circles. The theorem has been generalized in various ways.
The most prominent generalization assures the existence of a primal-dual circle representation
for every 3-connected planar graph. We present a simple and elegant elementary proof of this
result.
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1 Introduction

For a 3-connected plane graph G = (V,E) with face set F , a spherical primal-dual disk
representation of G consists of two families of disks (Cx : x ∈ V ) and (Dy : y ∈ F ) on the
sphere S2 with the following properties (see Figure 1).
(i) The vertex-disks Cx have pairwise disjoint interiors.
(ii) The face-disks Dy have pairwise disjoint interiors.

Moreover, for every edge xx′ ∈ E with dual edge yy′ (i. e., y and y′ are the two faces separated
by xx′), the following holds:
(iii) Circles Cx and Cx′ touch at a point p.
(iv) Circles Dy and Dy′ touch at the same point p.
(v) The common tangent of Cx and Cx′ in the point p is perpendicular to the common

tangent of Dy and Dy′ in p.

I Theorem 1. Every 3-connected plane graph G admits a primal-dual disk representation
on the sphere. This representation is unique up to Möbius transformations.

Given a primal-dual disk representation of a graph G, we can use stereographic projection
to obtain a primal-dual circle representation in the plane. (In the plane, we stick to the
more common terminology of circle packings, because a circle defines a unique disk; on the
sphere, we have to specify which of the two parts bounded by a circle we mean, and therefore
we speak of disk packings.) Changing the center of the stereographic projection leads to
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8:2 On Primal-Dual Circle Representations

Figure 1 On the left, a primal-dual disk representation on the sphere, and its stereographic
projection to the plane. The intersections of red primal disks with blue dual disks appear in purple.
On the right, planes through the boundaries of the red disks define a polytope whose edges “cage”
the sphere. The edge skeleton of this polytope is the dual graph (the touching graph of the blue
disks).

different primal-dual circle representation in the plane. Figure 2 shows three primal-dual
circle representations of K4 in the plane where the projection center has been chosen as the
center of one of the disks, the center of a digon formed by a primal-dual pair of intersecting
disks, and the common point of four circles.

As a special case of the previous theorem we obtain the classical circle packing theorem:

I Theorem 2. Every plane graph G admits a circle packing representation, i.e., it is the
contact graph of a set of nonoverlapping disks in the plane.

Our proof of Theorem 1 is constructive, in a sense: It computes a primal-dual circle
representation in the plane by a limiting process. For the simplicity of the proof we choose
the version where four of the circles are lines and all the other centers of circles are in the
rectangle formed by these lines, see the right picture of Figure 2 and the larger example in
Figure 3. The theorem then follows using an inverse stereographic projection.

Our proof combines ideas from an unpublished manuscript of Pulleyblank and Rote,
from Brightwell and Scheinerman [6] and from Mohar [25]. All these proofs are based on
an algorithm for iteratively improving estimates of the circle radii, whose idea goes back
to Thurston [37, Section 13.7]. A distinguishing feature of our approach is the symmetric
treatment of the primal and the dual family of circles. Four of the radii are already fixed
at ∞, and this helps to reduce the graph-theoretic argument in the proof of convergence to
a simple statement about the number of edges of a plane bipartite graph (Lemma 4) and
a connectivity argument. The core of the proof requires only 1.5 pages and four chains of
equations and inequalities. The layout of the “kites” obtained from the limits of the radii is
based on an auxiliary result of independent interest (Lemma 5): when polygonal shapes are
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Figure 2 If we project the symmetric primal-dual disk representation of K4 on S2 to the plane
by stereographic projection, we get different primal-dual circle representations, depending on the
center of projection. In the right picture we see that circles may degenerate to lines.

Figure 3 A larger example. Figure 1 includes a spacial image of this circle representation from a
viewpoint on the left side and above the plane of Figure 3.

glued together along edges, local consistency conditions are sufficient to guarantee that these
shapes form an overlap-free tiling.

Our simple and elementary proof of Koebe’s Theorem, respectively its primal-dual version,
is suited for a presentation in a class on Graph Theory, Discrete Geometry, Computational
Geometry, or Graph Drawing.

In the next section we give a rather comprehensive account of the history of the theorem
and mention some of its applications. The proof of the theorem is given in Section 3. Section 4
is devoted to the proof of Lemma 5.

2 History and Applications of the Theorem

In graph theory the study of circle contact representations can be traced back to the 1970’s
and 1980’s; the term “coin representation” was used there. Wegner [39] and Jackson and
Ringel [20] conjectured that every plane graph has a circle representation. The problem was
popularized by Ringel [28], who also included it in a textbook from 1990 [19]. In a note
written in 1991 [31], Sachs mentions that he found a proof of the circle packing theorem

SOSA 2019



8:4 On Primal-Dual Circle Representations

which was based on conformal mappings. This eventually lead him to the discovery that the
theorem had been proved by Koebe as early as 1936 [21].

Thurston, in the context of the study of 3-manifolds, proved that any triangulation of the
sphere has an associated “circle packing” which is unique up to Möbius transformations [37,
Sections 13.6–7]. Thurston noted that this result was already present in earlier work of
Andreev [2]. Nowadays the result is commonly referred to as the Koebe-Andreev-Thurston
Circle Packing Theorem. At a conference talk in 1985, Thurston suggested connections
between circle packings and the Riemann Mapping Theorem. A precise version was obtained
by Rudin and Sullivan [29]. This line lead to the study of discrete analytic functions and
other aspects of discrete differential geometry, see to [35, 36, 5] for more on the topic.

