
Maintaining the Approximate Width

of a Set of Points in the Plane�

(extended abstract)

G�unter Rotey Christian Schwarzz Jack Snoeyinkx

Abstract

The width of a set of n points in the plane is the smallest distance between two parallel lines

that enclose the set. We maintain the set of points under insertions and deletions of points

and we are able to report an approximation of the width of this dynamic point set. Our data

structure takes linear space and allows for reporting the approximation with relative accuracy

� in O(
p
1=� logn) time; and the update time is O(log2 n). The method uses the tentative

prune-and-search strategy of Kirkpatrick and Snoeyink.

1 Introduction

Let P be a set of n points in the plane. The width function w(�) is the smallest distance between

two parallel lines of direction � which enclose P , where the angle � is measured counterclockwise

from the x-axis, see �gure 1. The minimum w� of the width function is the width of the point set.

If the convex hull of P is available, one can construct in linear

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

-

6
y

x

J
J
J
J]J
J
J
Ĵ

AAK
EE
�

w(�)

��
L
L
hhh��

�
��
�
��XX !

!q

q

q

q

q

q

q

q

q

q

q

q

q q

q

P

Figure 1: The function w(�)

time the width function h(�) for the whole range of � and thus the

width w� [2, 3]. The dynamic width problem is to maintain w� while

the point set P is modi�ed by insertions and deletions of points. The

goal is to �nd algorithms that beat the trivial O(n) bound obtained

by updating the convex hull with any e�cient dynamic convex hull

algorithm and then recomputing the width. We do not know of any

algorithm achieving this goal, but Janardan [4] gave an algorithm

which maintains an approximation of the width. The following table

summarizes his results and our improvements for maintaining an

approximation with relative error �.

update time query time space

Janardan [4]
p
1=� � log2 n

p
1=� � log2 n

p
1=� � n

our results:

fully dynamic log2 n
p
1=� � logn n

insertions only logn
p
1=� � logn n

deletions only logn (amortized)
p
1=� � logn n

�The work of Christian Schwarz was supported by the ESPRIT Basic Research Actions Program, under contract
No. 7141 (project ALCOM II). The work of Jack Snoeyink was supported in part by an NSERC Research Grant.

yInstitut f�ur Mathematik, Technische Universit�at Graz, Kopernikusgasse 24, A-8010 Graz, Austria; electronic

mail: rote@ftug.dnet.tu-graz.ac.at
zMax-Planck-Institut f�ur Informatik, W-6600 Saarbr�ucken, Germany; electronic mail: schwarz@mpi-sb.mpg.de;

from September 1993: schwarz@icsi.berkeley.edu
xDepartment of Computer Science, University of British Columbia, 6356 Agricultural Rd., Vancouver, BC,

V6T 1Z2, Canada; electronic mail: snoeyink@cs.ubc.ca

1

2 The overall strategy

The �rst approach is to approximate the width by sampling the width function w(�) in su�ciently

many equally spaced directions �i 2 [��=2; �=2], and use the minimum of those values. This,

however, does not work for very long and narrow point sets like in �gure 2: We may miss the correct

direction and thus get an arbitrarily large relative error. (This is in contrast to the maximum of

the width function, the diameter, see [4].) Therefore we improve the estimate by searching for a

local minimum of w(�) in the vicinity of each direction �i. It turns out that this makes the error

much smaller.

However, in the dynamic setting, we do not know how to

�

�
	

����������������
����������������

B
B
B
BNB
B
B
BM
w(�i)

P

PPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPP

�
�
�
��
�
�
��
w(�i�1)

6?w
�

Figure 2: A bad case

�nd a true local minimum in O(logn) time. (Schwarz [11]

proposed an algorithm using a union-split-�nd data struc-

ture, see e.g. [7, 8]; it gives a time bound of O(logn log log n)

for �nding a local minimum and for updates.) Nevertheless,

we can apply the tentative prune-and-search strategy which

was recently introduced by Kirkpatrick and Snoeyink [5].

This either leads in O(logn) steps to a local minimum or

gets stuck in a situation where it cannot proceed. Fortu-

nately, this situation is just as good: We can still estimate the width with su�cient precision.

3 The algorithm

As the underlying data structure, we dynamically maintain the convex hull of the point set P .

Using the data structure of Overmars and van Leeuwen [9], this takes O(log2 n) time per update,

and it provides the convex hull in the form of a balanced binary tree of the edges in sorted order:

Each internal node corresponds to a subchain of the convex hull. It provides constant-time access

to one point on that chain which splits the chain into the two chains corresponding to the child

nodes. Given this data structure, we can compute the width h(�) in any particular direction � in

O(logn) time.

We want to �nd a number w whose relative di�erence from the width

U

L

Figure 3: Extreme

tangents

w� is at most a given bound �. We set

k := b
q
1=�c; � := �=k;

and

�i := ��=2 + i�, for i = 0; : : : ; k.

We look at each interval [�i�1; �i] in succession and try to �nd a local

minimum in that interval.