In the early 1990’s new proofs of the circle packing theorem where found. Colin de
Verdière [7] gave an existential proof based on ‘invariance of domain’; this proof can also be
found in [27, Chapter 8] and in the primal-dual setting in an early draft of a book manuscript
by Lovász’s [22]. Colin de Verdière [8] gave another proof, which is based on the minimization
of a convex function, and he extended circle packings to more general surfaces. Pulleyblank
and Rote (unpublished) and Brightwell and Scheinerman [6] gave proofs of the primal-dual
version (Theorem 1) based on an iterative algorithm, similar to the proof given in this note.
Mohar [24] strengthened the result and proposed an iterative approach that obtains an
ε-approximation for the radii and centers in time polynomial in the size of the graph and
log(1/ε).

Primal-dual circle representations yield simultaneous orthogonal drawings of G and its
dual G∗, i. e., straight-line drawings of G and G∗ such that the outer vertex of G∗ is at
infinity and each pair of dual edges is orthogonal. The existence of such drawings was
conjectured by Tutte [38]. In fact, it follows from Tuttes “spider-web” embedding method
via the Maxwell-Cremona correspondence, which produces a convex piecewise linear surface
in R3 that vertically projects onto the drawing of G. Polarity will then yield a straight-line
embedding of G∗ with edges orthogonal to edges of G, see [26] or [30, Section 5]. However,
unlike the embeddings implied by the circle theorem, primal-dual edge pairs in this embedding
may not intersect.

Another consequence of primal-dual circle representations is known as the Cage Theorem.
It says that every 3-connected planar graph is the skeleton of a convex 3-polytope such that
every edge of the polytope is tangent to a given sphere. This strengthening of the Steinitz
Theorem is easily derived from Theorem 1, see Figure 1. The Cage Theorem was generalized
by Schramm [32], who showed that the sphere that is caged can be replaced by any smooth
strictly convex body.

A stunning generalization of the Circle Packing Theorem is the Monster Packing Theorem
of Schramm [34]. The statement (slightly simplified) is as follows: if each vertex v of a planar
triangulation G has a prescribed convex prototype Pv, then there is a contact representation
of G where each vertex is represented by a nonnegative homothet of its prototype. Some
of these homothets may degenerate to points, but when the prototypes have a smooth
boundary, such degeneracies are excluded. Contact representations of planar graphs with
other shapes than circles have received quite some attention over the years, for example with
triangles [9, 17, 1], rectangles and squares [13, 33], and pentagons and k-gons [16, 15].

The Circle Packing Theorem has been used to prove separator theorems. In particular,
every planar graph with n vertices can be partitioned into components with at most n/2
vertices by removing O(

√
n) vertices. The approach was pioneered by Miller and Thurston and

generalized to arbitrary dimensions by Miller, Teng, Thurston, and Vavasis [23]. The planar
case is reviewed in [27, Chapter 8]. A slightly simpler proof was given by Har-Peled [18].
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Figure 4 (a) A graph and its dual. (b) A cross-centered primal-dual circle packing for this graph.
The areas of the primal disks are shaded. The two vertices ξ and ξ′ are represented by “degenerate
disks”: disjoint halfplanes bounded by Cξ and Cξ′ , which “touch at infinity”. (c) The straight-line
drawing of the two graphs induced by the circle packing; the centers ξ and ξ′ of the degenerate disks
lie infinitely far away to the left and to the right. The edge ξξ′ is not represented at all. The same
holds for η and η′ and the dual edge between them.

Bern and Eppstein [4, 11] relate circle packings to mesh generation techniques.
Not surprisingly, the theorem also has applications in Graph Drawing. Eppstein [12]

used circle representations to prove that every planar graph with maximum degree 3 has
a Lombardi drawing: a drawing in which the edges are drawn as circular arcs, meeting at
equal angles at each vertex. Felsner, Igamberdiev, Kindermann, Klemz, Mchedlidze, and
Scheucher [14] used circle representations to show that 3-connected planar graphs have planar
strongly monotone drawings, i. e., straight-line drawings such that for any two vertices u, v
there is a path which is monotone with respect to the connecting line of u and v.

3 Primal-Dual Circle Representation: The Proof

Let G = (V,E) be a 3-connected plane graph with face set F and let ξξ′ be an edge in E with
dual edge ηη′, i. e., η and η′ are the two faces on the sides of ξξ′. A cross-centered primal-dual
circle representation of G with central cross ξξ′, ηη′ consists of two vertical lines Cξ and
Cξ′ , two horizontal lines Dη and Dη′ , and two families of circles (Cx : x ∈ V \ {ξ, ξ′}) and
(Dy : y ∈ F \ {η, η′}) with the following five properties, sees Figures 3 and 4b for examples:
(i) The vertex-circles Cx have pairwise disjoint interiors and are contained in the vertical

strip between Cξ and Cξ′ .
(ii) The face-circles Dy have pairwise disjoint interiors and are contained in the horizontal

strip between Dη and Dη′ .
Moreover, for every edge xx′ ∈ E with xx′ 6= ξξ′ and with dual edge yy′ (i. e., y and y′ are
the two faces separated by xx′), the following holds:
(iii) Cx and Cx′ are tangent at a point p with common tangent line txx′ .
(iv) Dy and Dy′ are tangent at the same point p with common tangent line tyy′ .
(v) The lines txx′ and tyy′ are orthogonal.

SOSA 2019



8:6 On Primal-Dual Circle Representations

Figure 5 Three primal-dual straight-line drawings of K4. They correspond to the primal-dual
circle representations of Figure 2.

I Theorem 3. Every 3-connected plane graph G admits a cross-centered primal-dual circle
representation. Moreover, for a given central cross ξξ′, ηη′, this representation is unique up
to scaling, translation, and horizontal or vertical reflections.

Theorem 1 follows from Theorem 3 via inverse stereographic projection.
We give first an outline of the proof. A primal-dual circle representation of G induces

a straight-line drawing of G and a straight-line drawing of the dual. Superimposing the
two drawings yields a plane drawing whose faces are special quadrangles called kites, see
Figures 6 and 7. After guessing radii for the circles, the shapes of the kites are determined.
It is then checked whether the angles of kites meeting at a vertex sum up to 2π. If at some
vertex the angle sum differs from 2π, the radii are changed to correct the situation. The
process is designed to make the radii converge and to make the sum of angles meet the
intended value at each vertex. The second part of the proof consists of showing that the
kites corresponding to the final radii can be laid out to form a tessellation, thus giving the
centers of a primal-dual circle representation of G.

Proof of Theorem 3. Given a cross-centered primal-dual circle representation of G we can
use the centers of the circles Cx to obtain a planar straight-line drawing of G, see Figure 4c.
Edges containing ξ or ξ′ are represented by horizontal rays to the left and right respectively.
The edge ξξ′ is missing. Similarly, the centers of the circles Dy yield a planar straight-line
drawing of G∗ with edges containing one of η and η′ being represented by vertical rays.

For example, from the primal-dual circle representations of K4 of Figure 2, we obtain
plane straight-line drawings of K4 and its dual that are displayed in Figure 5. The rightmost
of these drawings corresponds to a cross-centered primal-dual circle representation of K4.

3.1 Kites
If we overlay the drawings ofG andG∗, we get a partition of the plane into kites: quadrilaterals
with right angles at two opposite vertices and a line of symmetry through the other two
vertices. Figure 6 shows an example, and Figure 7 shows a generic kite. In the cross-centered
case, there are degenerate kites: rectangular strips that are unbounded in one direction. They
have a vertex with a 180◦-angle in the midpoint of the only bounded edge. In addition, we
have four quadrants, which can be regarded as exceptional kites. The bounded kites fill a
rectangle between Cξ, Cξ′ , Dη, and Dη′ .

The kites are in bijection with the incident pairs (x, y), where x is a primal vertex and y
is a dual vertex. Since the involved circles or lines intersect orthogonally, the kite of x and y
is completely determined by the radii rx of Cx and ry of Dy. (In the case of a line the radius
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Figure 6 The tessellation of the plane
into kites obtained from the example
in Figure 4c. Four kites are shaded,
among them a degenerate kite (semi-
infinite strip) and an exceptional kite
(quadrant).

αyx

αxy
x′x

y

y′

rx

ry

rx

ry

Figure 7 The kite corresponding to the incident
vertex-face pair x,y.

is ∞.) For bounded kites, the angles at x and y are given by

αxy = 2 arctan ry
rx

and αyx = 2 arctan rx
ry
. (1)

We extend these formulas to degenerate kites by taking the limits:

αuw =
{

0, if rw 6=∞ and ru =∞
π, if rw =∞ and ru 6=∞

(2)

Then we have

αuw + αwu = π

for all pairs (u,w) forming a bounded or degenerate kite. We don’t define the angles for the
four exceptional kites because this would involve the undetermined expression ∞∞ .

3.2 The Angle Graph
The number and combinatorial structure of the kites is captured by the angle graph. The angle
graph, or vertex-face incidence graph, of a plane graph G = (V,E) is the graph G� = (U,K)
whose node set U = V ∪ F represents both the vertices and faces of G, see Figure 8b. Its
edges xy are the pairs with x ∈ V and y ∈ F that are incident in G, i. e., x is a vertex on the
boundary of the face y. These edges are in bijection with the kites. The graph G� is plane
and bipartite. Its faces corresponds to the edges of G, and they are 4-gons, i. e., G� is a
quadrangulation. We choose the face fo = ξηξ′η′ containing the four elements of the central
cross as the outer face of G�. We denote its nodes by Uo = {ξ, ξ′, η, η′} and the remaining
nodes by Uin = U \Uo. We denote the four edges of the outer face by Ko = {ξη, ηξ′, ξ′η′, η′ξ}.

An important property of the angle graph is that it cannot have a separating 4-cycle:
If the nodes xyx′y′ with x, x′ ∈ V and y, y′ ∈ F would form some separating 4-cycle in
G�, then x, x′ would be a separating vertex pair in G, contradicting the 3-connectedness
assumption for G.

SOSA 2019
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Figure 8 (a) The plane graph G from Figure 4a, (b) its angle graph G�, (c) the primal-dual
completion (G�)�. The faces of this graph represent the kites, including the unbounded and
exceptional kites.

We will need the following well-known basic fact about bipartite plane graphs, which
is a consequence of Euler’s formula. For completeness, we include the detailed proof in
Appendix A.