Let us consider a �xed such interval. The part of the convex hull that

has tangents in this range of directions consists of two convex polygonal chains, an upward chain

U and a downward chain L, see �gure 3. If the width w� occurs as the minimum distance between

parallel tangents to U and L, the number w which we will compute w will satisfy

cos� � w=w� � 1= cos�:

2

We say that a segment ab is a left fence (right

a

b
c

a

b
c

U

L

Figure 4: A fence triangle

fence) if all tangents to U at a and to L at b form

non-obtuse angles to the left (right) of ab, see the

right part of �gure 6. Segment ab ismixed if obtuse

angles can be formed on opposite sides of ab by

tangents at a and b, see the left part of �gure 6.

A triangle 4bac with a 2 U and b; c 2 L is a fence

triangle if ab is a left fence and ac is a right fence.

Figure 4 shows a fence triangle for chains U and L.

It also shows our schematic representation of fences|we mark the obtuse angles and use arrows to

indicate where tangents intersect.

A segment ab that attains a local or global minimum of w(�) is normal to tangents at a and b;

it can be seen as a degenerate fence triangle 4bab. We will see that any fence triangle (degenerate

or not) gives a good approximation w for width. We begin with a simple lemma about fences.

Lemma 1 No segment that is a local minimum for width has both endpoints left of a left fence or

right of a right fence.

Proof: The tangents for a left fence ab intersect and form a triangle to the left of ab. Tangents

to a0 left of a and b0 left of b intersect inside this triangle, therefore a0b0 cannot be normal to

both of these tangents.

We can return the length of the longer segment of a fence triangle as the approximate width w.

Theorem 2 Suppose that a 2 U and b; c 2 L form a fence triangle 4bac. Let w = max(ab; ac).

Then w � w� cos�. If, in addition, the minimum width w� is attained at some chord a�b� between

chain U and chain L, we have w � w�= cos�.

Proof: Let � be the direction of the tangent ta at a, and let d denote the intersection of the

tangents at b and c, see �gure 5a.

Since the three tangents at a, b, and c delimit

b

a

a∗

b∗

w∗

w∗

cosα

(b)

b

a

c

ta

(a)

d′

tb

d

Figure 5: Under- and overestimates

P , we may bound w(�) by the distance of d to

ta. Suppose w. l. o. g. that a lies to the right

of the orthogonal projection d0 of d onto ta, and

let �0 � � denote the angle between ta and the

tangent tb at b. Now ab is at least the distance

from d0 to tb, which equals dd0 � cos�0. Thus we

have

w � ab � dd0 � cos�0 � dd0 � cos�

� w(�) � cos� � w� � cos�:

Now assume that a� 2 U and b� 2 L and a�b�

attains the minimum width w�. Figure 5b shows

by how much w may overestimate w�. The normals to ab and a�b� both fall in the angle range

[�i�1; �i], so their angles di�er by at most �. Because U and L lie between the tangents at a�

and b�, we get w� � w cos�.

3

We use the tentative prune-and-search technique of Kirkpatrick and Snoeyink [5, 6] to �nd a

fence triangle in logarithmic time.

Theorem 3 Let U be an upper convex polygonal chain with tangent directions in an interval

[�i�1; �i] and let L be a lower convex polygonal chain with tangent directions in the same inter-

val, with a total of n vertices. If U and L are given in the form of balanced binary search trees we

can compute a fence triangle in O(logn) time, or we can conclude that no local minimum of the

width function exists.

Proof: Tentative prune and search has two modes of operation. In normal mode, we look at

the vertices a 2 U and b 2 L with median indices. We either discard half of one chain or else we

tentatively discard half of each chain, making at most one mistake, and go to tentative mode.

In tentative mode we re�ne the chains U and L alternately and either discard (tentatively or

permanently) half of the chain being re�ned or certify all tentative discards on one chain, revoke

those on the other, and return to normal mode. This mode of operation ensures termination

after at most O(logn) steps [6].

The above description is somewhat idealized because it assumes that we may always split

the current subchains of U and L evenly. In our case, however, the splitpoint is provided by the

dynamic convex hull data structure. It does not necessarily give an even split, but it is ensured

that the depth of the underlying tree is O(logn), which su�ces for the O(logn) time bound.

In normal mode, segment ab is mixed or

a

b

a

b

Figure 6: Cases in normal mode

is a fence. These cases are shown schemat-

ically in �gure 6. In the former case, we

discard the half of the chain that is incident

to the obtuse angle nearest the intersection

of the tangents at a and b|the left portion

of L in the �gure. The justi�cation is that

any point a0 2 U with tangent parallel to a

tangent at b must be right of a. Thus, there

is a local minimum or maximum that is right

of b and left of a0.

In the case that ab is a fence, we tentatively discard the portions outside the fence ab

according to lemma 1 and enter tentative mode.