I Lemma 4. A simple bipartite plane graph with |S| ≥ 4 nodes has at most |E| ≤ 2|S| − 4
edges, with equality if and only if the graph is connected and every face is a quadrilateral with
four distinct vertices.

In particular, G� contains |K| = 2|U | − 4 edges.

3.3 Angle Sums

We now come to the core of the argument. A hypothetical primal-dual circle representation
of G contains a point for each u ∈ Uin. This point is fully surrounded by its incident kites.
Hence, for every u ∈ Uin we have:∑

w : uw∈K
αuw = 2π (3)

We now look at an arbitrary assignment r : Uin → R>0 of radii. Additionally, we define
ru =∞ for each u ∈ Uo. We can then form the corresponding kites and compute the angles
according to (1) and (2). In particular, by (2), the degenerate kites have the correct angles:

αuw = π and αwu = 0 whenever u ∈ Uin and w ∈ Uo. (4)

Denote the angle sum at u ∈ Uin by αu = αu(r) =
∑
w : uw∈K αuw. We want to find radii r

such that αu(r) becomes equal to the target angle 2π for all u ∈ Uin in order to fulfill (3).
Later we will show that a collection of radii with this property induces a primal-dual circle
representation.

We first show that any choice of radii attains the correct target angles on average:∑
u∈Uin

(
αu(r)− 2π

)
= 0 (5)
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This follows from the following computation:∑
u∈Uin

αu(r) =
∑
uw∈K
u,w∈Uin

(αuw + αwu) +
∑
uw∈K

u∈Uin,w∈Uo

αuw =
∑
uw∈K
u,w∈Uin

π +
∑
uw∈K

u∈Uin,w∈Uo

π = π|K \Ko|

= π(|K| − 4) = π(2|U | − 8) = 2π(|U | − 4) = 2π|Uin|

As a consequence, whenever αu(r) 6= 2π for some u, the following two sets are both nonempty:

U− = {u ∈ Uin : αu(r) < 2π} and U+ = {u ∈ Uin : αu(r) > 2π}

If we increase the radius ru of a node u ∈ U+, leaving all remaining radii fixed, we observe
from (1) that for every incident edge uw ∈ K, the angle αuw decreases strictly to 0 as
ru →∞, with the possible exception of a single neighbor w ∈ Uo with fixed angle αuw = π

according to (4). Hence, we can increase ru to the unique value where αu(r) = 2π.

3.4 Iteration and Convergence
The workhorse of the proof is the following infinite iteration.

repeat forever:
for each u ∈ Uin:

if u ∈ U+ then increase ru to reduce αu(r) to 2π

 (6)

We will show that, for an arbitrary positive starting assignment, the radii converge to some
limiting assignment r̂, and this will imply that αu(r̂) = 2π for all u ∈ Uin.

Since radii can never decrease and every bounded monotone sequence is convergent, it
is enough to show that the set of “divergent” nodes D = {u ∈ U : lim ru = ∞} contains
no other nodes than the four nodes of Uo. (The nodes u ∈ Uo have ru = ∞ fixed and are
included in D by definition.)

The increase of ru decreases the angle sum αu, but not below 2π. It increases the angles
at adjacent nodes, and it may hence cause some w ∈ U− to move to U+. A transition
from U+ to U−, however, is impossible. It follows that some node u0 must belong to U−
indefinitely unless the iteration comes to a halt with U− = U+ = ∅. Thus, as a consequence
of the built-in behavior of the iteration, (a) U− is disjoint from D from some time on, and
(b) D is a proper subset of U .

Let us look at the subgraph G�[D] of G� induced by the divergent nodes. In order to
apply Lemma 4, we will show that G�[D] has at least 2|D| − 4 edges.

First, we wait for U− to become disjoint from D. From that point onwards,∑
u∈D\Uo

αu(r) ≥
∑

u∈D\Uo

2π = 2π|D \ Uo| = (2|D| − 8)π. (7)

On the other hand, if u ∈ D and w ∈ U \ D, then αuw converges to 0 according to (1).
Thus, in addition to (7), the inequality αuw ≤ 1/|U |2 will eventually hold for each such edge.
Bounding these edges separately from the others, we get the following inequality at this point
of the iteration:∑

u∈D\Uo

αu(r) ≤ |U |2 · 1
|U |2

+
∑

kite with x, y ∈ D
x/∈Uo or y/∈Uo

(αxy + αyx) = 1 +
∑

xy edge of G�[D]
xy/∈Ko

π

= 1 + (|E(G�[D])| − 4)π, (8)

SOSA 2019



8:10 On Primal-Dual Circle Representations

where E(G�[D]) is the edge set of G�[D]. Comparing (7) and (8) gives |E(G�[D])| ≥
2|D| − 4− 1/π and therefore |E(G�[D])| ≥ 2|D| − 4.

Since Uo ⊆ D by definition and thus |D| ≥ 4, we can apply Lemma 4. We conclude that
G�[D] is connected and its faces are simple 4-cycles.

The outer face of G�[D] is the quadrilateral fo formed by Uo. Our goal is to show that
D = Uo and G�[D] consists just of the single 4-cycle fo. Since G�[D] is a proper subgraph of
G�, G�[D] has some face f that is not a face of G�. This face f is an inner face of G�[D]
because the outer face of G�[D] agrees with fo. Suppose for contradiction that f does not
coincide with the interior face bounded by fo. Then it would form a separating 4-cycle in
G�: it would contain nodes of U both in its interior (because it is not a face of G�) and in
its exterior (because some nodes of fo lie there). Since separating 4-cycles are excluded, we
have shown that D = Uo.

This means that all radii ru for u ∈ Uin converge to some limits, which we denote
by r̂u. It follows that all angles αuw and all angle sums αu(r) converge as well, and by
the working of the iteration (6), their limits αu(r̂) are bounded by αu(r̂) ≤ 2π. Since∑
u∈Uin

(αu(r̂)− 2π) = 0 by (5), we must have αu(r̂) = 2π for all u ∈ Uin.

3.5 Uniqueness
We show that the radii are unique up to scaling. Let r and r′ be two vectors of radii such
that αr(u) = αr′(u) = 2π for all u ∈ Uin. Scaling allows to assume that ru0 = r′u0

for some
u0 ∈ Uin. Consider the set S = {u ∈ Uin : ru > r′u} and observe that u0 ∈ S̄ = Uin \ S.

|S| · 2π =
∑
u∈S

αu(r) =
∑
uw∈K
u,w∈S

(
αuw(r) + αuw(r)

)
+

∑
uw∈K

u∈S,w∈Uo

αuw(r) +
∑
uw∈K

u∈S,w∈S̄

αuw(r)

=
∑
uw∈K
u,w∈S

2π +
∑
uw∈K

u∈S,w∈Uo

π +
∑
uw∈K

u∈S,w∈S̄

αuw(r)

Thus, the last sum has a constant value, independent of the radii r. However, if we change
the radii from r to r′, then, by (1), every term αuw(r) in the last sum increases, because
ru > r′u and rw ≤ r′w. This means that the set of edges over which the sum is taken must be
empty. In other words, if w ∈ S̄, then every neighbor u ∈ Uin of w must also belong to S̄.
Since u0 ∈ S̄ and G�[Uin] is connected, S must be empty. By a symmetric argument, the set
S′ = {u ∈ Uin : r′u > ru} is empty as well, and this proves uniqueness of the radii r up to
scaling.

The radii determine shape and size of the kites. Below we show that the kites can be
laid out to form a tessellation of the plane. The line Cξ is vertical, hence, the tessellation is
unique up to scaling, translation, and horizontal or vertical reflection. Since the tessellation
determines the circles, uniqueness carries over to the cross-centered primal-dual circle
representation with fixed central cross.

3.6 Laying out the Kites
We now show that the kites defined by the limiting radii r̂ can be laid out in the plane with
the intended side-to-side contacts. Figure 9 illustrates this task. We will use Lemma 5 below,
which warrants the existence of such a layout if certain local matching conditions are fulfilled.
We invite the reader to skip forward and read the statement of Lemma 5 in Section 4. We
apply this lemma to the graph H of the vertices and edges of the bounded kites, see Figures 6
and 9. This graph is a subgraph of the primal-dual completion of G = (V,E) (which, by the
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Figure 9 Laying out the kites.

way, is nothing but the angle graph (G�)� of the angle graph of G, see Figure 8c). The nodes of
H are vertices, faces and edges of G. Specifically, VH = (V \{ξ, ξ′})∪(F \{η, η′})∪(E\{ξξ′}),
and the edges of H are the pairs (z, e) ∈ ((V \ {ξ, ξ′}) ∪ (F \ {η, η′}))× (E \ {ξξ′}) with z
incident to the edge e ∈ E in G. Each bounded face of H is a quadrilateral representing a
bounded kite. It contains one node from V , one node from F , and two nodes from E.

The 3-connectivity of G and of G∗ easily implies that H is 2-connected, as required for
Lemma 5. (In fact, the first proof of Lemma 5 shows that connectedness of H is sufficient,
provided that the outer face is a simple cycle.) We know that two adjacent kites fit together
locally because they have the same edge lengths by construction: these lengths are defined
by the same radius ru. This is condition (iii) of Lemma 5.

Moreover, as we have shown, the kites around a vertex u ∈ Uin form a complete angle of
αu(r̂) = 2π. Every right angle of a kite, if it is an interior node of H, is complemented by the
right angles of three other kites to again form a complete angle of 2π. This is condition (i)
of Lemma 5.

The vertices of H incident to the outer face of H are either points where one or two right
angles of kites meet, forming an angle of 90◦ or 180◦, or they are nodes u ∈ Uin which are
adjacent in G� to some node w ∈ Uo, forming an angle αuw = π by (4). Since this angle is
not part of H, the incident angles in H around u sum up to αu(r̂)− αuw = 2π − π = π. In
summary, the angle sums of nodes incident to the outer face of H are either 90◦ or 180◦,
and thus condition (ii) for Lemma 5 is fulfilled, and moreover, the layout of the bounded
kites must form a rectangle R. The unbounded kites can be attached edge by edge along the
boundary of R. This yields the claimed cover of the whole plane.

3.7 Constructing the Circle Representation
Finally, we derive a cross-centered primal-dual circle representation from the layout of the
kites. The kites induce a straight-line drawing of G and a straight-line drawing of the dual
G∗ with the edges incident to one node of Uo being rays and edges induced by Uo omitted.
For every primal-dual pair xx′, yy′ of edges the point p where xx′ and yy′ meet is a right
angle in each of the four involved kites. This implies (v).