In tentative mode, let us assume that ab is a left fence and everything to the left of a and

b has been tentatively discarded; the subchains that are currently under consideration are to

the right of a and b. Let us further assume that we are going to re�ne the lower subchain,

looking at some chord ab0. If ab0 is another left fence, we extend the tentative discard to b0,

see �gure 7. If ab0 is a right fence, we have found a fence triangle: We stop and report the

candidate approximation of the width according to theorem 2. Otherwise we have one of four

mixed cases, depending on where the obtuse angles and intersections formed by tangents to a

and b0 lie. In one case we discard the portion right of b0 and remain in tentative mode. In all

other cases we can certify that some tentative discard is correct and return to normal mode.

(The most complicated justi�cation is for the discard right of a in the last case: we discover

that the tentative discard left of a was a mistake, so lemma 1 certi�es the tentative discard left

of b.)

The algorithm stops when it has found a fence triangle or when the two chains are ex-

hausted.

4

a

b

a

b

a

b

a

b

a

b

a

b
b′

b′
b′

b′b′b′

Figure 7: Cases in tentative mode

It is now clear how to proceed: For every interval [�i�1; �i], i = 1; : : : ; k, we start the tentative

prune-and-search for the corresponding two chains U and L. Each time we terminate with a fence

triangle we get an estimate wi of the width. We take w as the minimum of those numbers wi, and

by theorem 2 we get

w

w�

2 [cos�; 1= cos�] � 1� O(�2) � 1� O(1=k2) � 1�O(�);

by our choices of k and �. Thus we can conclude:

Theorem 4 Given a representation of a convex polygon as a balanced binary tree, we can compute

an approximation w of its width w� with a relative accuracy of � in O(
p
1=� logn) time:

����
w� � w

w�

���� � �:

Proof: The proof follows from the above discussion.

Theorem 5 We can maintain an approximation of the width of a dynamic set of points with linear

space and update time of O(log
2
n) per insertion or deletion of a point and O(

p
1=� logn) query

time. In the semi-dynamic case, where only insertions or only deletions occur, the update time

is reduced to O(logn). In the case of deletions, this bound is only amortized over the sequence of

operations.

Proof: The time bound for updates follows from the corresponding bounds for maintaining the

convex hull, see [9] for the fully dynamic case, [10] for insertions, and [1] for deletions. The

bound for the query time follows from the previous theorem.

Note that the only thing that we actually maintain is the convex hull, and this is independent

of �. We may thus specify � only at the time of the query for the width.

5

4 Conclusion

The major open question is maintaining the true width in sub-linear time, even under insertions

only. Another problem would be to determine more precisely those angular ranges where the

minimum width can occur, and perform a local search more adaptively, only in the vicinity of

the promising directions. We have not been able to restrict the local searches to a subset of the

directions without a degradation in the quality of the approximation.

We remark that our time bounds can also be achieved by the following improvements of Ja-

nardan's method [4]: Janardan looks at O(
p
1=�) equally spaced directions; for each direction he

constructs and maintains the dual arrangement of lines where that given direction is considered

vertical. We can reduce the space and update requirements by working with a single copy of the

convex hull instead of a separate copy for each of direction. For each direction, Janardan �nds the

pair of enclosing parallel lines whose distance in that direction is minimal. Here we can cancel a

factor of logn by using the prune-and-search technique instead of nested binary search.

References

[1] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. In: Proc. 2nd

Scandinavian Workshop on Algorithm Theory (SWAT 90), 1990, Lecture Notes in Computer Science

447, Springer-Verlag, pp. 380{392.

[2] M. E. Houle and G. T. Toussaint. Computing the width of a set. In: Proc. First Annual Symposium

on Computational Geometry, 1985, pp. 1{7.

[3] M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE Transactions on Pattern Analysis

and Machine Intelligence PAMI-10 (1988), 761{765.

[4] R. Janardan. On maintaining the width and diameter of a planar point set online. In: Proc. 2nd Inter-

national Symposium on Algorithms (ISA'91), 1991, Lecture Notes in Computer Science 557, Springer-

Verlag, pp. 137{149. To appear in International Journal of Computational Geometry & Applications.

[5] D. Kirkpatrick and J. Snoeyink. Tentative prune-and-search for computing Voronoi vertices. In: Proc.

9th Annual Symposium on Computational Geometry, 1993, pp. 133{142.

[6] D. Kirkpatrick and J. Snoeyink. Computing constrained shortest segments: Buttery wingspans in

logarithmic time. In: Proc. 5th Canadian Conference on Computational Geometry, 1993, these pro-

ceedings.

[7] K. Mehlhorn. Datenstrukturen und e�ziente Algorithmen 1. B. G. Teubner, Stuttgart, Germany, 1986.

[8] K. Mehlhorn, S. N�aher. Dynamic fractional cascading. Algorithmica 5 (1990), 215{241.

[9] M. Overmars and J. van Leeuwen. Maintenance of con�gurations in the plane. Journal of Computer

and System Sciences 23 (1981), 166{204.

[10] F. P. Preparata. An optimal real time algorithm for planar convex hulls. Communications of the ACM

22 (1979), 402{405.

[11] C. Schwarz. Semi-dynamic maintenance of the width of a planar point set. Technical Report MPI-I-92-

153, Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany, December 1992.

6