For a node u ∈ Uin, consider the set of kites containing u. These kites can be put together
in the cyclic order given by the rotation of u in G� to form a polygon Pu surrounding u,
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because αu(r̂) = 2π. By the geometry of the kites, all edges incident to u ∈ V ∩Uin have the
same length r̂u, and the circle Cu of radius r̂u centered at u is inscribed in Pu and touches
Pu at the common corners of neighboring kites. For u ∈ {ξ, ξ′}, the polygon Pu obtained
by gluing the corresponding unbounded kites is a halfplane and the vertical line Cu goes
through the right-angle corners of the involved kites. From the incidences of the kites, and
since the polygons Pu for u ∈ V are pairwise disjoint, we obtain that the family (Cx : x ∈ V )
satisfies (i) and (iii).

Dually, the polygons Pu corresponding to u ∈ F also tile the plane, and the family
(Dy : y ∈ F ) satisfies Properties (ii) and (iv). This concludes the proof of Theorem 3. J

4 Tiling a Convex Polygon

The following lemma says that certain local consistency conditions around each vertex and
along each edge are sufficient to guarantee a global nonoverlapping layout of faces with
prescribed shapes.

I Lemma 5. Let H be a 2-connected plane graph (possibly drawn with curved edges). For
each bounded face f of H, a simple polygon Pf is given whose corners are labeled with the
vertices from the boundary of f in the same cyclic order. Denote the corner of Pf labeled
with v by pfv and the angle of Pf at this corner by βfv. For each vertex v, let Fv denote the
set of incident bounded faces. We assume the following conditions:
(i)

∑
f∈Fv

βfv = 2π for every inner vertex v.
(ii)

∑
f∈Fv

βfv ≤ π for every vertex v on the outer face.
(iii) ‖pfv − pfw‖ = ‖pgv − pgw‖ for every inner edge vw of H with incident faces f and g.
Then there is a crossing-free straight-line drawing of H in which every bounded face f can be
obtained from Pf by a rigid motion, i. e., translation and rotation.

Lemma 5 or similar statements have been used explicitly or implicitly in other situations,
beyond the context of circle packings. For example in [16, 15] it is used in the context of
contact representations with pentagons and k-gons. In fact, our second proof of Lemma 5
slightly generalizes a proof from [16].

We give two proofs of Lemma 5, a more geometric one and a more combinatorial one.

Proof 1. We proceed by induction on the number of interior vertices. The tool that we
need is that every simple polygon can be subdivided into convex pieces, or if we want, into
triangles, by inserting diagonals between its vertices.

To make the induction go through, we have to strengthen the assumption of the lemma
and require that each polygon Pf is convex. This can be achieved by inserting diagonals and
subdividing it into convex pieces. On the other hand, we don’t require H to be 2-connected,
and we even allow H to have multiple edges. (Showing beforehand that separating vertices
or multiple edges cannot actually occur would be more tedious.) We do however maintain
the requirement that H is connected and that the outer face is a simple cycle.

The inductive step proceeds as follows: If there is an interior vertex w, we take the k
faces f1, . . . , fk incident to w and place the corresponding polygons Pf1 , . . . , Pfk

successively
around the origin, see Figure 10. By condition i, they completely surround the origin.
By convexity of the faces, each face is confined within its own sector, disjoint from the
other sectors. Thus the faces don’t overlap, and their union forms a simple polygon P that
contains w in its interior. (It is star-shaped around w.) We triangulate P geometrically. We
remove w from the graph H, and we insert the appropriate new edges into H, replacing the
faces f1, . . . , fk by the new triangular faces, with the triangles as the corresponding polygons.
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w
Pf1

Pf2

P
Pf3

Pf4

Pf5

Figure 10 Triangulating the union of the faces surrounding a vertex w.

(Here is the point where multiple edges could conceivably be created.) When performing
this replacement, by construction, the angle sum

∑
f∈Fv

βfv remains the same around every
vertex v 6= w (conditions i and ii), and the new polygons have matching edge lengths, both
among themselves and with the previously existing faces (condition iii). The resulting graph
H ′ has one interior vertex less, and it is still connected, because the boundary vertices of
P , which include all neighbors of w, are connected through the boundary edges of P . By
induction, its faces can be laid out in the plane without overlap and with adjacent faces
touching along their common edges. The triangular faces that were added form a polygon
that is congruent to P . Cutting the polygon P into the faces Pf1 , . . . , Pfk

from which it was
originally formed, we obtain the position for w and a drawing of the original graph H.

In the base case of the induction, there are no interior vertices. We simply merge adjacent
polygons pairwise along their common interior edge. By condition ii, the two new resulting
interior angles are ≤ π. Hence the polygon resulting from each merge is again a convex
polygon. In the end, we have a single convex polygonal face, and there is nothing left to
prove. J

Proof 2. The proof proceeds in four steps. (A) In the first step, we define positions for every
face Let H∗ be the dual graph of H without the vertex corresponding to the outer face of H.
Let S be a spanning tree of H∗. Then by (iii) we can glue the polygons Pf of all bounded
faces f of H together along the edges of S. This determines a unique position for every
polygon, up to a global motion.

(B) Since a vertex belongs to several faces, this layout might prescribe several inconsistent
positions for the same vertex. In the second step, we that such contradictory constraints do
not arise, and each vertex has a unique position. For the edges of S we already know that
the polygons of the two incident faces touch in such a way that corners corresponding to the
same vertex coincide. For the edges of the complement S̄ of S we still need to show this.
The set S̄, considered as a subset of the edges of H, forms a forest. Let v be a leaf of this
forest that is an inner vertex of H, and let e be the edge of S̄ incident to v. Then for all
incident edges e′ 6= e of v we already know that the polygons of the two incident faces of e
touch in the right way. But then also the two polygons of the two incident faces of e touch
in the right way because v fulfills property (i). Since the set of edges we still have to check
remains a forest, we can iterate this process until all inner edges of H are checked. After
gluing all the polygons Pf , every vertex v has an unambiguous position.

(C) Let Po be the cycle formed by the boundary edges of H in this drawing. As the third
step, we will show that Po forms a convex polygon. We know from property (ii) that when
we traverse P0 with the interior on its left, we make only left turns, but it is conceivable
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that P0 makes several loops and intersects itself. We show that this is not the case. Let
H = (V,E) with face set F , and let Vo be the set of outer vertices of H. Denoting do = |Vo|,
we claim that∑

v∈Vo

∑
f∈Fv

βfv = (do − 2)π. (9)

To see this, we express the angle sum B over all polygons Pf in two different ways. Property (i)
gives

B =
∑

v∈V \Vo

∑
f∈Fv

βfv +
∑
v∈Vo

∑
f∈Fv

βfv = (|V | − do)2π +
∑
v∈Vo

∑
f∈Fv

βfv. (10)

On the other hand, let us denote the degree of each bounded face f by df . Then the angle
sum of Pf is (df − 2)π. Summing this over all bounded faces gives

B =
∑
f

(df − 2)π =
[
(2|E| − do)− 2(|F | − 1)

]
π = (|E| − |F |+ 2− do)2π+ (do− 2)π. (11)

Comparing the right-hand sides of (10) and (11), Euler’s Formula gives the claim (9).
Thus, the sum of angles at the outer vertices has just the right value for a do-gon. Hence,

the image Po of the boundary edges is a convex polygon and therefore nonintersecting.
(D) We finally prove that the glued polygons Pf tile the interior of Po without holes or

overlap. Since we will refer to this argument later, we formulate it as a separate lemma:

I Lemma 6. Let H be a 2-connected plane graph (possibly drawn with curved edges). Let H ′
be a straight-line drawing of H in the plane (possibly with crossings), with the following
properties:
(a) For each bounded or unbounded face f of H, the edges of the face cycle in H ′ form a

simple polygon Pf .
(b) For each inner edge e with incident faces f and f ′, the interior regions of Pf and Pf ′ lie

on different sides of e.
Then H ′ contains no crossings.

In our case, the assumptions of this lemma are fulfilled: For the bounded faces, Property (a)
holds by assumption, and for the unbounded face, it has just been established in Step (C).
Property (b) has been established in Step (B). Thus, our second proof of Lemma 5 is complete
once we prove Lemma 6:

Proof of Lemma 6. Let Po denote the outer boundary, which is a simple polygon by as-
sumption (a). We prove that the polygons Pf tile the interior of Po without holes or overlap,
using a covering number argument. Consider a point p on the plane which does not lie on
an edge of one of the polygons. We can move this point to infinity along a straight ray
which avoids all polygon vertices. We keep track of the number X(p) of polygons in which
p is contained. Whenever we cross an edge e of some polygon, we leave one polygon and
enter another polygon, keeping X(p) constant, unless e is an edge of Po. In the last case,
X(p) changes by ±1 in the correct way. This argument remains valid if we cross several
edges simultanously (but we are about to show that this situation never occurs). Since
X(p) = 0 when p is far away outside all polygons, it follows that all points p, except those on
polygon boundaries, have X(p) = 1 if they lie inside Po, and X(p) = 0 if they lie outside Po.
Consequently, the union of the polygons Pf is the polygon bounded by Po, and the polygons
cover it without overlap. J

J
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P

Figure 11 After placing a few faces, the outer cycle P might cross itself.

Our second proof of Lemma 5 generalizes to shapes Pf with curved edges: The matching
condition (iii) of the lemma must then be strengthened in an appropriate way. The angle
conditions corresponding to (i) and (ii) are not so straightforward to formulate, depending
on the generality of the allowed boundaries, and an additional constraint is required to
guarantee an overall convex shape (or at least a shape without self-overlap).

4.1 Comparison with Other Proofs
4.1.1 Lemma 5
We are aware of only one other proof of a statement like Lemma 5 in the literature: Brightwell
and Scheinerman [6] (who did not formulate it as a separate lemma) gave a proof that is
similar in spirit to our second proof. They successively place the polygons in some appropriate
order, such that the boundary P of the placed polygons is always a simple cycle in the graph.
In this way, what done in two separate Steps (A) and (B) in our proof, the placement of the
faces and ensuring the consistency of the vertex positions, is achieved together. Step (C) is not
necessary in their case, because the outer face is a triangle, and therefore it is automatically
non-intersecting. The same statement actually applies to the application of Lemma 5 in the
proof of our main theorem in Section 3.6, because the outer face is a rectangle in this case.

Step (D) is omitted in [6]. However, some argument like Lemma 6 is necessary, as
illustrated by a hypothetical situation in Figure 11: The shaded faces have already been
drawn, in a locally consistent way. While the outer boundary P forms a simple cycle in the
graph, it self-intersects in the plane. It is conceivable that such a boundary can be completed
with the remaining polygons to a locally consistent where the outer boundary becomes, say,
the rectangular outline. It requires a proof that this cannot occur.

The existence of an appropriate face order for the face placement is assumed without
justification in [6]. It is not hard to show that such an order can be chosen greedily: A
proper subset of bounded faces enclosed by a simple cycle P can always be extended by an
additional face f , so that f ∪ P is a connected curve, and the boundary remains a simple
cycle.

(Alternatively, one can choose an edge st on the outer face and use a “bipolar orientation”
(or an “s-t-numbering”), which is known to exist for any 2-connected graph. This results in
an acyclic orientation of the dual graph, and any linear extension of this acyclic orientation
is a suitable face order. We are grateful to Therese Biedl (private communication) for this
observation.)
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4.1.2 Lemma 6
Instead of Condition (b) of Lemma 6, we can stipulate that all faces are oriented consistently:

(b′) Every bounded face cycle of H is oriented in the same way in H and H ′.

Up to reflecting the drawing and reversing the orientation of every face, this is equivalent to
Condition (b): Condition (b′) clearly implies Condition (b). On the other hand, Condition (b)
implies that adjacent bounded faces must be oriented consistently. (When the interior of the
face is on the left, they must both be ordered clockwise or both counterclockwise.) Since
the graph is 2-connected, the dual graph of the bounded faces is connected, and hence all
bounded faces have to be ordered consistently.

A slightly different condition has been used by Devillers, Liotta, Preparata and Tamassia
[10, Lemma 16]. Their lemma states that the following condition, in conjunction with
Property (a), is sufficient to guarantee a non-crossing drawing:

(b′′) The cyclic order of the edges around every vertex is the same in H and H ′.

In contrast to Lemma 6, where the outer face of the initial drawing H is fixed and has to
remain unchanged in H ′, this variation gives up the a-priori distinction between inner faces
and the outer face. From the cyclic order in (b′′), one can infer the face structure by walking
around each face boundary, keeping the area of the face always to the left. The area of the
face might turn out to be the inner (bounded) or the outer (unbounded) region bounded by
the face cycle, depending on the orientation (counterclockwise or clockwise).

Our proof of Lemma 6 can be adapted to this situation: The regions Pf denote the
(bounded or unbounded) face areas, and the goal is to show that these regions tile the whole
plane, i. e., X(p) = 1 everywhere. To prove this, one has to establish that there is exactly
one unbounded face. This can be shown by an account of the angle sums, like in Step (C) of
our second proof of Lemma 5.

Lemma 16 of Devillers et al. [10] is stated for connected graphs and not just 2-connected
graphs. In this case, face cycles are no longer simple polygons. The proof in [10] is sketchy,
as acknowledged by one of the authors (private communication), and we could not fill all
gaps. It is fortunate that Lemma 6 offers an alternate approach.

Di Battista and Vismara [3, Lemma 4.5] have previously proved another variation of the
lemma where all interior faces are triangles. In this special case, condition (a) becomes trivial
for the interior faces. Instead of condition (a), the only requirement in addition to (b′′) is that
and the boundary of the outer face turns only in one direction (cf. condition (ii) of Lemma 5
and the discussion in Step (C) of our second proof of Lemma 5). Their proof is by induction
on the number of interior vertices, and the main argument proceeds by retriangulating the
hole that is left after removing an interior vertex, like our first proof of Lemma 5.
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A Proof of Lemma 4

I Lemma 4. A simple bipartite plane graph with |S| ≥ 4 nodes has at most |E| ≤ 2|S| − 4
edges, with equality if and only if the graph is connected and every face is a quadrilateral with
four distinct vertices.

Proof. If the graph is not connected, we add a minimal set of edges to make it connected
while keeping it plane and bipartite, resulting in a larger edge set E′.

Since the graph is bipartite, every face cycle has even length. Moreover, every face cycle
contains at least 4 edges (possibly visiting both sides of a single edge). To see this, note that
the only possible exception, a “digonal” face cycle, would have to be the two sides of a single
isolated edge, or two parallel edges. Since |S| ≥ 3 and the graph is connected and has no
multiple edges this cannot happen.

Denoting the set of faces by F , standard double-counting gives the relation 4|F | ≤ 2|E′|,
because every edge has 2 sides, and every face cycle goes through at least 4 sides of edges.
Euler’s formula gives then |E′|+2 = |S|+|F | ≤ |S|+|E′|/2 and therefore |E′| ≤ 2|S|−4, with
equality if and only all face cycles have length 4. Together, in the chain |E| ≤ |E′| ≤ 2|S|− 4,
equality cannot hold if the original graph with edge set E was disconnected (|E| < |E′|).

We still have to exclude face cycles of length 4 that are not quadrilaterals (i. e., with 4
distinct vertices). Such a cycle could only be the face surrounding a path with two edges.
This is excluded because |S| ≥ 4 and the graph is connected. J

http://arxiv.org/abs/math/0612672
http://arxiv.org/abs/0709.0710
http://library.msri.org/books/gt3m/

	Introduction
	History and Applications of the Theorem
	Primal-Dual Circle Representation: The Proof
	Kites
	The Angle Graph
	Angle Sums
	Iteration and Convergence
	Uniqueness
	Laying out the Kites
	Constructing the Circle Representation

	Tiling a Convex Polygon
	Comparison with Other Proofs
	Lemma 5
	Lemma 6


	Proof of Lemma 4

